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Abstract

The Maximum Entropy Theory of Ecology (METE) predicts the shapes of macroecological met-
rics in relatively static ecosystems, across spatial scales, taxonomic categories and habitats, using
constraints imposed by static state variables. In disturbed ecosystems, however, with time-varying
state variables, its predictions often fail. We extend macroecological theory from static to dynamic
by combining the MaxEnt inference procedure with explicit mechanisms governing disturbance.
In the static limit, the resulting theory, DynaMETE, reduces to METE but also predicts a new
scaling relationship among static state variables. Under disturbances, expressed as shifts in demo-
graphic, ontogenic growth or migration rates, DynaMETE predicts the time trajectories of the
state variables as well as the time-varying shapes of macroecological metrics such as the species
abundance distribution and the distribution of metabolic rates over individuals. An iterative pro-
cedure for solving the dynamic theory is presented. Characteristic signatures of the deviation from
static predictions of macroecological patterns are shown to result from different kinds of distur-
bance. By combining MaxEnt inference with explicit dynamical mechanisms of disturbance, Dyna-
METE is a candidate theory of macroecology for ecosystems responding to anthropogenic or
natural disturbances.
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INTRODUCTION

Ecology seeks insight into the shape and origin of patterns in
the abundance, energetics and spatial distributions of taxa,
across spatial scales and within different habitats. Macroecol-
ogy, the study of such patterns, builds capacity for estimating
species diversity from sparse data, predicting extinction rates
under habitat loss and deciphering the processes governing
ecosystem structure and function. (Brown 1995, Rosenzweig
1995, Gaston & Blackburn 2000, Kitzes & Shirley 2016).
Although the study of dynamic ecosystems is a rising area

in ecology (Hill & Hamer1998; Dornelas 2010; Turner 2010;
Newman 2019), macroecological theory has largely focused on
patterns in quasi-steady-state ecosystems, ignoring trending
patterns in systems undergoing rapid succession, diversifica-
tion or collapse (Fisher et al. 2010). Empirical evidence, how-
ever, is accumulating that macroecological patterns differ
between dynamic and static ecosystems (e.g. Kempton & Tay-
lor 1974; Carey et al. 2006; Harte 2011; Supp et al. 2012;
Harte & Newman 2014; Rominger et al. 2015; Newman et al.
2020). Here, we formulate and initially explore a theory,
DynaMETE, to predict macroecological patterns in dynamic
systems.

Our starting point is a static theory based on the maximum
entropy (MaxEnt) framework (Harte 2011; Harte & Newman
2014). MaxEnt selects the flattest, and therefore least informa-
tive, probability distributions compatible with constraints
imposed by prior knowledge. Bias, in the form of assumptions
about the distribution that are not compelled by prior knowl-
edge, is thereby eliminated (Jaynes 1957, 1982). The maximum
entropy form of a probability distribution, p(n), is obtained
by maximising its Shannon information entropy (Shannon
1948), �∑np nð Þlog p nð Þð Þ, under imposed constraints.
The MaxEnt inference procedure has been applied in many

fields, including image reconstruction in medicine and foren-
sics (Frieden, 1972; Skilling, 1984; Gull & Newton, 1986;
Roussev, 2010), neural net firing patterns (Meshulam, 2017),
protein folding (Steinbach et. al, 2002; Mora et al, 2010) and
reconstruction of incomplete input–output data and other
applications in economics (Golan et al. 1996; Golan 2018).
The MaxEnt Theory of Ecology (METE) assumes prior

knowledge in the form of static state variables describing a
taxonomic group of interest (e.g. plants or arthropods) in a
prescribed location. In the original version of the theory, there
are four state variables: area, A, of the ecosystem, total num-
ber of species, S, within the taxonomic group in that
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ecosystem, summed number of individuals, N, in those species
and summed metabolic rate, E, of those individuals. From the
constraints imposed by ratios of the state variables, METE
predicts the forms of many metrics of macroecology with no
adjustable parameters. Other taxonomic categories, such as
genera or families, can be substituted for species.
The predicted macroecological patterns include a log-series

species abundance distribution (SAD) (Harte et al. 2008;
Harte & Kitzes, 2014; White et al. 2012; but see Ulrich et al.
2010), the species–area relationship (SAR) (Harte et al. 2009),
the metabolic rate distribution over individuals (MRDI)
(Harte et al. 2008, 2017; Xiao et al. 2015) and a relationship
between the average metabolic rate of the individuals in a spe-
cies and the abundance of that species (Harte et al. 2008). An
extension of the original theory predicts the distribution of
species over broader taxonomic categories and the dependence
of the abundance–metabolism relationship on the structure of
the taxonomic tree (Harte et al. 2015).
METE’s predictions generally fail in ecosystems undergoing

relatively rapid change. In particular, when state variables are
changing as a consequence of succession or anthropogenic dis-
turbance, the values of the state variables at any moment in
time no longer accurately predict the shapes of the macroeco-
logical metrics at that same moment in time.
Examples of altered macroecological patterns in disturbed

ecosystems abound. Moth censuses at Rothamsted reveal a
log-series SAD (as METE predicts) at less disturbed locations
and a lognormal SAD, with fewer rare species, at more dis-
turbed locations (Kempton & Taylor 1974). Supp et al. (2012)
report that when the state variables (species richness and total
abundance) are experimentally altered in small-mammal com-
munities, the functional form of the SAD is altered. Kunin
et al. (2018) show that in the highly fragmented and manipu-
lated UK, METE under-predicts plant species richness derived
from upscaling data from small plots. Franzman et al. (2021)
show that in an alpine plant community, both the SAR and
the SAD increasingly deviate over time from METE predic-
tions during several years of drought stress.
In systems recovering from disturbance, macroecological

patterns also change. Carey et al. (2006) show that the shape
of the SAR in recovering subalpine vegetation plots in the
aftermath of both an eruption at Mount St. Helens and a hill-
slope-erosion event at Gothic CO deviated systematically from
that observed in nearby undisturbed comparison plots. In the
aftermath of a recent fire, Newman et al. (2020) observe the
failure of METE for a plant community in a fire-adapted
Bishop Pine forest site in coastal California. There, the SAR
in a successional post-fire ecosystem deviates markedly from
the METE prediction, in contrast to a control site that has
not burned in many decades. On much longer time scales,
such shifts are also occurring; for example, at younger sites in
the Hawaiian Islands where arthropod diversification is occur-
ring more rapidly, the SAD and the MRDI show deviations
from static theory predictions, in contrast to older sites on the
islands (Rominger et al. 2015).
Across the Smithsonian forest plots, systematic deviations

from MaxEnt predictions appear prominently at the Barro
Colorado Island site in Panama. Here, the state variables, S
and N, have declined over the past 30 years, speculatively a

consequence of a combination of local disturbance and the
formation of Gatun Lake resulting in semi-isolation of the
created island from its metacommunity (E. Leigh, pers.
comm.). The shape of the SAD at BCI is currently intermedi-
ate between a METE-predicted log-series and a lognormal,
with proportionally more intermediate-abundance species than
observed at Smithsonian forest plots that are less disturbed,
such as Cocoli and Bukit Timah, which show closer agree-
ment with the log-series SAD predicted by METE (Harte
2011).
The pattern of deviation of macroecological metrics from

METE predictions differs across disturbed ecosystems.
Whereas in some disturbance sites, the SAD trends towards a
lognormal distribution (Rothamsted moths, BCI trees), in
others the trend is towards a geometric distribution with a
truncated tail at small n (alpine plant community). In some
disturbance sites, the SAR deviates from the METE predic-
tion towards a power-law (post-burn Bishop pine forest),
while in others it deviates further from power-law behavior
(alpine plant community).
This variety of responses of macroecological patterns to dis-

turbance challenges us to advance theory that predicts the
connections. We will see that DynaMETE predicts departures
of macroecological distributions from steady state that depend
on the specific type of disturbance. It also predicts future tra-
jectories of state variables describing disturbed ecosystems.
In METE, the state variables are assumed to vary so slowly

that their instantaneous values suffice to derive macroecologi-
cal distributions. Plausibly, in a dynamic ecosystem with
rapidly changing state variables, static METE might be inade-
quate. Analogously in thermodynamics, where the macro-
scopic state variables are pressure, volume and temperature,
the Boltzmann distribution of molecular kinetic energies can
be derived using MaxEnt (Jaynes 1957, 1982). In an out-of-
steady-state ‘disturbed’ gas, such as one with inhomoge-
neously changing temperature, the instantaneous averaged
values of pressure, volume and temperature no longer deter-
mine the instantaneous molecular energy distribution.
In DynaMETE, to the list of instantaneous constraints

imposed by the values of the state variables, S, N and E, we
add the additional constraints imposed by their first time
derivatives. We then combine the MaxEnt procedure for
determining least-biased probability distributions with explicit
mechanisms that drive the system from steady state. Because
the dynamics depends on the time-dependent state variables,
we propose an iterative procedure for updating both con-
straints and macroecological distributions.
In Methods, we review METE and present the theoretical

framework for DynaMETE, including how explicit mecha-
nisms are incorporated and upscaled from individuals to the
community level, and an iteration procedure for deriving pre-
dictions. In Results, we first examine predicted scaling rela-
tionships among the state variables in the static limit of
DynaMETE. Then, we examine dynamic predictions of the
theory near steady state. Coupled time-differential equations
for the state variables are derived and solved to reveal pre-
dicted trajectories of these variables under various perturba-
tions. We also show predicted deviations of abundance and
metabolic rate distributions in a first-order iteration of the full

© 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd.

936 J. Harte et al. Idea And Perspective



theory under a variety of perturbations. In the Discussion, we
summarise DynaMETE’s predictions and suggest future direc-
tions. Symbols are defined in a Glossary (Table 1).

METHODS

Review of METE

The core of METE is a time-independent ‘structure function’,
R(n, ϵ|S, N, E). R is a joint conditional distribution over
abundance, n, of a species, and metabolic rate, ϵ of an indi-
vidual; R�dϵ is the probability that a species picked at random
from the species pool has abundance n, and an individual
picked at random from the species with abundance n has a
metabolic rate in the interval (ϵ, ϵ + dϵ).
We use a discrete notation, with summation, not integral,

signs for all variables n,ϵ, S, N, E, and adopt the units con-
vention that the smallest value for the metabolic rate is = ɛ1,

the metabolic rate of the smallest observed organism in the
community (e.g. a tree with 10 mm dbh if that is the smallest
tree censused). The hard (sensu Haegeman & Loreau 2008)
constraints on the static structure function are:4

N

S
¼ ∑

n,ɛ
nR n,ɛjS,N,Eð Þ (1)

and

E

S
¼ ∑

n,ɛ
nɛR n,ɛjS,N,Eð Þ: (2)

The MaxEnt solution (Harte et al. 2008) for R(n, ϵ|S,N,E)
subject to these constraints is:

R n,ɛjS,N,Eð Þ¼ e�λ1ne�λ2nɛ

Z
(3)

where Z-1 is a normalisation constant (see below). The λ’s are
Lagrange multipliers that are determined from the values of
S, N, E. The quantity β = λ1 + λ2 is determined from

S

N
∑
N

n¼1

e�βn ¼ ∑
N

n¼1

e�βn

n
: (4)

The Lagrange multiplier, λ2, is given by.

λ2 ¼ S

E�N
: (5)

Generally, the state variables obey the inequalities S <<
N<< E, in which case β≪1 and the solution to eqn 4 is, to a
good approximation,

S

N
≈βln

1

1� e�β

� �
≈βln 1=βð Þ (6)

Moreover, in that approximation,

Z≈
lnð1=βÞ

λ2
, (7)

In all that follows, we assume the validity of these approxi-
mations, and use =, not ≈, signs in the equations.
We note for later comparison with DynaMETE that the

species abundance distribution (SAD), ϕ nð Þ, obtained by sum-
ming R over metabolic rate, ɛ, is the log-series distribution:

ϕ nð Þ¼ e�βn

n∙lnð1=βÞ (8)

and the metabolic rate distribution over individuals (the
MRDI), obtained by summing nRS/N over abundance, n, is:

Ψ ɛð Þ¼ βλ2e�γðɛÞ

ð1� e�γðɛÞÞ2
(9)

where

γ ɛð Þ¼ λ1þλ2ɛ (10)

METE also contains a spatially-explicit component but to
focus on the essential concepts underlying DynaMETE, we
ignore the spatial dimension here.
For further description of MaxEnt and METE, and soft-

ware for deriving predictions, see Harte (2011); Brummer and
Newman (2019); Kitzes and Wilber (2016); Rominger &
Merow (2016).

Table 1 Glossary of symbols

Macrolevel state variables

S Total # species in community

N Total # individuals in community

E Total metabolic rate of community

B Total biomass of community

P Total productivity of community

Sm Total # species in metacommunity

Microlevel-independent variables

n Abundance of a randomly selected species

ɛ Metabolic rate of a randomly selected individual

m Mass of an individual

Probability distributions

R(n,ɛÞ Ecological structure function

ϕðnÞ Distribution of abundances over species

ψðɛ) Distribution of metabolic rates over individuals

Lagrange multipliers and functions thereof

λi Index i runs from 1 to 5

β λ1þ λ2
βm β for the metacommunity

Z Normalisation constant for R

γðɛÞ λ1þ λ2ɛ
Transition rate functions

f Governs the time rate of change of abundance

g, h Governs the time rate of change of metabolic

rates of individuals, species

q Governs the time rate of change of species

richness

Transition rate parameters

b0 A birth rate constant

d0 A death rate constant

m0 Immigration rate constant

w0, w1 Ontogenic growth rate constants

w10 w1/ln
2/3(1/βÞ

EC Metabolic carrying capacity of ecosystem

μ ln(1/βmÞ=Sm

σ1, σ2 speciation rate

constants

K speciation saturation constant

Mathematical quantities

γ Euler’s constant (~0.577)
δn,1 Kronecker delta function (=1 if n = 1; = 0

otherwise)
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DynaMETE

DynaMETE is a hybrid theory based upon both the logic of
the MaxEnt procedure and explicit mechanistic assumptions
about the drivers of change. The structure function, a
dynamic generalisation of eqn 3, again plays a central role
linking the microlevel, described by the independent variables
n and ɛ, and the macrolevel, described by state variables;
from it the dynamic macroecological metrics, such as a time-
dependent SAD, can be derived. The mechanistic parent of
DynaMETE is a set of transition functions that describe
demographic, ontogenic growth, migration, extinction and
speciation rates. They derive from analyses of individuals and
populations and thus depend upon n and ɛ.
To upscale from the time derivatives of the microlevel

variables, n and ɛ, to the time derivatives of the macrolevel
state variables, S, N, E, we cannot simply replace n with N
and ɛ with E in the transition functions because of Jensen’s
inequality and the nonlinearity of these functions. Instead,
we average the transition functions over the dynamic struc-
ture function. That function, in turn, is determined in an
iterative procedure, from the constraints imposed by the per-
turbed state variables and their time derivatives using Max-
Ent. Figure 1 illustrates the recursive architecture of
DynaMETE.
Importantly, our distinction between “steady-state” and

“dynamic” applies to the state variables only; in steady state,
individuals can be growing or dying and abundances of spe-
cies can be increasing or decreasing at any moment in time,
provided the state variables are constant.

At any time, the constraints on the dynamic structure func-
tion, R, include the state variables and their first time deriva-
tives. Two Lagrange multipliers, λ1 and λ2, correspond to the
constraints provided by ratios of state variables, N/S and E/S,
as in METE. Three additional Lagrange multipliers,
λ3, λ4 andλ5, correspond to the constraints of (1/S)dN/dt, (1/
S)dE/dt and dS/dt.
Consider an ecosystem that has been in steady state up until

time t = 0; the state variables have been constant and the
structure function is given by eqn 3. For S, those processes
might include extinction, speciation and immigration; for N,
they might include birth, death and immigration and for E,
they might include ontogenic growth, death of individuals and
immigration. At t = 0, a disturbance is imposed, perhaps a
reduction in the immigration rate because of habitat fragmen-
tation, or a change in the ontogenic growth rate or the per
capita death rate because of climate change.
DynaMETE describes the time evolution of the system in

the aftermath of that disturbance as an iterated sequence of
steps (A-G) in Fig. 1 and written more explicitly in Table 2.
To express Fig. 1 and Table 2 in equation form, we first

introduce the transition functions. We denote the rate of
change of the population of an arbitrary species by:

dn=dt¼ fðn,ɛ,fXg,fcgÞ (11)

Here, {X} refers to the set of state variables and {c} refers
to the set of parameters such as migration rate or per capita
birth and death rates that govern changes in the abundances
of the species. We assume that f and the other transition func-
tions do not depend on the {dX/dt}.

Figure 1 The architecture of DynaMETE. (a) Selected mechanisms are incorporated into transition functions. (b) The time derivatives of state variables

update the state variables. (c) The transition functions, which depend upon the state variables are updated. (d) Updated state variables and transition

functions are averaged over the prior (time t) structure function to update the time derivatives of the state variables. (e) Under updated constraints and

transition functions (dashed box), MaxEnt updates the structure function. (f) The macroecological metrics are updated from the updated structure

function. (g) Steps B–F are iterated.
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The metabolic rate of a species can change because of either
a change in population size or because of ontogenic growth of
an individual in the population. We denote the rate of change
of the metabolic rate of an individual as:

dɛ=dt¼ gðn,ɛ,fXgfcgÞ, (12)

Then

d metabolic rate of a speciesð Þ
dt

¼ h n,ɛ, Xf g, cf gð Þ: (13)

where the function h is constructed from f and g (see SI-C).
The functions f and h multiplied by S and averaged over the
structure function give the time derivatives of N and E respec-
tively (eqns 16 and 17 below).

Finally, the transition function q n,ɛ, Xf g,fcgð Þ describes
processes governing changes in species richness, including
extinction, immigration and speciation; averaged over the
structure function it determines dS/dt (eqn 18 below).
To describe the iterative process, we introduce a discrete

time-step index, i, and designate the time-dependent state vari-
ables, their time derivatives, the Lagrange multipliers, the
transition rate parameters and the structure function as {Xi},
{dXi/dt}, λ j,i, {ci} and Ri respectively. The index, j, designat-
ing the Lagrange multipliers, runs from 1 to 5.
Again consider a system that in the past (i < 0) was in

steady state, with static state variables, static structure func-
tion given by eqn 3, and Lagrange multipliers given by eqns 5
and 6. For i < 0, λ3,i, λ4,i, λ5,i and the time derivatives of the
state variables vanish. At i = 0, a disturbance is imposed that
is expressible as a change in one or more of the parameters, c,
in the transition functions. It can be a time-varying or a fixed,
one-time parameter change.
The iterative process cycles through three groups of equa-

tions. First, at any moment in time, i, the structure function is
calculated using MaxEnt with the constraints arising from the
instantaneous values of the state variables and their time
derivatives:

Ni ¼Si∑
n,ɛ
nRiðn,ɛ, Xif g, fcigÞ (14)

Ei ¼Si∑
n,ɛ
nɛRiðn,ɛ, Xif g, fcigÞ (15)

dNi

dt
¼Si∑

n,ɛ
f n,ɛ,fXig,fcigð ÞRiðn,ɛ, Xif g, fcigÞ (16)

dEi

dt
¼Si∑

n,ɛ
h n,ɛ,fXig,fcigð ÞRiðn,ɛ, Xif g, fcigÞ (17)

dSi

dt
¼∑

n,ɛ
q n,ɛ,fXig,fcigð ÞRiðn,ɛ, Xif g, fcigÞ (18)

Equations 14 and 15 impose the same constraints as do
eqns 1 and 2; eqns 16 and 18 impose new constraints. For
notational simplicity, conditionality of the structure function
on the time derivatives of the state variables is implicit in
eqns 14–18, whereas we have made explicit the dependence
of the structure function on the state variables. Equations
14 and 18 implement step E in Fig. 1, step 6 in Table 2.
From these equations, application of the MaxEnt inference
procedure results in the following ecological structure func-
tion:

Riðn,ɛ, Xif g,fcigÞ¼Z�1
i e

�λ1,in
e�λ2,inɛe�λ3,ifðn,ɛ, Xif g,fcigÞ

e�λ4,ihðn,ɛ,fXig,fcigÞe�λ5,iqðn,ɛ,fXig,fcigÞ

(19)

where Zi is a normalisation factor that depends on the λ j,i:
To iterate the structure function, we need to update the

state variables:

fXiþ1g¼fXigþfdXi

dt
gΔtΔt¼ 1withintegerindex iÞ (20)

This is step B in Fig. 1, step 3 in Table 2. Equation 20 then
allows us to directly update the transition functions by substi-
tution (step C in Fig. 1, step 4 in Table 2):
Finally, we update the time derivatives of the state variables

from time step i to i + 1 by averaging the transition functions
over the structure function, with Lagrange multipliers

Table 2 Inference dynamics. An iterative process for solving the dynamic

state variable equations. Time is labelled with the subscript i. The nota-

tion {Xi} is shorthand for the set of state variables, Si, Ni and Ei; {dXi/dt}

is shorthand for the set of their time derivatives; and {k({Xi}, {ci})} is

shorthand for the set of dynamic transition functions, f, h and q

Step Known

Derived from

known

Before the perturbation

1. In the steady-state

past, the static

structure function is

derived from static

state variables; this

step generates eqn 3.

Xpast;
dXpast

dt

n o
¼ 0;

λ j,past ¼ 0ðj¼ 3,4,5Þ
λ1,past; λ2,past;Rpast

Initialising the system right after the perturbation is imposed at t = 0

2. A perturbation is

now imposed,

expressed by a change

in one or more of the

parameters, {c}, in the

transition functions, k

({X},{c}). The initial

time derivatives of the

state variables are

calculated from eqns

21–23.

X0f g¼ Xpast

� �
;λ j,0 ¼ λ j,past;

R0 = Rpast; perturbed

transition functions

fdX0

dt g≠ 0

After the system is initialised to the Perturbation

3. The state variables

are updated using

their time derivatives

using eqn 20.

X0f g; dX0

dt

� �
X1f g

4. The transition

functions are updated

by substituting

updated state

variables.

{k({X0},{c0})} {k({X1},{c1})}

5. The time derivatives

of the state variables

are updated using

eqns 21–23.

{k({X1},{c1})};R0
dX1

dt

� �

6. The structure

function is updated

from the constraints

derived above using

eqns 14–18.

X1f g;fdX1

dt g; {k({X1},{c1})} λ1,1, ::,λ5,1,R1

Subsequent steps repeat steps 3–6. With each update of the structure

function, the updated effects of the perturbation on abundance and

metabolic rate distributions can be derived.
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determined from eqns 14–18 fixed at time step i, but the tran-
sition functions f, h, q appearing in the exponents of eqn 19
evaluated at the {Xi+1}:

Siþ1∑
n,ɛ
f n,ɛ,fXiþ1

� �
, fciþ1gÞRiðn,ɛ, Xiþ1f g, fciþ1gÞ¼ dNiþ1

dt

(21)

Siþ1∑
n,ɛ
h n,ɛ,fXiþ1

� �
,fciþ1gÞRiðn,ɛ, Xiþ1f g, fciþ1gÞ¼ dEiþ1

dt
(22)

∑
n,e

q n,ɛ,fXiþ1

� �
,fciþ1gÞRiðn,ɛ, Xiþ1f g, fciþ1gÞ¼ dSiþ1

dt
(23)

The subscript i on Ri in eqns 21–23 signifies that the
Lagrange multipliers are those at step i, and thus depend on
{Xi} and {dXi/dt}. Equations 21 and 23 implement step D in
Fig. 1, step 5 in Table 2.
Equations 14 and 23 comprise DynaMETE. They can be

iterated to calculate the time evolution of both the state vari-
ables and the structure function. From the latter, the time-de-
pendent SAD and MRDI can be calculated (step F in Fig. 1).
We note that there is no mathematical or de facto connection

between information entropy maximisation and equilibrium; at
the completion of each entropy-maximisation step, S, N and E
will generally have non-zero time derivatives, at least under dis-
turbance, and hence the necessity, in subsequent iterations, to
update their values, then update their time derivatives and then
update the Lagrange multipliers. This is repeated until the system
does, potentially, reach an equilibrium.
There are two distinct time scales in DynaMETE. Rate con-

stants in the transition functions will have units of inverse
time and for practical purposes this time scale might be con-
veniently described in units of years. Another time scale is the
interval between updates in the iteration steps. In general,
numerical accuracy will increase with more rapid updating;
finding optimal time intervals for the iteration process remains
to be explored.
Supporting Information-A (SI-A) explains the rationale for

the term, S, multiplying the summations in eqns 16, 17, 21
and 22; SI-B elaborates on the full set of eqns 14–23, demon-
strating their internal consistency.
We turn next to the model-dependent, mechanistic parent of

the hybrid theory: expressions for the transition functions f, h
and q.

The transition functions

Up until this point, we have described a very general theoreti-
cal framework that in principle could be applied to a wide
variety of dynamical systems. To proceed, we make specific
model assumptions about the mechanistic transition functions.
There is no agreed-upon set of processes governing the rates
of change of n and ɛ, nor agreed-upon mathematical represen-
tations of selected processes. As with all mechanistic modeling
in ecology, plausible mathematical representations of very
complex and imperfectly understood processes will necessarily
be simplifications.
Our choices are guided by conformity with results from

metabolic theory (Brown et al. 2004) and by scale-consistency
requirements as described below. The reasoning behind, and
the derivations of, our choices of the explicit functional forms

for the transition functions are given in SI-C with some addi-
tional mathematical details about diversification via immigra-
tion in SI-D. Alternative forms for the transition functions
can readily be substituted for the ones selected here.

Summary of transition functions
From SI-C we have

f n,ɛð Þ¼ ðb0�d0E=EcÞ n

ɛ1=3
þm0

n

N
(24)

hðn,ɛÞ¼w0nɛ2=3� w10

ln2=3ð1=βÞnɛ�d0nɛ2=3E=Ecþm0n

N
, (25)

qðn,ɛÞ¼ μ0e
�μS�γþ σ1KS

KþS
þσ2b0nS

ɛ1=3
�Sδn,1

d0E=Ec

ɛ1=3
: (26)

All symbols in these equations are in the Glossary (Table 1).
In eqn 24, birth and death rates are assumed to be proportional
to n/ɛ1=3 in conformity with metabolic scaling theory (West
et al. 2001; Brown et al. 2004; Niklas 2007; Marba et al. 2007).
The term E/Ec represents a zero-sum constraint that operates
at community, not species or individual, level. In particular, Ec

is a metabolic rate limit for the community. Finally, it is
assumed that if an immigrant is in a species already present in
the local community, then the probability that it is in a species
with n individuals in that community is just n/N; if the total
immigration rate is m0, and the overwhelming fraction of immi-
grants is in existing species, then m0n/N is the expected rate of
immigration to a species with n individuals.
In eqn 25, the expression for ontogenic growth assumes

metabolic scaling (West et al. 2001). The zero-sum constraint
and the contribution from immigration are based on the same
assumptions as in eqn 24, and it is assumed that immigrants
have ɛ¼ 1. The term 1/ln(2/3)ð1=βÞ in the second term on the
right-hand side of eqn 25 is a scaling factor (see SI-C).
In eqn 26, two different speciation models and immigration are

included for generality. The expression multiplied by σ1 corre-
sponds to a speciation rate that for low species richness is propor-
tional to the number of species in the community (Kirchner and
Weil, 1998; Rabosky 2013) and saturates at high species richness.
The term multiplied by σ2 describes a speciation rate for the case
that each birth has an equal chance of resulting in a new species
(Weiser et al. 2018). Alternative functional forms of the speciation
rate (e.g. Etienne & Rosindell 2012) could be used. The expres-
sion for the contribution to q from immigration in eqn 26
assumes that new species arriving in the local community origi-
nate from the relatively rare species in the metacommunity; a full
derivation is given in SI-D. The last term in eqn 26 describes
extinction under the assumption that extinction occurs when the
last remaining individual in a species in the local community dies.
With this tentative set of transition functions, a model reali-

sation of the theory is completely specified. By iteration the
time trajectories of the state variables, the structure function
and the metrics of macroecology that derive from the struc-
ture function can be calculated.

RESULTS

First, to explore DynaMETE at and near the steady state, we
truncate the full iteration procedure at step 2 of Table 2 and
derive a set of coupled time-differential equations of motion
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(eqns 27–29) that predict relationships among the state vari-
ables in steady state and the dependence of state variable tra-
jectories on small perturbations in the parameters in the
transition functions. These results should only be good
approximations for small deviations from steady state because
they derive from the static structure function (eqn 3) with
λ3, λ4, λ5 ¼ 0.
Then, in a first iteration of the full theory (steps 3–6 in Table 2),

we use eqns 14–23 to calculate lowest order effects of various per-
turbations in the transition function rate constants on the struc-
ture function. From the perturbed structure function we then
derive altered shapes of the abundance and metabolic rate distri-
butions. We emphasise that these results may differ considerably
from those obtained with higher order iterations.

Predicted properties of State Variables at and Near Steady State

Using eqns 21–23, with transition functions specified in eqns
24–26 and R given by eqn 3, we obtain (see SI-E for deriva-
tions):

dN

dt
¼ b0�d0ðE=EcÞ½ �½

1:21N4=3ln1=3 1=βð Þ 1þ 4N ln ð1=βÞ
3E

� �
E1=3

�3N2lnð1=βÞ
2E

�þm0 (27)

and

dE

dt
¼ ½w0�d0ðE=EcÞ�½2:42E

2=3N1=3

ln2=3 1=βð Þ �2:26E2=3S1=3

ln 1=βð Þ � � w10E

ln
2
3 1=βð Þ

þ m0:

(28)

For the general case, with immigration and both speciation
mechanisms operating, along with extinction, we have.

dS

dt
¼m0e

�μS�γþσ1
KS

KþS
þσ2b0

1:21N4=3ln1=3 1=βð Þ
E1=3

 

1þ4Nln 1=βð Þ
3E

� �
�1:5N2ln 1=βð Þ

E

�
�1:35d0

Ec

S4=3E2=3

lnð1=βÞ : (29)

Steady states
Setting the time derivatives in eqns 27–29 to zero, we obtain
the following relationships among the static values of the state
variables and the parameters that describe the dynamics.
From eqn 27:

E¼Ec
b0
d0

ð1þδEÞ (30)

and from eqn 28:

N¼ ½ 0:41w10

w0�d0ðE=EcÞ�
3

Eð1�δNÞ: (31)

The correction terms, δE and δN, are of order ðm0=b0Þ E1=3

N4=3

� �
and ðS=EÞ1=3 respectively, which will generally be << 1.
From eqn 29, for the immigration-only case (σ1 ¼ σ2 = 0),

we have

Se3μS=4 ¼ ½0:41m0lnð1=βÞ
d0ðE=EcÞ �

3=4

E1=4 (32)

For the case m0 ¼ σ2 ¼ 0, and S >> K,

S¼ ½0:35σ1lnð1=βÞ
d0ðE=EcÞ �

3=4

E1=4 (33)

If S << K, then

S¼ ½0:35σ0lnð1=βÞ
d0ðE=EcÞ �

3

E (34)

Finally, for the case m0 ¼ σ1 ¼ 0 :

S¼ ½ 0:9σ2b0
d0ðE=EcÞ�

3=4

lnð1=βÞE (35)

The Steady-State Species–Area Relationship (SAR)
We can derive nested SARs from eqns 32–35 because in a
nested design, Ec, E and N scale linearly with area. In the
immigration-only model, taking the logarithm of eqn 32 gives:

S¼ lnðEÞ
3μ

þ lnðm0Þ
μ

�4lnðSÞ
3μ

þ lnðlnð1=βÞÞ
μ

þ
ln 0:41Ec

d0E

� �
μ

: (36)

In a nested SAR design, Ec, E and N scale linearly with
area, and in general, E >> m0. Hence, S scales logarithmically
with area, with ln(ln(area)) corrections arise from the third
and fourth terms (see eqn 6) on the right-hand side of eqn 36
and the fifth term contributes a constant. If m0 scales as a
power of area, then the second term also gives a ln(area),
which is generally smaller than the first term.
For sufficiently small S in eqn 32, the exponential term can

be ignored, and then the first term on the right-hand side of
eqn 36 can be set equal to the third term. This results in
S ~ m

3=4
0 E

1=4
0 ∼ area if m0 scales linearly with area, and S ~

area1/4 if m0 is scale independent. This limit applies when
S < 1/μ, which for a typical 50 ha tropical forest plot is
approximately S < 50 (see SI-F).
The METE SAR was derived (Harte 2011, eqn 7.68) from the

predicted species- abundance and species-level spatial-occupancy
distributions. The DynaMETE prediction does not depend on a
spatial distribution function, but it does depend on the choices
made for the mechanisms that govern the transition functions f, h
and q which led to eqn 30. Nevertheless, METE and the static
limit of DynaMETE in the migration-only model predict similar
functional forms for the SAR: S ~ ln(area) with ln(ln(area)) cor-
rections. Numerical simulations for a variety of choices of state
variables show that, beyond this functional similarity, they pre-
dict nearly overlapping SARs (see e.g. Fig. 2).
In the first speciation model, from eqn 33 with S >> K we

get quarter-power scaling of species richness with E (up to a
ln 1=βð Þ correction) and therefore with area. In that model,
with S << K, and for any S in the second speciation model, S
scales linearly with area, up to a ~ ln 1=βð Þln(N)-ln(S) correc-
tion. The first model, with a saturation term K that is small
compared to the steady-state species richness, thus yields a
more realistic species–area relationship.

A Productivity–biomass–diversity–abundance relationship at
steady state
Metabolic scaling informs us that individual mass (m) is
related to individual metabolism by mðɛÞ¼ mð1Þɛ4=3. To scale
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this expression up from individual mass, m, to total commu-
nity biomass, B, we again have to sum over the structure
function. As derived in SI-E, total biomass, B, is then:

B¼m 1ð ÞS∑
n,ɛ
ɛ4=3nRðn,ɛ S,N,Ej Þ ¼ m 1ð Þ 4:17E4=3

S1=3lnð1=βÞ : (37)

This community mass–metabolism relationship thus involves
species richness, and also total abundance via the ln(1/βÞ term.
Interpreting the state variable E as total net productivity P of
the community, eqn 37 yields a relationship among productiv-
ity, biomass, species richness and abundance:

P¼ 0:343B3=4S
1=4

ln3=4ð1=βÞ (38)

where B and P are measured in units such that m(ɛ¼ 1)=1.
Equation 38 does not depend on whether migration, specia-
tion or a combination of both contributes to diversification
because eqn 29 was not used in its derivation. Nor does it
depend on the forms of the transition functions and the rate
constants, which will differ from habitat to habitat.
Noting the different scaling exponents in the contribution

of biomass and species richness to P, and that ln(1/βÞ varies
approximately as ln(N) – ln(S), the influence of biomass on
productivity is considerably stronger than that of species rich-
ness, which in turn is stronger than that of abundance, which
only enters via the ln(1/βÞ term. Moreover, with productivity
and abundance fixed, then up to a logarithmic correction,
total biomass varies as S-1/3. Empirical surveys of the produc-
tivity–biomass–richness–abundance relationship (Ghedini
et al. 2018; Jenkins 2015; Niklas 2007) are qualitatively consis-
tent with these results but extensive analyses will be required
to test eqn 38.

Equation 38 is an “ideal biodiversity law”, an analog of the
ideal gas law that relates thermodynamic state variables.
Because this equation was derived using the steady-state struc-
ture function in eqn 3, it will likely no longer hold when the
state variables are trending up or down. Following distur-
bance, the full structure function (eqn 19) is needed to derive
the productivity–biomass–abundance–species richness relation-
ship, and it will then depend on the details of the disturbance
mechanism.
We turn now from the static limit of DynaMETE to its

dynamic predictions, examining both state variable dynamics
and the shapes of the SAD and MRDI away from steady
state.

State variable dynamics near steady state
Time trajectories of the state variables near steady state follow
from eqns 27–29, which were derived from the static structure
function. We examine both the first-order responses of the
state variables to several kinds of disturbance, expressed by
altered transition rate parameters, and the recovery to steady
state from a depauperate state.
For these dynamical simulations, we specify the transition

rate parameters for a forest resembling the 50 ha BCI tropical
forest plot (Condit et al. 2000; Condit, 1998; Condit et al.
2019; Hubbell et al., 1999). Approximate transition rate con-
stants for this site are given in Table 3 and the rationale for
these values is given in SI-F.
Figures 3a–d illustrate responses of the state variables, over

100 years, to different disturbances represented by changing
the values of the rate parameters in the transition functions.
Independent of the magnitude of the changes in these parame-
ters, certain general patterns emerge. A decrease in the immi-
gration rate constant, for example, under habitat
fragmentation that isolates an ecosystem from its metacom-
munity, results in a linear decrease in S at small t, as well as a
weak, damped oscillatory response of N, and nearly unde-
tectable change in E (Fig. 3a). An increase in the death rate
(Fig. 3b) generates a slight decrease in S, an initial large
decline in N and a weaker decline in E, followed by damped
oscillatory behavior. A decrease in the ontogenic growth rate
(Fig. 3c) generates a nearly indiscernible increase in S, a large
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Figure 2 Comparison of up- and down-scaled species richness using

METE and DynaMETE, starting with identical species richness and

abundance at the middle scale shown. The values of N, a proxy for area,

span a scale range of 27. Transition function parameters and S and N

values for the middle scale are from Table 3; at larger or smaller scales Ec

and m0 are assumed to scale linearly with area and the other parameters

are held constant. We note that the SARs derived from METE using

differing methods (McGlinn et al.2013) differ inconsequentially for the

case of the BCI state variables and the scale range analysed here.

Table 3 Parameter values for the transition functions and state variables

in a BCI-like forest ecosystem in which diversification is driven solely by

immigration. The rationale for the parameter values is given in SI-F

Parameter Value

b0 0.2

d0 0.2

m0 500

w0 1.0

w10 0.4096

Ec 2 × 107

μ¼S�1
metalnð1=βmetaÞ 0.0219

State variables

S 320

N 230 000

E 2.04 × 107
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damped oscillatory initial rise in N and weak damped oscilla-
tory initial decrease in E.
Figure 3d shows the effect on state variable trajectories of

combining perturbations in migration, death and growth
rates. We do not attempt here a detailed comparison with
real data because of the first-order approximation used to
obtain these theoretical curves, but it is encouraging that the
time trajectories of the BCI state variables over the period
1985–2015 (inset in Fig. 3d) also exhibit a steady decline in
S, decline and then partial recovery in N and weak variabil-
ity in E.
If we fix the transition rate parameters at their undisturbed

values (Table 3) in the immigration-only model, and initially
reduce the state variables 20% from their steady-state values,
their return to steady state is shown in Fig. 4. Noteworthy is
the monotonic recovery of S on a time scale of centuries, the
large overshoot and then decline to steady state of N, and a
much weaker overshoot and decline of E.

If speciation is the driver of diversification, the pattern of
recovery of species richness is markedly different. In the first
speciation model, with K >> S, recovery of S is sigmoidal
and extremely slow, with 90% recovery taking approximately
104 years. In the second speciation model, and in the first with
K << S, S recovers to 90% of steady state in approximately
4000 years, and at an ever-slowing, rather than sigmoidal,
rate. The recovery trajectories of N and E are nearly the same
in both speciation models and very similar to that in the
immigration-only case (Fig. 4).

Perturbed abundance and metabolic rate distributions in

DynaMETE

Here, we examine, in a first approximation to a fully iterated
solution, how different types of disturbance give rise to char-
acteristic departures of the SAD, ϕ nð Þ, and the MRDI, ψ ɛð Þ,
from their steady-state form. In particular, we truncate the
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Figure 3 Responses of state variables to perturbations simulated from Eqns 27–29: a. reduction of immigration rate, m0; b. increase in death rate, d0; c.

reduction in growth rate, ω0; d. increase in the death rate and reduction in the immigration and ontogenic growth rates. The inset in 3d shows the state

variable trajectories from 1985 to 2015 in the BCI 50 ha tropical forest plot. The censuses include trees with dbh ≥ 1 cm. Data from Condit (2019);

Hubbell et al. (2005). The inset assumes that the metabolic rate of individuals scales linearly with basal area.
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iteration procedure, stopping with step 6 in Table 2. A single
iteration at a one-year time step, however, results in changes
in the structure function that are too small to show interesting
deviations from steady state, so to generate a discernible effect
for a single iteration we use a time step of 25 years. Specifi-
cally, we assume the static structure function, with Lagrange
multipliers “frozen” at their static numerical values as pre-
scribed in eqns 21–23, perturb the transition functions by
changing one or more rates constants and then derive from
eqns 21–23 a set of time-differential equations for the state
variables. These equations differ from eqns 27–29 because the
latter were derived by updating the Lagrange multipliers at
each time step. We then ran these equations out to t = 25 and
take the values of the {X(25)} and the {dX(25)/dt} as con-
straints in eqns 14–18 to calculate using MaxEnt a perturbed
structure function. That function will be of the form of
eqn 19 and from it we derive perturbed forms for the species
abundance distribution (SAD) and the metabolic rate distribu-
tion over individuals (MRDI) using the same summations as
performed to derive eqns 8–9.
The results are shown in Fig. 5. The five derived

Lagrange multipliers are given in Table 4. Setting the immi-
gration rate constant, m0, to zero only slightly alters the
SAD and the MRDI in this first iteration of the full struc-
ture function (Fig. 5a and b). A 25% increase in the death
rate constant, d0, shifts the SAD towards a lognormal
shape as indicated by the curved rank-log(abundance) graph
at intermediate abundances (Fig. 5c). The rank-log(metabo-
lism) graph shifts in a more complex manner, weaving
around the METE prediction, and predicting more of the
very smallest trees (ɛ¼ 1Þ, fewer individuals with low
(ɛ¼ 2�100Þ metabolism, and more trees with relatively high

(ɛ¼ 100�100 000) metabolism, and a reduction in the sizes
of the very largest individuals (Fig. 5d). A 5% decrease in
the growth rate of individuals, w0, generates a roughly mir-
ror-image shift in the SAD relative to that from an increase
in the death rate; the resulting SAD is approximately
described by either an exponential distribution or an inverse
power function with exponent >1 (Fig. 5e). Similarly, the
shift in the MRDI generated by a decrease in growth rate
is roughly the mirror image of the shift induced by an
increase in the death rate (Fig. 5f).
Figures 5g and h show the effect of the same combination of

changes in the rate constants used to generate Fig. 3d. We do
not attempt here a detailed comparison with real data because
of the first-order approximation used to obtain these theoretical
curves, but note their rough similarity to the empirical SAD
and MRDI at BCI (see insets in Figs 5g and h).
We emphasise that a full iterative solution of eqns 14–23 in,

say, 25 one-year time steps, over a period of 25 years could
result in output that differs from the truncated solutions in
Fig. 5 because of nonlinearities in the transition functions.
The results in Fig. 5 are like a first-order term in a Taylor’s
series. Higher order iteration is needed to extend the predic-
tions out farther in time.

DISCUSSION

METE’s failure to predict macroecological phenomena in dis-
turbed, dynamic ecosystems is the motivation for Dyna-
METE. DynaMETE hybridises mechanism and MaxEnt, and
as a result the theory’s predictions deviate from METE in a
way that depends upon the mechanism of disturbance.
Dynamics in DynaMETE are described by mechanisms gov-

erning the microscale level of individuals and populations
within the constraints of metabolic scaling theory (Brown
et al. 2004). Upscaling to the macrolevel of communities is
accomplished by averaging the mechanistic transition func-
tions over the structure function that derives from MaxEnt.
This leads naturally to an iterative procedure summarised in
Fig. 1 and Table 2 and written out explicitly in eqns 14–23.
Whether this approach, or alternatives such as use of master
equations to derive stochastic realisations of neutral popula-
tion models (Hubbell, 2001; O’Dwyer et al, 2009; Overcast
et al., 2019) results in more accurate predictions remains to be
evaluated.

Summary of major predictions

Static limit
In its static limit, DynaMETE recovers the static METE pre-
dictions for the distributions of abundances over species and
metabolic rates over individuals, but also makes new predic-
tions. First, is a scaling relationship among productivity, bio-
mass, species richness and abundance in steady state (eqn 38);
this relationship remains to be tested. Second, in the version
of DynaMETE in which only immigration, not speciation,
contributes to diversification, DynaMETE predicts a static-
limit SAR increasing approximately as ln(A), with a ln(ln(A))
correction, in very close agreement with the static SAR pre-
dicted by METE (Fig. 2).
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Figure 4 Predicted recovery of state variables to their steady-state values

in Table 3, as predicted from Eqns 27–29, with steady-state parameters

and each initial state variable equal to 80% of its steady-state value. The

monotonic rise in S to steady state, along with the sizeable overshoot and

then damped oscillation in N, and the smaller overshoot and then

damped oscillation in E occur for a wide range of initially depleted state

variables, steady-state variables and parameter choices.
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Figure 5 The effect of perturbations on the species abundance distribution (SAD) and the distribution of metabolic rates over individuals (MRDI). The

relevant perturbation is in each plot’s title. Insets in Figs 5g and h show BCI data (see caption to Fig. 3). Note that the overlapping lines at ln(n) = 0 for

the METE and DynaMETE SAD predictions actually extend to the same maximum rank in all cases.
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If speciation but not immigration is assumed to drive diver-
sification, then the SAR predicted by DynaMETE depends
strongly on the form of the dependence of the speciation rate
on the variables S, N, n and ɛ. In particular, if the speciation
rate is proportional to the birth rate (eqn 35), or is an unsatu-
rated function of S (S << K; eqn 34) in steady state, then the
SAR is approximately linear in area at all scales, contrary to
multiple observations. In the saturation model, if steady state
is achieved with S >> K, we obtain a more realistic SAR
(eqn 33), but S >> K contradicts the original motivation for
S-dependent speciation. DynaMETE suggests a testable alter-
native: a logarithmic dependence of speciation on species rich-
ness. Using the methods in SI-E, this results in the plausible
SAR:

S

ln3=4ðSÞ ∼ ðAÞ1=4ln3=4ð1=βÞ (39)

and unsaturated dependence of diversification on S.

Dynamics
Assuming a static structure function (eqn 3) in a lowest order
solution to the theory, eqns 27–29 predict signature time tra-
jectories of the state variables for various types of perturba-
tions in the transition function rate constants (Figs 3). A
combination of reduced immigration and growth rates and
increased death rate generates trajectories that resemble those
observed in the BCI tropical forest plot (see inset in Fig. 3d).
Because these model simulations are based on extrapolating
out in time only the first-order iteration of the full theory,
they are only suggestive; empirical testing awaits further itera-
tion of eqns 14–23.
DynaMETE also predicts trajectories of state variables dur-

ing the recovery of an ecosystem from a depauperate state.
The predicted overshoot and then decline to steady state of N
(Fig. 4) suggests the “dog hair” stage of forest succession in
which, post fire or other disturbance, the abundance of small
trees increases rapidly, E/N decreases and then self-thinning
brings the system to a quasi-steady state, until the next distur-
bance.

DynaMETE also predicts that different types of perturba-
tions result in different patterns of deviation from static
METE predictions (Fig. 5) for both the distribution of abun-
dances over species and metabolic rates over individuals.
These signature patterns can provide a way to identify the
processes that are driving ecosystem change under natural or
anthropogenic disturbance.
The SAD in the 50-ha BCI tropical forest plot, which devi-

ates from the log-series distribution predicted by METE,
resembles the DynaMETE prediction assuming a combined
perturbation in death, growth and migration rates. That same
perturbation also results in an MRDI that improves on the
METE prediction for the high-metabolising (large size) indi-
viduals, but over-predicts the number of the lowest metabo-
lism individuals. Further study of different combinations of
parameter perturbations coupled with analysis of higher order
iterations of the dynamics is needed.

Future work

Flexibility of transition functions
Our assumptions about the functional forms of the transi-
tion functions are replaced with alternatives. The extinc-
tion process (last term in eqn 26) can be modified to
describe a minimum viable population size > 2. Alterna-
tive forms of the ontogenic growth equation (e.g. Makar-
eiva et al., 2004) can be substituted for the first term on
the right-hand side of eqn 25. Density dependence can be
described by a –d1n2 term instead of by our community-
level energy constraint. Moreover, a wide range of options
are possible for modeling the dependence of speciation
rates on n, ɛ and the state variables. A modification of
the birth rate function can improve the realism of the
transition functions when applied to forest census data
that are limited to trees with some minimum threshold
dbh, as, for example, with the Smithsonian Tropical For-
est census data. In such systems, entry into the data set
arises not from birth but from ontogenic growth into the
smallest censused size cohort.

Table 4 Perturbations, constraints and resulting Lagrange Multipliers used to generate Figures 5a–h. The text describes how the constraints are derived

m0 = 500→0 d0 = 0.2→0.25 w0 = 1.0→0.95

μ = 0.0219→0.024

m0 = 500→200

d0 = 0.2→0.235

w0 = 1.0→0.99

Figure 5a, 5b 5c, 5d 5e, 5f 5g, 5h

State variables and their rates of change used for constraints

S 314.2 319.6 320.8 314.9

N 217 962 144 430 262 537 166 984

E 2.0380 × 107 1.7331 × 107 1.8280 × 107 1.7822 × 107

dS/dt −0.242 −0.009 0.0246 −0.196
dN/dt −418 −1052 2350 −758
dE/dt −4349 −112262 −48162 −88709

Lagrange multipliers

λ1 0.00037020 0.0023398 −0.0073972 0.0014027

λ2 0.000014717 9.6690 × 10−6 0.000054585 0.000012665

λ3 0.074392 0.16739 0.58409 0.16072

λ4 −0.000015435 −0.00019515 0.00050473 −0.00010897
λ5 −0.0049918 −0.015078 −0.27931 −0.0091964
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Approaches to higher order iteration
Preliminary exploration of higher order iterations in Dyna-
METE suggests that the MaxEnt optimisation equations for
the Lagrange multipliers can be time intensive to solve numer-
ically. We are currently evaluating a novel analytic approach
to deriving and solving simultaneous linear differential equa-
tions for the time derivatives of the Lagrange multipliers.

Space
To include space explicitly in DynaMETE, one could modify
the assembly (or colonisation) rule (Harte, 2011) that gener-
ates the species-level spatial distributions in METE (Conlisk
et al. 2007; Brush & Harte 2021) by combining the assembly
rule with explicit demographic perturbations incorporated in
the transition function f(n, ɛÞ.

Traits
DynaMETE currently incorporates two traits: individual
metabolic rate (or body size) and species abundance. Other
traits are ignored or implicitly assumed to be neutrally dis-
tributed across species and individuals. METE predicts an
inverse relationship, referred to as energy equivalence
(Damuth 1981; Brown et al. 2004), between the abundance of
a species, n, and the average metabolic rate of its individuals,
<ɛjn>: METE and DynaMETE can be extended to include
additional variables corresponding to other properties or traits
of individuals and species, as well as analogs of energy equiv-
alence for these. For example, if one adds to the list of state
variables a new macrolevel resource variable, W (for water
availability), and an associated individual water uptake rate,
w, then METE predicts a modified SAD of the form
ϕ nð Þ∼ exp �βnð Þ=n2 (Harte & Newman 2014), and thus more
rarity than results from the log-series distribution. If the tran-
sition functions depend upon the individual water use efficien-
cies, ɛ/w, then the effect of water scarcity and differing water
use efficiency distributions on the SAD and the MRDI could
be investigated.

Higher taxonomic categories
The scope and realism of static METE were previously
enhanced by including an additional state variable corre-
sponding to the number of families in the community (Harte
et al., 2015). DynaMETE can also be readily modified to
include additional or alternative state variables corresponding
to the richness of higher taxonomic categories or, using lin-
eages in a phylogeny, the elapsed distance separating pairs of
individuals from their nearest shared ancestor.

Some broader issues
Both anthropogenic stresses and natural disturbances can
cause state variables to rapidly change, and thus systems expe-
riencing either type of disturbance can fall within Dyna-
METE’s criterion for a dynamic ecosystem. Although
evidence reviewed in the Introduction suggests that systems
undergoing either type of disturbance exhibit macroecological
patterns that deviate from METE, the applicability of Dyna-
METE both to anthropogenically disturbed ecosystems and to
naturally disturbed systems is not known. Given the

importance of finding early warning signals that distinguish
human impact on ecosystems from the effects of natural dis-
turbance regimes, this is a high priority.
Gaston & Blackburn (2000) argued that no fundamental

new insight will be obtained by comparing patterns along dis-
turbance gradients because the rules that govern how process
determines pattern will be the same in all ecosystems. In the
MaxEnt inference approach to macroecology, however, when
the numerous mechanisms that influence ecosystems are in
balance, resulting in static state variables, then patterns do
not depend on process (Harte & Newman 2014). In disturbed
systems, however, with dynamic state variables, DynaMETE
asserts that the actual mechanism of disturbance now governs
macroecological patterns. In other words, the rules have
indeed changed under disturbance.
In a provocative article, Goldenfeld & Woese (2011) suggest

that while physics makes a clean separation between the state
of a physical system and the equations that govern the time
evolution of the system, successful biological theory will inevi-
tably be self-referential or recursive in the sense that the state
of the system will strongly enter into the equations that gov-
ern dynamics. We observe that this is true of DynaMETE
(Eqns 14–23; 24–26); the state variables appear explicitly in
the transition functions, which in turn govern state dynamics.
Many academic fields seek to unify complex micro- and

macrolevel dynamics, in a speculative vein we suggest that the
proposed iterative procedure at the core of DynaMETE could
be of possible application in, for example, economics (Golan,
2018) and in statistical physics (Jaynes, 1957, 1982), where in
both of these fields, static equilibrial patterns can be captured
by MaxEnt but non-equilibrial dynamics has remained elu-
sive.

CONCLUSION

Although ecosystems are dynamic and macroecological pat-
terns do not remain constant in the face of disturbance,
dynamic macroecology has not been adequately explored.
DynaMETE, a theory of dynamic macroecology, hybridises
explicit mechanisms driving change with a powerful inference
procedure, MaxEnt, from information theory. By predicting
how patterns in macroecology shift under anthropogenic per-
turbations, or under natural successional and evolutionary
forces, DynaMETE can contribute to better understanding
the fate of disturbed ecosystems, to improving conservation
and management strategies in ecology, to developing early
warning indicators of ecosystems in transition or at the edge
of collapse, to identifying specific processes driving ecological
change and to clarifying the roles of ecology and evolution in
diversifying ecosystems. DynaMETE is a candidate dynamic
theory of macroecology in the Anthropocene.
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