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While ants are dominant consumers in terrestrial habitats, only the leafcut-
ters practice herbivory. Leafcutters do this by provisioning a fungal
cultivar (Leucoagaricus gongylophorus) with freshly cut plant fragments and
harnessing its metabolic machinery to convert plant mulch into edible
fungal tissue (hyphae and swollen hyphal cells called gongylidia). The cul-
tivar is known to degrade cellulose, but whether it assimilates this
ubiquitous but recalcitrant molecule into its nutritional reward structures
is unknown. We use in vitro experiments with isotopically labelled cellulose
to show that fungal cultures from an Atta colombica leafcutter colony convert
cellulose-derived carbon into gongylidia, even when potential bacterial sym-
bionts are excluded. A laboratory feeding experiment showed that cellulose
assimilation also occurs in vivo in A. colombica colonies. Analyses of publicly
available transcriptomic data further identified a complete, constitutively
expressed, cellulose-degradation pathway in the fungal cultivar. Confirming
leafcutters use cellulose as a food source sheds light on the eco-evolutionary
success of these important herbivores.
1. Introduction
Cellulose is a major constituent of plant cell walls and the most abundant
organic compound on earth, with enormous potential as an energy source in
terrestrial ecosystems [1,2]. However, cellulose is also a recalcitrant molecule
that is metabolically inaccessible to most animals without help from bacterial
or fungal symbionts [2,3]. While leafcutter ants are the only ants to forage
fresh vegetation, they cannot directly consume this cellulose-rich material.
Instead, the ants use it to provision an obligate fungal symbiont, Leucoagaricus
gongylophorus (Basidiomycota, Agaricaceae). The fungus converts plant
material into structural hyphae and swollen hyphal cells called gongylidia
(growing in bundles called staphylae) that are the main food source for the
ants [4–6]. Leafcutter farming systems can be massive. Colonies in the genus
Atta (Hymenoptera, Formicidae) can contain millions of ant workers and are
dominant herbivores in neotropical ecosystems [7]. Despite their large-scale
herbivory, it remains uncertain whether these farming systems can use recalci-
trant plant polymers, like cellulose, as a source of nutrition [8,9] (electronic
supplementary material, table S1).
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Recent studies have shown the presence of cellulose
degradation and cellulose-degrading enzymes in leafcutter
fungus gardens [10–17]. However, it remains unclear if
these enzymes serve primarily to degrade the cell wall and
thus provide access to more readily metabolized nutrients
inside, or if the fungus is also capable of assimilating cellu-
lose-derived carbon (C) into edible nutritional rewards (i.e.
gongylidia). Cellulose digestion may also be context specific,
with the cultivar prioritizing more accessible carbon sources
whenever possible [13], as is also reported from other
fungal lineages [18]. Alternatively, cellulose degradation has
been attributed to bacterial symbionts within the fungus
garden rather than the fungus itself [11,16,17], but see [19].
We review the literature on cellulose degradation in the
leafcutter symbiosis in electronic supplementary material,
table S1.

We tested the links between cellulose provisioning, cellu-
lose metabolism and the cultivar’s production of nutritional
rewards in three steps. First, an in vitro experiment with
13C-labelled cellulose measured the uptake of cellulose-
derived carbon into hyphae and staphylae. The inclusion of
dextrose as a more accessible carbon source in the media pro-
vided a secondary test of whether the fungus uses cellulose
as an energy source even when simpler sugars are available.
Second, an in vivo laboratory feeding experiment tested if the
in vitro results could be replicated in a colony of the Panama-
nian leafcutter ant Atta colombica. Foragers collected agar-
based substrate containing 13C-labelled cellulose which gar-
deners used to provision their fungus garden, containing a
natural assemblage of ants and microbes. Third, we tested
if the fungal cultivar can directly metabolize cellulose in
two steps. In silico analysis of previously published transcrip-
tomic data assessed if the cultivar constitutively expresses a
complete metabolic pathway for cellulose degradation, even
when this compound is not expected to be present in the
provisioned substrate. An in vitro experiment with media
containing 13C-labelled cellulose and antibiotics assessed
cellulose metabolism following targeted bacterial exclusion.
2. Methods
(a) In vitro assays
Fresh fungal cultures of L. gongylophorus were isolated from a
Panamanian A. colombica colony (Ac-2012-1) onto potato-dex-
trose agar (PDA) [20]. Isotopically enriched media were
prepared by adding 0.1 g l−1 of 13C-enriched glucose (D-glu-
cose-1-13C, Sigma-Aldrich, USA) or 0.1 g l−1 of 13C-enriched
cellulose (U-13C Cellulose, U-10508, IsoLife, The Netherlands)
to PDA. Media were autoclaved and 10 ml aliquots were
transferred into 60 mm Petri dishes (n = 30 per treatment). The
13C-enriched glucose treatment represented a positive control
as its metabolism and assimilation have previously been
confirmed [21]. PDAwithout enriched compounds was the nega-
tive control. Inoculation of the fungus followed established
protocols with incubation at 23.5°C [20]. Polycarbonate
track-etched (PCTE) membrane discs (diameter 47 mm, PCTE
0.1 µm; GVS, USA) were placed in Petri dishes to facilitate
collection of fungal tissues for subsequent analyses after 79 days.

A second experiment repeated this approach but added anti-
biotics (ampicillin, chloramphenicol and streptomycin) (for
concentrations, see: [22]) to each treatment (n = 15 per treatment)
and was performed over 52 days. We confirmed that bacteria
were excluded from antibiotic-treated plates by collecting
fungal mycelia from the antibiotic-treated and control plates
and extracting DNA using a Chelex® (Sigma-Aldrich, USA) pro-
tocol [23,24]. DNA for positive controls was extracted, using the
same method, from pure colonies of bacteria: Streptomyces sp.
(Gram-positive) and Stenotrophomonas sp. (Gram-negative).
DNA extracts were diluted to 10% of the original concentration
using ddH2O before analyses. Bacterial load was quantified
using ddPCR with eubacterial primers (63F and 355R) following
established protocols (Bio-Rad, USA) [25,26]. Based on values for
the negative controls, a detection threshold of 10 000 was used
(electronic supplementary material, figure S2 and table S2).

(b) In vivo assay
Baseline samples of hyphae and staphylae (n = 4 per tissue type)
were collected from the middle layer of the fungus garden of
Ac-2012-1, maintained in the laboratory at 23.5°C [27]. The
colony was provided with a 13C-cellulose-enriched diet (see in
vitro assays), which was completely consumed by the ants
within 24 h. Hyphae and staphylae were sampled from the
middle layer of the garden after 2 days (n = 4 per tissue type),
the time when peak 13C enrichment levels were previously
detected [21].

(c) Testing for 13C assimilation
We collected 0.05–0.1 mg (dry mass) of hyphae and staphylae
from each in vitro plate and each in vivo fungal sample. In
addition, remaining media from the initial in vitro experiment
were collected (electronic supplementary material, figure S1).
Samples were prepared following established protocols [21] and
then analysed by isotope ratio mass spectrometry (IRMS) for
13C/12C concentrations (13C enrichment). The system used a Euro-
vector CN analyser (Pavia, Italy) coupled with an Isoprime mass
spectrometer (Cheadle Hulme, UK). We used the results to calcu-
late 13C enrichment (13Cµg g−1) in the excess of natural
abundance. Each cellulose molecule ([13C6H10O5]n) had a sixfold
higher 13C enrichment than each glucose molecule (13C-C5H12O6),
so we corrected for this by dividing 13Cµg g−1 values in the cellu-
lose treatment by 6 before further analyses. We used Z-scores to
normalize enrichment values relative to baseline abundances for
each tissue type, allowing for direct statistical comparisons
between tissues and carbon sources (electronic supplementary
material, table S3).

(d) Data analysis
All datawere analysed in R (v. 4.0.2 [28]). The homogeneity of var-
iance was tested using Levene’s test (car v. 3.1–10 [29]) and
normality was tested using a Shapiro–Wilk test. Based on these
results, in vitro IRMS data were analysed non-parametrically
using permutational analysis of variance (Adonis with Euclidean
distances and 9999 permutations; vegan version: 2.5–7 [30]). In
vivo IRMS and ddPCR data were analysed using linear models,
with emmeans (v. 1.7.2 [31]) used to test for between-tissue differ-
ences on Day 2 of the in vivo experiment. We performed three
separate analyses (two in vitro, one in vivo experiment), using Z-
scores, calculated relative to the control for that tissue type, as
the dependent variable unless otherwise specified. The indepen-
dent variables were as follows: EnrichedCarbonSource (enriched
cellulose, enriched glucose, none control), Tissue (hyphae, staphy-
lae) and AntiobioticTreatment (±antibiotics). For the first in vitro
experiment, we tested EnrichedCarbonSource + Tissue, and for the
second in vitro experiment we testedAntiobioticTreatment*Enriched
CarbonSource + Tissue. 13C enrichment in themedia after the exper-
imental period was tested using 13Cµg g−1 EnrichedCarbonSource
(electronic supplementary material, figure S1). For the in vivo
experiment, we tested Tissue*EnrichedCarbonSource to compare
enrichment in staphylae and hyphae to the baseline natural
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abundance. To test for bacterial DNA in the second in vitro exper-
iment, we tested log10(16S_copies) against AntibioticTreatment +
CarbonSource. When main effects were significant, we used pairwi-
seAdonis (v. 0.0.1 [32]) to perform pairwise post hoc tests with
adjusted p-values calculated using false-discovery rate with a sig-
nificance threshold of padj = 0.05.
blishing.org/journal/rsbl
Biol.Lett.18:
(e) In silico analysis of capacity for cellulose metabolism
Transcriptome assemblies [33] were downloaded from the NCBI
TSA database, translated using transeq (EMBOSS v. 6.6.0 [34])
and carbohydrate-active enzymes (CAZymes) annotated using
peptide pattern recognition (PPR) (HotPep v. 1.0 [35]). While
previous studies have identified CAZy families expressed in
the fungus garden and in vitro cultures [13,14,33], PPR predicted
enzyme commission (EC) numbers, enabling us to identify the
specific reactions catalysed [35]. Predicted EC numbers were
compared to the BRENDA [36] cellulose-degradation pathway.
We identified all enzymes in the BRENDA pathway.
 20220022
3. Results
(a) In vitro cellulose assimilation by the cultivar
Fungal tissue was significantly enriched for 13C in both the
13C-cellulose and 13C-glucose treatments relative to the con-
trol (F2,152 = 18.487, p < 0.001, figure 1a). The cultivar
responded similarly for both treatments with overall enrich-
ment levels that did not differ statistically, and with
staphylae being more enriched than hyphae (F1,152 = 24.168,
p < 0.001; figure 1a; electronic supplementary material,
figure S1).
(b) In vivo cellulose assimilation by an intact fungus
garden

The fungus garden assimilated 13C-cellulose from the sub-
strate collected by foragers and provisioned by gardeners
inside the nest, as both hyphae and staphylae sampled
from the middle layer of the fungus garden had significantly
elevated 13C-content (F1,12 = 14.405, p = 0.003) relative to base-
line natural abundances (figure 1b). Enrichment in staphylae
and hyphae did not differ significantly from each other
(overall: F1,12 = 0.162, p = 0.694; Day 2: t12 =−0.569, p = 0.580).
(c) Cultivar mediated cellulose metabolism
High-resolution in silico analysis of transcriptomic data [33]
confirmed that L. gongylophorus expresses all enzymes
required for cellulose degradation and that these genes are
expressed in a PDA medium lacking cellulose (figure 2a),
potentially indicating constitutive expression of these bio-
degradative pathways. In total, we identified three cellulase
genes (EC:3.2.1.4), four lytic cellulose monooxygenases
(C1-hydroxylating) (EC:1.14.99.54), one lytic cellulosemonooxy-
genase (C4-dehydrogenating) (EC:1.14.99.56), two cellulose
1,4-β-cellobiosidases (reducing end) (EC:3.2.1.176) and two
β-glucosidases (EC:3.2.1.21) (figure 2a).

The antibiotic assay excluded the possibility that bacterial
symbionts were necessary for cellulose metabolism, as the
cultivar was significantly enriched for 13C in both the 13C-cel-
lulose and 13C-glucose treatments, relative to samples from
control PDA plates (F1,171 = 130.114, p < 0.001, figure 2b).
Pairwise tests showed higher 13C enrichment in the glucose
treatment relative to the cellulose treatment, even as both
were still significantly enriched relative to the control
(figure 2b). Despite evidence for 13C enrichment when bac-
teria were excluded, overall 13C enrichment was lower on
plates with antibiotics relative to the respective control
plates with only 13C-cellulose or 13C-glucose (F1,171 = 48.295,
p < 0.001, figure 2b). However, a significant interaction
between carbon source and antibiotic treatment (F2,171 =
47.314, p < 0.001), and subsequent pairwise tests, indicated
the main effect was driven by reductions in 13C enrichment
in the glucose treatment and with no significant effect of
the antibiotic treatment on the cellulose medium (figure 2b).
Staphylae were significantly enriched relative to hyphae
(F1,171 = 58.084, p < 0.001, figure 2b).
4. Discussion
While L. gongylophorus is known to degrade cellulose [10,12–
14,19] (electronic supplementary material, table S1), our iso-
topic enrichment experiments provide the first empirical
confirmation of the prediction that it also metabolizes and
assimilates cellulose-derived carbon into nutritional reward
structures for ant farmers. The fungal cultivar further
expresses its own complete enzymatic pathway for the degra-
dation of cellulose to glucose and can metabolically
transform cellulose following the targeted in vitro removal
of bacteria (and ant farmers). The cultivar’s metabolic conver-
sion of cellulose to glucose and packaging in edible
nutritional rewards may have contributed to the dietary
niche expansion that has made leafcutter ants dominant
herbivores across neotropical ecosystems.

Like free-living fungi [18], L. gongylophorus has been pre-
dicted to preferentially metabolize simple sugars over
recalcitrant plant compounds like cellulose [9,10,12,13], with
some further predicting that cellulase expression serves to
degrade the plant cell wall rather than releasing usable
carbon for the fungus [9,10,12,13]. However, the cultivar in
this study metabolized cellulose despite having access to
the simple sugar dextrose, at a concentration approximately
200 times higher than cellulose in the PDA medium. Tran-
scriptomic analysis further identified expressed cellulase
genes despite being collected from cultivars grown on cellu-
lose-free PDA [33]. The ubiquity of cellulose in plant tissues
may have favoured the evolution of a constitutive cellulose
metabolism even when the individual fragments foraged
contain this molecule at low concentrations, with cellulase
production having been shown to increase in the presence
of fresh plant material [13]. It will be interesting to perform
differential-expression analyses testing whether cellulose gra-
dients in provisioned substrates directly mediate cellulase
gene expression levels and ultimately govern behavioural
decisions in the colony about sending foraged leaf material
directly to waste piles.

These results shed light on cellulose processing within
L. gongylophorus fungus gardens. Fungal cellulase expression
appears highest in the top and bottom layers of the garden
[9,10,12], and the cultivar is assumed to only prioritize cellu-
lose digestion once highly degraded plant material reaches
the bottom layer [10,12,13]. Our in vivo results indicate that
freshly foraged cellulose can be rapidly (within 2 days) con-
verted into edible gongylidia in the middle layer, perhaps
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assisted by the constitutive expression of cellulase. Although
we do not observe differential enrichment between staphylae
and the surrounding mycelium in the in vivo experiment, our
sampling point was based on rapidly assimilated glucose,
with more complex substrates like cellulose potentially
taking longer. Our results are based on a single attine culti-
var, but we predict that this process of cellulose
assimilation will hold across cultivars of other leafcutter colo-
nies, species and genera, as their cultivars exhibit high
degrees of relatedness [37]. Moreover, results of the present
study add to an expanding catalogue of adaptions [6,27,33]
enabling the domesticated fungal cultivar to extract nutrition
from taxonomically and biochemically diverse plant frag-
ments [20].
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