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Abstract

Fungal parasitism depends on the ability to invade host organisms and mandates adaptive

cell wall remodeling to avoid detection and defense reactions by the host. All plant and

human pathogens share invasive strategies, which aid to escape the chitin-triggered and

chitin-targeted host immune system. Here we describe the full spectrum of the chitin/chito-

san-modifying enzymes in the mycoparasite Trichoderma atroviride with a central role in cell

wall remodeling. Rapid adaption to a variety of growth conditions, environmental stresses

and host defense mechanisms such as oxidative stress depend on the concerted interplay

of these enzymes and, ultimately, are necessary for the success of the mycoparasitic attack.

To our knowledge, we provide the first in class description of chitin and associated glycopo-

lymer synthesis in a mycoparasite and demonstrate that they are essential for biocontrol.

Eight chitin synthases, six chitin deacetylases, additional chitinolytic enzymes, including six

chitosanases, transglycosylases as well as accessory proteins are involved in this intricately

regulated process. Systematic and biochemical classification, phenotypic characterization

and mycoparasitic confrontation assays emphasize the importance of chitin and chitosan

assembly in vegetative development and biocontrol in T. atroviride. Our findings critically

contribute to understanding the molecular mechanism of chitin synthesis in filamentous

fungi and mycoparasites with the overarching goal to selectively exploit the discovered bio-

control strategies.

Author summary

Fungal pathogens pose an emerging threat in crop production and thus human health. Tri-
choderma atroviride is considered a potential biocontrol agent against a broad spectrum of

phytopathogens. Cell wall chitin was identified as promising target to combat fungal dis-

eases. Here we uncovered the regulation of chitin and chitosan synthesis and their contri-

bution to dynamic cell wall remodeling as protective components in self-defense reactions

during the mycoparasitic attack of Trichoderma. The systematic evaluation of the newly

identified chitin-modifying enzymes confirmed their concerted interplay and their
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essential contribution to a successful mycoparasitic invasion. These findings provide fur-

ther valuable, more specific information on targeting critical factors in the fungal cell wall

adaptation process for therapeutic purposes as well as improved biocontrol applications.

Introduction

Plant diseases are a widely acknowledged problem in industrial farming and often associated

with a substantial loss of harvest. Nowadays combating plant pathogenic fungi mainly

includes use of (petrochemical) fungicides. Such treatments however pose a significant envi-

ronmental burden and are implicated in causing serious health problems [1]. Additional

challenges, such as global warming with a rise in temperature leading to increased humidity

or draught, can directly and/or indirectly promote the pathogen burden and pesticide resis-

tance [2, 3]. This clearly mandates new techniques to control and avoid food and crop

spoilage.

One of the most promising green alternatives to pesticides in agriculture are mycoparasites

such as Trichoderma spp., which have successfully been used as a biocontrol agent since several

decades now [4–8]. Mycoparasitic Trichoderma species attack and parasitize different plant

pathogens, such as Rhizoctonia spp., Phythium spp., Botrytis cinerea and Fusarium spp. [6].

Notably, a comparative transcriptome study highlighted mycoparasitism as the ancestral life

style of Trichoderma [9] making it the ideal candidate to investigate the underlying principles

of mycoparasitism.

Even though sensing of the host as well as degradation of its cell wall (by e.g. chitinases,

glucanases, proteases) have been extensively studied [10–20], critical aspects concerning Tri-
choderma cell wall remodeling during vegetative growth and invasion still remain elusive. It

has been suggested, that the plasticity of Trichoderma cell walls might be fundamental for their

mycoparasitic abilities [21]. Particularly chitin, and in some cases also its deacetylated form

chitosan, are essential components in the cell wall of most fungi, and it seems puzzling that

little to no data are available, on how the synthesis of these polymers contributes to mycopara-

sitism, as this process might be critical in recognition, penetration and lysis of a host. So far,

it has only been known that the response of the host to mycoparasitism is accompanied by

hyphal tip growth arrest and apical thickening [22], as well as a thickening of the cell wall

around the infection structure of parasites, which coincides with up-regulation of chitin

synthases and chitinases in some hosts [23].

Although chitin is only a comparably minor component of the fungal cell wall [24, 25] its

strong micro-fibrils are most relevant for structural integrity [26]. In fact, chitin and chitosan

seem to be important in protecting fungi against environmental stress factors, whether this

might be temperature, osmotic stress or hostile enzymes [27]. Whereas yeasts contain only

0.5% to 5% of chitin, filamentous ascomycete cell walls contain up to 10–15% chitin fibrils [28,

29], consequently demanding a higher number of chitin synthases and chitinases in these

fungi.

Much attention has been drawn to fungal chitin synthases, which are most extensively stud-

ied in Saccharomyces cerevisiae. However, comparison to filamentous fungi demands caution

as S. cerevisiae comprises ‘only’ 3 synthases (ScChs1-3), with ScChs3 accounting for the bulk

chitin synthesis in vivo [30–34].

Fungal chitin synthases are grouped into three divisions [35] and seven classes. Specific to

filamentous fungi are only the classes III and V to VII. Class I-III belong to division 1 and are

very simple in structure containing only the conserved chitin synthase domain. Class IV, V
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and VII belong to division 2 [36], and class V and VII contain an additional N-terminal myo-

sin motor domain (MMD), which facilitates secretion [37, 38]. The class VI enzymes are the

unique members of division 3, which share the conserved catalytic domain but no other

characteristics.

Upon synthesis, chitin is secreted into the periplasmic space of the fungal cell wall, where it

can further be deacetylated by specific chitin deacetylases (CDAs). Chitin deacetylases catalyze

the hydrolysis of acetamido groups of the chitin substrate UDP-N-acetylglucosamine

(GlcNAc) and act in tandem with chitin synthases in vivo [27, 39, 40]. A certain amount of

deacetylation of the nascent chitin chain seems to be important in filamentous fungi to prevent

chitin of forming too crystalline structures [41]. If more than 50% of the GlcNAc residues are

deacetylated at position 2 [42] the heteropolymer is referred to as chitosan, which is positively

charged in weak acidic environment and therefore less recalcitrant than chitin. Thus, fungal

cell walls typically consist of a mixture of chitin and chitosan whose relative proportions vary

depending on the taxa [26, 39].

One of the most relevant activities of CDAs was reported in plant–pathogen interactions,

as chitin deacetylation is essential for cell wall rigidity and for resistance against chitinolytic

enzymes secreted by the host. Therefore, extracellular CDAs are secreted during plant pene-

tration to modify and thereby mask the chitin in the cell wall of the parasite, e.g. in Colleto-
trichum lindemuthianum, Magnaporthe oryzae, which could be recognized otherwise by a

plant resistance system [43, 44]. Thus, chitin to chitosan conversion by CDAs may represent

a sophisticated strategy towards hostile chitinases that Trichoderma mycoparasites are con-

fronted with. Consequently, cell wall polysaccharide remodeling influences the antifungal

resistance towards the pathogenic hosts and ensures that the mycoparasite prevails. This

concept might be further expanded to enzymes involved in transglycosylation of chitin to

glucan. Glucan/chitin cross-linking enzymes such as the CRH1 and CRH2 (UTR2) (origi-

nally described in S. cerevisiae [45]), represent critical players in fungal cell wall assembly

[46]. Moreover, fungal chitosanases, from glycoside hydrolase family 75 (GH75), are another

group of enzymes that participate in the decomposition of chitinous carbohydrates [47–49]

and might thus be equally important in host interaction, lysis and cell wall remodeling.

While most fungi have only 1–2 GH75 proteins, the mycoparasitic Trichoderma spp. have

on average five [9]. Neither their transcriptional regulation nor their enzymatic properties

were studied in these mycoparasites so far.

As outlined, the fungal cell wall is the first and crucial frontier in communication with

the environment and during the mycoparasitic attack. The metabolism of chitin, as a key

component of the cell wall, is under complex regulation. How mycoparasitic Trichoderma
spp. guard their cell wall against own or hostile hydrolytic enzymes [21] remains largely

uncharacterized. During fungal-plant interactions such findings were already reported [50,

51], and it remains to be shown whether similar concepts can be expanded to fungal-fungal

systems. The present study focused on characterizing the full complement of chitin

synthases and chitin deacetylases in Trichoderma atroviride using phylogenetic and domain

structure analyses. We show that differential expression of these chitin and chitosan meta-

bolic enzymes at different growth stages and during mycoparasitism is critical for a success-

ful life cycle and that each of these enzymes is necessary in this concerted process (an

overview is illustrated in the discussion). Importantly, a set of six chitosanases is also

involved in mycoparasitism. To the best of our knowledge such a holistic analysis of chitin/

chitosan metabolism has so far not been carried out in a mycoparasitic filamentous fungus.

Our results therefore provide important insights in the role chitin and chitosan play during

vegetative growth and improve our understanding of the mycoparasitic capability of Tricho-
derma as biocontrol agent.

Chitin and chitosan in Trichoderma biocontrol
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Results

Phylogenetic and structural classification of chitin synthases (chs) and

-deacetylases (cda) in Trichoderma atroviride
Blast analysis using known chitin synthase sequences from Aspergillus, Neurospora and Sac-
charomyces identified eight genes in Trichoderma atroviride (IDs and references, S4 Table),

of which seven can be directly assigned to the proposed classes I-VII [35, 52, 53]. The chitin

synthases were designated CHS1-7 (Fig 1A and S1 Fig), with CHS1-3 and CHS6 representing

chitin synthases with the most simple structure with only a chitin_synth_I (PF01644) or a chit-

in_synth_II motif (PF03142), respectively [35, 54]. CHS4 is the homolog of ScChs3p, which

accounts for the bulk chitin synthesis in yeast [31, 54, 55], and contains a cytb5-like domain in

addition to a chitin_synth_2 motif (Fig 1A). The related CHS5 and CHS7 additionally harbor

a Dek domain at the C-terminus and a myosin motor head domain (MMD), but only CHS5

retained the functional ATP binding and switch I and II motives [38] (Fig 1A and S1 Fig).

The eighth chitin synthase (CHS8) falls out of the classification (with a QRKRW motif)

and is present in a separate group together with the already identified chitin synthase FgCHS8

from Fusarium graminearum. FgCHS8 was shown to be important for virulence and fungal

Fig 1. Phylogenetic and structural classification of chitin synthases (chs) and -deacetylases (cda) in Trichoderma atroviride. Structure/function

prediction of the (A) eight chitin synthases (CHS1-8) and (B) six chitin deacetylases (CDA1-6). On the left side a condensed phylogenetic tree

(dendrogram) is shown for both enzyme groups. (C) Phylogeny and functional relation of all six identified chitin deacetylases from T. atroviride in

comparison to other organisms. Three functional groups are highlighted: light blue, virulence/autolysis related chitin deacetylases; light green/green,

vegetative and conidial development-related transmembrane CDAs group I/ II; yellow, CDAs putatively involved in self-/nonself recognition.

Bootstraps above 80 are not indicated. The bar marker indicates genetic distance. Gene name abbreviations are described in S1 Fig. A complete

phylogeny of CHS1-8 in filamentous fungi is depicted in the S1 Fig.

https://doi.org/10.1371/journal.ppat.1008320.g001
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cell wall sensitivity to environmental stress [56]. This new fungal class of chitin synthases was

also identified in a genome-wide analysis [53, 57, 58] where it was grouped into the proposed

CV and ESV subclasses, which share high homology to chloroviral chitin synthases [59, 60].

Our analysis provides evidence, that they are most closely related to Class VI enzymes (S1 Fig).

In addition, blasting two known conserved chitin deacetylase motives from S. cerevisiae
identified six chitin deacetylases in T. atroviride (Fig 1B). Subsequent phylogenetic analysis

of the chitin deacetylases, using sequences of the saprotrophic and phytoparasitic ascomy-

cetes and mucorales as comparators, revealed that CDA1 and CDA5 cluster together with

deacetylases related to virulence [43, 61, 62]. They are most closely related to the only two S.

cerevisiae chitin deacetylases (ScCda1 and ScCda2, [63, 64]; Fig 1B and 1C) due to the pres-

ence of a signal peptide and conserved type I chitin binding domains (ChitBI motifs/

CBM18) at their N- and C-termini, suggesting enhanced affinity to chitin polymers. How-

ever, ScCda1 and ScCda2 group to a separate clade with proteins involved in vegetative

development and conidial maturation [63–65]. Trichoderma CDA2 is present next to this

clade in a smaller separate group with chitin deacetylases that are cell wall associated and

expressed during vegetative development, but lack the ChitBI motif (e.g. in Magnaporthe
oryzae [43]). In contrast to the Zygomycete species Amylomyces/Mucor rouxii or Cryptococ-
cus neoformans [39, 65, 66] in T. atroviride only CDA2 possesses also signature characteris-

tics of membrane proteins (L4 –Y23; TMHMM server 2.0; http://www.cbs.dtu.dk/services/

TMHMM/ [67]). Trichoderma CDA4 and CDA6 are highly homologous (76% identity/83%

similarity) and only TaCDA3 and TrCDA4 were also found in addition in this fourth sepa-

rate branch (Fig 1C). CDA3 diverges the most from all other CDAs mainly because it har-

bors a very degenerate chitin deacetylase domain that even lacks the conserved, catalytic

aspartic acid and histidine residues (Fig 1B).

The genomic environment of chs and cda reflects their specific roles

Identifying conserved gene clusters is a useful bioinformatics approach to get first indications

on putative functionalities, since it can help identifying regulators and co-factors for a certain

pathway [68–70]. Hence, we performed a synteny analysis of chitin synthase and deacetylase

genes in T. atroviride. A comparison of the genetic neighborhood with the saprophyte T. reesei
provided further insights into the conservation of the clusters in related Trichoderma species

with different life styles. We found that the organization of the chs4 gene cluster identified in

Trichoderma spp. strongly resembles that of the different Aspergillus species that were analyzed

by Pacheco-Arjona et al. [69], (Fig 2A). chs4 shows a chromosomal head-to-head arrangement

with csa1 (encoding the putative activator of class IV chitin synthases [29]), a gene organiza-

tion typical for fungal secondary metabolism gene clusters or a coordinated transcriptional

regulation of functionally related genes. chs2 and chs3 were also found on the same contig in

T. atroviride and the same chromosome (VI) in T. reesei, but they are about 500 kb apart, so

that co-regulation or shared regulatory elements are unlikely (T. atroviride: chs2: (contig_29)

659,292–663,807 chs3: (contig29) 1,153,752–1,157,194). While chitin synthases are involved in

building up the cell wall, glycoside hydrolases, such as glucanases and chitinases, act antagonis-

tically, by degrading the cell wall to allow cell growth. Indeed, a glucanase was identified

upstream of chs4 directly after csa1. Moreover, also the gene encoding NAG1 (a secreted N-

acetylglucosaminidase) that is responsible for mobilization of GlcNAc from chitobiose [71] is

located only 55 kb upstream from chs4 in Trichoderma spp. Interestingly, the chitin deacetylase

encoding gene cda5, was found in close vicinity to nag2 (the second, but membrane bound N-

acetylglucosaminidase) [71] on another scaffold in T. atroviride (contig 23: cda5: 1,914,660–

1,916,233; nag2: 1,943,411–1,945,301) and two genes coding for chitosanases (CHO2 and

Chitin and chitosan in Trichoderma biocontrol
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Fig 2. Genomic environment of chs and cda reflects their specific roles. (A, B) A cluster analysis was performed according to the chromosomal

location of chitin synthase genes and their conservation among T. atroviride (Ta) and T. reesei (Tr) annotated at the JGI database for Trichoderma
atroviride v2.0 (https://genome.jgi.doe.gov/Triat2/Triat2.home.html) and Trichoderma reesei v2.0 (https://genome.jgi.doe.gov/Trire2/Trire2.home.

html). Conservation of exons (lilac), UTRs (untranslated regions, turquoise) and CNS (conserved non-coding sequences, red) is shown in the above

panel of each diagram. Gene location on the chromosomes (T. reesei, [146]) and contigs (T. atroviride) is indicated in k = 1,000 nucleotides. Gene

(white arrows) size and position are to scale and numbers correspond to gene description in S1 and S2 Tables. Chitin synthase genes and the activator

are highlighted in red. (A) Gene cluster of chitin synthase (chs4) and the putative chitin synthase activator (csa1). (B) chs5-chs7-chs6 gene cluster. (C-D)

Transcript levels of chitin synthase (left panel) and chitin deacetylase genes (right panel) during vegetative growth and conidiation. Transcript levels of

chitin synthase genes (chs1-8) were related to chs1 and chitin deacetylase genes (cda1-6) to cda2 expression at 16 h of germination for (C) and 24 h of

Chitin and chitosan in Trichoderma biocontrol

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008320 February 20, 2020 6 / 36

https://genome.jgi.doe.gov/Triat2/Triat2.home.html
https://genome.jgi.doe.gov/Trire2/Trire2.home.html
https://genome.jgi.doe.gov/Trire2/Trire2.home.html
https://doi.org/10.1371/journal.ppat.1008320


CHO4) are located next to it but are both missing in T. reesei. A closer investigation of the

genomic neighborhood of chs5 showed that it most probably shares a bi-directional promoter

with chs7 since they are in a head-to-head arrangement, which was observed also in other

fungi (Fig 2B and [38]). Furthermore, a serine/threonine kinase gene is found in close proxim-

ity of chs5, and a histidine kinase and -phosphatase down- and upstream, respectively, which

might play crucial roles in activation of the myosin head of the chitin synthases as proposed by

Pacheco-Arjona et al., [69]. chs6 is located only 55 kb apart from chs7 and contains additional

regulatory and accessory genes in close vicinity (Fig 2B). chs8 is located in a head to tail

arrangement with cda1 and a UDP-N-acetylglucosamine 6-dehydrogenase gene (UNGD) is

located further upstream, which might also imply co-regulation, even though via separate pro-

moters (Kappel and Gruber, manuscript in preparation). A similar arrangement was found in

all fungi harboring this specific kind of chitin (hyaluronan) synthase [57]. Therefore, the chro-

mosomal arrangements hint at a close transcriptional connection and imply a tight post-trans-

lational regulation of degradation and build-up of the cell wall in Trichoderma spp. Further

experiments with the additionally identified genes need to be carried out to verify the proposed

putative functions from the cluster analysis.

Transcriptional analysis during hyphal development (Fig 2C and 2D) showed that the chi-

tin synthases and—deacetylases can be grouped into those with low and very low expression

such as chs8, cda1, cda3 and cda5, intermediate expression (chs1, chs4, chs6, chs7, cda2, cda4)

and high expression (chs2, chs3, chs5, cda6). During generation of asexual conidia (from early

white to yellow and mature, green spores (Fig 2D) the expression of the chitin synthases

decreased slowly and only chs1, chs2, chs3, chs5 and chs7 were still expressed at intermediate

levels in mature/green conidia (Fig 2D). Transcription of cda2 and cda6 was found in early

stages of conidial maturation, but decreased also during late maturation. Interestingly, cda3
transcription, that was very weak during all stages of hyphal growth, increased strongly during

conidial maturation and might therefore be important in spore formation. High expression of

chs5 and chs7 throughout hyphal development, vegetative growth and also conidial maturation

was found (Fig 2C and 2D). Interestingly, cda1 and chs8 were only weakly expressed during

vegetative development and also cda5 expression was nearly undetectable, indicating involve-

ment in other possibly stress related processes. These results outline the importance of chitin

synthases chs3, chs5 and chs7 and cda2, cda6 during vegetative development and cda3, as a cru-

cial player in conidial maturation.

Differential expression of chs and cda upon environmental stresses

Perturbation of fungal cell wall synthesis triggers a compensatory response to ensure cell wall

integrity (CWI) with, among others, increased chitin synthesis. These stress responses are

transduced via the CWI pathway. Perturbances that negatively affect cell wall composition and

cell integrity such as osmotic shock and high salt levels (HOG), reactive oxygen species (ROS),

or cell wall synthesis inhibitors (CWSD) are first sensed by integral membrane proteins and

relayed to transcription factors. This leads to up- and downregulation of genes encoding cell

wall synthesizing and modifying enzymes in a highly adaptive and effective manner [72, 73]. It

has been shown that chitin synthesis and chitosan conversion is also influenced by external

growth on PDA for (D). Normalized expression of chs1 and cda2 corresponds to ‘1’ as indicated (see also S2 Fig). (C) Expression analysis during

germination after 0 h, 4 h (isotropic growth), 8 h (formation of germination tube) and 16 h (first vegetative hyphae). Pictures of corresponding

germination stages are shown on the right-hand side; scale bar = 20μm. (D) Expression analysis during hyphal development from mycelium grown on

PDA for 24 h and 48 h and asexual development at different maturation stages with (w) white/ nascent, (y) yellow/immature and (g) green/mature

conidia; scale bar = 1 cm.

https://doi.org/10.1371/journal.ppat.1008320.g002
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environmental stress factors in e.g. Aspergillus spp., C. albicans and M. oryzae [74–77]. To see

if transcriptional regulation of chitin synthases and deacetylases also plays a critical role in T.

atroviride, we investigated fold-changes of expression due to changed culture conditions simu-

lating different environmental stresses. Interestingly, the expression of chs1, chs3 and chs4, as

well as cda2, which all were expressed throughout hyphal development, was not up-regulated

upon any of the tested stress condition. Only chs6 and chs8 expression was increased up to

14-fold upon osmotic stress (Fig 3A). Remarkably, a hypothetical HSP88, family HSP110/

HSP70 encoding gene, is located in a head to tail arrangement downstream of chs6 (Fig 2B).

Among the deacetylases cda3, cda1 (up to 32-fold) and, to a lower extent, cda4, cda5 and cda6
(up to 21-fold) responded to HOG stress. A moderate response in transcription was observed

towards cell wall disturbing agents, were especially chs2, but also chs5 and chs7 as well as cda1,

cda3 and cda4 showed the strongest response with up to 6-fold increased transcript levels (Fig

3A). chs2 levels also increased moderately (5-fold) when more harsh treatments such as 40%

glucose and SDS were applied, which eventually resulted in hyphal lysis (S3 Fig). cda4
(19-fold) and cda6 (10-fold), but also cda1 and cda3 levels (5.5-fold) were increased under

these conditions (Fig 3A). During the mycoparasitic attack fungal hosts use defense strategies

such as generation of reactive oxygen species [78]. Interestingly, ROS created from incubation

with H2O2 resulted in very strong upregulation of most chitin synthases (48-fold, exceptions

chs1, chs3, chs4) and chitin deacetylases (145-fold, exception cda2). In silico analysis of all chi-

tin synthase promoters using known motives for transcription factor binding sites from S. cere-
visiae corroborated our results from the transcriptional approach. An enrichment of stress

related elements in the promoter region of the strongest stress responders from the expression

analysis chs2, chs5, chs6, chs7 and chs8, in comparison to the other chitin synthases was con-

firmed (Fig 3B, S3 Table). By contrast, developmental elements were rather found in chs3, chs5
and chs7. The occurrence of oxidative stress elements was especially high in chs2 and chs8,

whereas CWI-stress related elements were enriched in the MMD-domain chs5 and chs7 as well

as in chs2 and the other two division I chitin synthases. Thus, our findings provide evidence

that especially chs2 and chs6 as well as chitin deacetylase transcription, with the notable excep-

tion of cda2, is highly adaptive and that T. atroviride is well prepared for and capable of fast

reaction to a changing environment and defense reactions by the host during the mycoparasi-

tic attack.

Critical roles of chs and cda in growth and development are emphasized in

single knockout mutants

To study the role of the genes identified, we generated corresponding knockout lines. We

assumed that null mutants of non-redundant cell wall remodeling genes could repress growth

or even be lethal given their importance for fungal development and survival. Nonetheless, we

were able to generate single deletion strains of all chitin synthase and chitin deacetylase genes,

except for cda4. The deletion of cda4 proved difficult even after several rounds of transforma-

tion (ectopic integration detected > 20). Whether this is due to the gene being essential or if

the gene is located at an inaccessible position on the chromosome remains elusive.

Colony extensions of all deletion strains and their susceptibility to stress were assayed on

solid medium (Fig 4A and 4B). Significant differences were observed after 3 to 7 days of

growth between the WT and mutant strains, suggesting half of the chitin synthases are indis-

pensable for optimal growth under the tested conditions. Especially the MMD-chitin synthase

mutants Δchs5 and Δchs7 were severely compromised in development with irregular colony

appearance and thin mycelial network formation. In addition, little or no conidial production

with irregular size was observed (Fig 4C and 4D). These severe defects in group V and VII
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CHS have also been reported for other fungi and they play a crucial role in virulence in plant

pathogens [38, 79]. Δchs1 and Δchs2 show a considerably reduced growth rate on PDA. But

unlike chs5 and chs7 KO strains, division I synthase mutants form a dense hyphal matrix sug-

gesting aberrant branching frequency or hyphal fusion in this area [80]. Δchs1, Δchs2, had

strongly decreased amounts of spores and Δchs1, Δchs2, Δchs5 and Δchs7 produced mainly

Fig 3. Differential expression of chs and cda upon environmental stresses. (A) Transcription analysis of chitin synthase (left panel) and chitin

deacetylase (right panel) genes using various stressors. Comparison of growth under control conditions (glc1%, 1% glucose, ctrl) and with different

stressors. On the left side the specific growth condition is indicated and on the right side a stress group is assigned: CWI (cell wall integrity disturbing

stressors); CWSD (cell wall synthesis disturbing agents); HOG (high osmolarity glycerol) and ROS (reactive oxygen species). Detailed growth

conditions are described in S3 Fig. The clustering results of transcription levels (values calculated by ΔΔCT method) are represented in ‘jet’-style color

mapping. (B) Graphical representation of the 1,200 bp upstream promoter regions of the eight chitin synthases and the identified stress element binding

regions. Color code boxes indicate various stress groups whose height corresponds to the score level. CWI, HOG, ROS see (A); DEV, developmental

regulation; OX, oxygen stress related; STRESS, general stress element; TATA, TATA-box or CAAT-box. Other detected and enriched motifs are

marked with an asterisk. For more details on the promoter response elements see S3 Table.

https://doi.org/10.1371/journal.ppat.1008320.g003
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whitish to yellow spores, even when grown with 1.2 M sorbitol as osmotic stabilizer (S4B Fig),

indicating a critical role of chitin biosynthesis in conidial maturation (Fig 4C and 4D).

When strains were exposed to the cell wall intercalating dyes Calcofluor white (CFW)

and Congo red (CR) to determine changes in the cell wall composition, the parental strain

already showed reduced growth rates with about 60% inhibition. Interestingly, unlike other

Fig 4. Critical roles of chs and cda in growth and development are emphasized in single knockout mutants. (A) Growth of generated deletion

mutants and the T. atroviride wild type strain (WT) on PDA after 72 h. (B) Colony extension in percent of the parental strain (wt). Growth on PDA

only and on plates containing 1.2 M sorbitol (+sorbit), 200 μg/ml calcofluor white (+CFW) or 150 μg/ml congo red (+CR) was compared. (C, D)

Generation of asexual conidia by all deletion mutants, see also S4A Fig; (C) spores/cm2 and (D) average conidial size. (E-F) Compensatory transcription

analysis of the transglycosylase genes crh1a, crh1b and crh2 in the Δchs (E) and Δcda (F) strains compared to expression in the WT strain after 25 h and

48 h of growth on PDA (tef1 used as housekeeping gene). Mean +/- SEM are shown and p>0.005 are indicated with �, upregulated; ˚, downregulated.

(B-F) Data was generated from at least two independent experiments.

https://doi.org/10.1371/journal.ppat.1008320.g004
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mutant strains tested in our experiments, group V and VII CHS cannot compensate for the

cell wall intercalator (~95% inhibition; Fig 4B). Furthermore, all three division I chitin

synthase knockout strains have severe growth defects (85–90% inhibition) on the cell wall

dyes (Fig 4B). These findings corroborate our hypotheses drawn from the transcriptional

profiles that these chs play fundamental functional roles in germination and vegetative

development (Fig 2C and 2D). Interestingly though, the slower hyphal elongation of Δchs1,

Δchs2, Δchs4 and Δchs6 was almost completely recovered in the presence of 1.2 M sorbitol,

but only slightly in the Δchs5 and Δchs7 strains. Note that the parental strain was also very

sensitive to sorbitol on solid medium (~ 50% reduction) whereas in liquid medium this

effect is negligible (S3 Fig, [81]).

In S. cerevisiae ScChs3 chitin synthase activity is influenced by activators such as the

ScChs4/ScSkt5 and other proteins such as ScChs5, ScChs6 and ScChs7 [29, 82, 83]. ScChs5/

ScChs6 are involved in the polarized transport of ScChs3 in specialized vesicles (the so called

exomer complex [84–86]), where ScChs5 seems to serve as the major adaptor for ScChs3 and

ScChs7 controls export of ScChs3p from the endoplasmic reticulum (ER). Among these (addi-

tional) regulators, the Chs7 chaperone seems to be critical to mediate ScChs3 (TaCHS4) activ-

ity, which has been confirmed recently in N. crassa and F. oxysporum [87, 88]. We therefore

identified the homologs of the two most important proteins in T. atroviride (pID 179314,

158601) and designated them Chitin Synthase Export chaperone, CSE7 (ScChs7/NcCSE7) as

suggested by Rico-Ramirez et al., [87], and CSE5 (ScChs5) Chitin Synthase Exomer adaptor.

The deletion of each of the genes affected growth on PDA (~ 30% reduced) and showed an

obvious defect when grown on CFW (50–60% reduced compared to WT). The Δcse5 and

Δcse7 built a highly layered, laminar mycelium with abundantly branched mycelial mats

stacked upon each other leading to a very irregular colony diameter (Fig 4).

Among the chitin deacetylase knockouts, Δcda2 and Δcda3 were suppressed at an early

stage of growth (0–36 h, S4A Fig), and the radial colony had a dense network formation phe-

notype similar to single Δchs1/ Δchs2. Both strains also produced significantly reduced

amounts of spores (Fig 4C and 4D). Δcda6 showed a concrete green ring at the colony center

with crystalline spores (Fig 4 and S4A Fig), and minor effects, when treated with CFW or CR,

suggesting minor changes in polysaccharide architecture. All complemented strains (with the

WT gene reintroduced at a random site or gene replacement) showed the WT phenotype and

conidiation pattern (S5 Fig).

In order to find additional evidence that the lack of chitin synthases leads to divergence of

cell wall structuring and therefore affects cell wall remodeling, polysaccharide assembly and

linkage, we were interested in the three most important chitin-glucan transglycosylases in Tri-
choderma atroviride. In the course of our work we identified crh1a, crh1b and crh2, that are

highly homologous to ScCrh1 and ScCrh2, which catalyze the cross-linking of chitin and β-

1,6-glucan [45, 46]. In the chitin synthase mutants they were significantly down-regulated

after 48 h of development, especially in Δchs5 and Δchs7 (Fig 4E). During this later stage of

maturation, hyphal fusion normally produces a dense mycelial network, which induces high

expression of transglycosylases. The significant down-regulation of crh1a in all investigated

Δchs is an additional hint towards co-regulation and a strong evidence for altered cell wall

morphology in chs mutants (Fig 4E). In contrast to Δchs, the transglycosylases were found

strongly upregulated in the cda deletion strains, hinting at a compensatory action to decreased

cell wall flexibility in these mutants [89, 90] (Fig 4F).

In conclusion, functional analysis of mutant strains strongly suggests that at least 5 chitin

synthases and 3 chitin deacetylases are critical for vegetative development including conidial

maturation. Our findings highlight the importance of chitin, and most probably chitosan, for

cell wall integrity during asexual development and in a hostile environment.
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Single knockout mutants show severe morphological changes and aberrant

chitin deposition in patches with reduced chitin levels

Deletion of chitin synthases and—deacetylases affects cell wall composition and distribution of

cell wall components (Fig 4; [27, 52, 65]) and as a result hyphal morphology is equally compro-

mised. Microscopic analysis of mutant strain morphology using the inverted agar method [91]

showed an aberrant hyphal development, with a weak and thin mycelial network and fewer

branches in Δchs1 in comparison to the T. atroviride wild type. To identify growth characteris-

tics that might be linked to aberrant chitin synthesis, epifluorescence microscopy was per-

formed using the fluorochrome CFW, which stains β-1,4-linked polysaccharides such as

chitin. In the wild type, CFW fluorescence was strongest at the septa and tips, where chitin is

actively synthesized and weaker staining occurred at the lateral walls. Both, Δchs1 and Δchs2
had considerably thinner hyphae and branching started very late, and more distant from the

tip than in the parental strain (Fig 5A and 5B, S4C Fig). In addition, Δchs2 showed increased

CFW staining indicating higher deposition of chitin at the tip and lateral walls. Δchs4, Δchs6
and Δchs8 did not show pronounced morphological aberrations, but only a slight increase in

hyphal tip staining (Fig 5A). Phenotypic characterization of T. atroviride Δchs5 and Δchs7
revealed the most severe defects. They showed short lateral hyperbranching alternated with

long, thin filamentous hyphae without branches (S4C Fig) and grew irregularly, with strongly

inhibited hyphal elongation and chitin accumulated in patches at the lateral walls (Fig 5A and

5B). Remarkably, Δchs5/ Δchs7 showed an elevated frequency in septation together with severe

constrictions, possibly caused by a disproportionate distribution of chitin between the septa

and the lateral walls. In addition, these mutants seemed inhibited in apical growth and often

extensive isotropic tip swelling (increased sensitivity to CFW suggesting a cell wall weakening)

was observed (Fig 5B).

Microscopic examination of all cda mutants showed pronounced staining of CFW at their

apices in comparison to the lateral walls suggesting aberrant chitin accumulation, resulting in

a brighter Spitzenkörper staining in all cda mutant strains. Quantification of the ratio of the

relative dye fluorescence between tip apex and subapex with CFW and CR (Fig 5C), which

more specifically binds to chitin than CFW, clearly showed that significantly less dye was

incorporated into the cell walls of all deletion mutants. Only Δchs8 showed CR staining com-

parable to the WT in the hyphal tips but staining was also reduced in the cell wall in the sub

apical zone (Fig 5C). This change in the cell wall deposition pattern of tip apex to sub apex was

also observed in all of the three class I chs as well as chs6 knockout and the Δcda. The highest

ratio (2.2) was observed in the cda2 knockout strain for CFW (Fig 5B and 5C). Baker et al.,

also reported a strong accumulation of chitin and very low levels of chitosan in the chitin dea-

cetylase deletion strains in C. neoformans [65].

Moreover, we adapted the biochemical assay for cell wall chitin determination described in

this publication ([27, 65]; see Materials and methods) to get further insights in the impact on

chitin synthesis in the cell wall of the Trichoderma mutants. The analysis of the vegetative

hyphae of all mutants confirmed that a strong reduction of chitin in the cell wall was caused by

the absence of most of the chitin synthases, cse5 and cda6, with the lowest amounts in Δchs5
and Δchs7 (48 and 37%), while deletion of the other deacetylases, or cse7 resulted only in a 84–

93% (Table 1). Deletion of chs2, chs6 and cda5 did not impact chitin levels under the tested

growth condition.

Microscopic analysis of Δcda2, Δcda3 and Δcda6, Δcse5 and Δcse7 showed increased

branching with dichotomous branching indicative of a dysregulated apical dominance and

also more lateral branches (Fig 5A). Δcda5 revealed a loss of hyphal avoidance, and accumula-

tion of lateral and cytoplasmic staining. In summary, in most of the Δchs (predominately
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Δchs2/5/7), and Δcda, patches of bright fluorescence were observed at the lateral wall of

hyphae. This altered distribution of cell wall components seems to interfere drastically with

polarized growth and branching patterns. Our results indicate that aberrant cell wall synthesis

Fig 5. Single knockout mutants show severe morphological changes and aberrant chitin deposition in patches

with reduced chitin levels. (A) Chitin deposition and tip morphology in leading hyphae of the peripheral zone of each

colony was visualized by CFW staining in epifluorescence microcopy using the inverted agar method for live-cell

imaging [91]; scale bar = 20μm. (B) CFW staining highlights aberrant chitin deposition and septal development in

selected deletion mutants; scale bar = 10μm. (C) Altered cell wall chitin deposition in chs and cda deletion strains

compared to the WT was investigated by semiquantitative fluorescence microscopy using CFW and CR as stains. A

defined area of the tip apex and subapex (shown in B) of leading hyphae was analyzed by densitometry using the

ImageJ software platform (http://rsb.info.nih.gov/ij/). Mean +/- SEM from n = 25–60 hyphae are shown.

https://doi.org/10.1371/journal.ppat.1008320.g005
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activities caused by absence of nearly any of the synthesizing enzymes lead to reduced chitin

levels and altered distribution of chitin and putatively other cell wall polymers in the mutant

strains, which strongly affects their hyphal development.

Mycoparasitism depends on coordinated expression of chitin synthases,

-deacetylases and chitosanases

Mycoparasitism by Trichoderma has been studied already extensively and many critical events

have been elucidated but what remains still unknown is how exactly mycoparasitic species

remodel their own cell walls to circumvent the defense mechanisms of phytopathogenic fungi

that themselves comprise an aggressive plethora of chitinolytic enzymes during the invasive

process. We therefore first tested the expression of chitin and chitosan metabolic enzymes,

when T. atroviride was confronted with itself or the fungal hosts S. sclerotiorum, B. cinerea and

R. solani. Expression analysis revealed exclusively high induction of chs8 and cda1 expression

under mycoparasitic conditions during confrontation with all hosts (Fig 6A). The concerted

activation of both enzymes is possibly due to their genomic arrangement in a gene cluster

driven by a shared regulatory element (Kappel and Gruber, manuscript in preparation). Inter-

estingly, chs1, chs4, chs5 and chs7 were also moderately upregulated during the mycoparasitic

attack next to their critical role in vegetative growth. The upregulation of chs5/ chs7 during

mycoparasitism (Fig 6A) highlights the importance of the MMD containing synthases in any

pathogenic event, either phyto- or mycoparasitic. Interestingly, cda3, cda4 and cda6 were

induced in self-recognition of the fungus (control condition: Ta), indicating a general function

in cell wall remodeling (synthesis and repair), and primary growth. Transcription of the stress

responders chs2/6 and the genes for vegetative development chs3/cda2 was not significantly

altered during mycoparasitism (Fig 6A).

As discussed, cell wall turnover, chitin crosslinking to glucan, as well as its conversion to

chitosan might be critical for the antagonistic action of Trichoderma towards its prey. Equally

important seems the role of chitosanases, which hydrolyze chitosan and chitooligosaccharides

Table 1. Relative GlcNAc content in the cell wall of mutant strains compared to the wild type.

GlcNAc [%]

WT 99.7 +/- 6.1

Δchs1 62.6 +/- 12.9

Δchs2 98.6 +/- 7.4

Δchs3 63.7 +/- 22.0

Δchs4 83.7 +/- 14.6

Δchs5 47.9 +/- 17.1

Δchs6 99.7 +/- 14.3

Δchs7 32.4 +/- 9.4

Δchs8 87.2 +/- 8.6

Δcda1 93.1 +/- 19.6

Δcda2 91.7 +/- 21.4

Δcda3 86.8 +/- 20.0

Δcda5 100.5 +/- 13.6

Δcda6 66.4 +/- 12.2

Δcse5 76.9 +/- 9.4

Δcse7 83.7 +/- 7. 7

n = 9 (three independent experiments with three technical replicates)

https://doi.org/10.1371/journal.ppat.1008320.t001
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in host interaction, lysis and cell wall remodeling, an area currently of particular attention

[47]. We identified 6 chitosanases in T. atroviride. CHO1 and CHO2 show high homology to

CHO from Aspergillus spp. (EU302818.1, [92, 93]), that possess endo-chitinolytic properties

and CHO3 is phylogenetically related to the chitosanase found in F. oxysporum (EGU78186.1,

[94]), that is involved in virulence (S6A Fig). Expression analysis of all identified chitosanases

during mycoparasitism revealed their importance especially during late stages, when T.

Fig 6. Mycoparasitism depends on coordinated expression of chitin synthases,–deacetylases and chitosanases.

Differential transcription analysis of chitin synthases, chitin deacetylases and chitosanases during the mycoparasitic

attack of T. atroviride against three different hosts. Expression of all target genes was analyzed using the ΔΔCT method.

T. atroviride against itself (Ta), R. solani (Rs), S. sclerotiorum (Ssc) or B. cinerea (Bc). The WT grown alone on a plate

(control condition) was arbitrarily set to ‘1’. Samples were collected at contact and after contact (4 mm overgrowth).

The gene sar1 was used as the housekeeping gene. Data were generated from two independent experiments and three

technical replicates. Mean +/- SEM and p>0.005 are indicated with �, upregulated; ˚, downregulated. (A)

Transcription analysis in confrontation assays with fungal hosts, chs1-8, chitin synthase; cda1-6, chitin deacetylase. The

clustering results are represented in ‘jet’-style color mapping as described in Fig 3A. (B) Relative expression of all

identified chitosanase genes (cho1-cho6) during mycoparasitism.

https://doi.org/10.1371/journal.ppat.1008320.g006
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atroviride invades the host cells. Particularly when confronted with R. solani, transcription of

cho1- cho3 and cho5 was significantly upregulated (~ 60-fold) and might therefore be impor-

tant for mobilization of chitosan from the host cell wall (Fig 6B and S6B Fig). A significant but

lower induction of expression of these enzymes was also observed for the ‘after contact’ condi-

tion with S. sclerotiorum and B. cinerea, two ascomycetic hosts. Interestingly, non-antagonistic

growth conditions by confrontation of T. atroviride with itself (control condition) also resulted

in moderate transcriptional upregulation of cho1 to cho3 (Fig 6B), which is a strong indication

for the presence of chitosan also in the CW of T. atroviride.

Cell wall chitin and chitosan affect the mycoparasitic attack and resistance

to hosts

In order to assess the mycoparasitic activity of mutant strains we monitored their capacity to

overgrow S. sclerotiorum, B. cinerea and R. solani. We therefore investigated the mycoparasitic

interaction in dual-plate confrontation assays, in which T. atroviride strains (antagonists) were

inoculated at a defined distance from one of the three hosts. After recognition, Trichoderma
spp. hyphae attach to and coil around the host hyphae and hook-like appressoria penetrate the

cell wall, which is followed by growth of the antagonist inside the host [95]. All cda knockout

lines demonstrated severe defects in overgrowth of S. sclerotiorum (Fig 7A) and B. cinerea and

less pronounced with R. solani (S7A Fig). This behavior of T. atroviride to parasitize closely

related phytopathogenic Ascomycota [96, 97] is considered to be the major trait that sets Tri-
choderma apart from the other mycoparasitic Hypocreaceae that mainly attack Basidiomycota.

Interestingly, while the parental strain was able to entirely overgrow S. sclerotiorum within 5

days (overgrowth is marked with a dotted line), the Δcda mutants completely stalled growth

already during the early phase of interaction, i.e. growth towards the host fungus and establish-

ment of direct contact (Fig 7A). A distinct contact zone was particularly seen in Δcda1 con-

frontations, which was also supported by microscopic analysis (Fig 7B). However, most cda
deletion strains were able to overgrow S. sclerotiorum after prolonged incubation (14 days),

suggesting that the deletion of cdas results in reduced chasing, coiling, and perhaps inability to

invade the host. A strong defect in mycoparasitism was also observed for most of the chs
mutants, with Δchs5 and Δchs1 being the most severely compromised KO strains. Again,

mutants are delayed at contact and penetration of the hosts. A submerged growth towards the

host was also observed indicating a loss of osmotic stability in such mutants. Thus, at contact,

the tested Δchs1/2/5/7 are almost avirulent against S. sclerotiorum (Fig 7A).

To obtain a more detailed picture of the contact zone, microscopic analysis was performed

on selected chs and cda deletion mutants that macroscopically showed the most prominent

phenotype in the confrontation assay (Fig 7B). While the wild type attached and lysed the host

S. sclerotiorum (H) the investigated mutants were unable to fully attack the host. Δchs5 and

Δchs7 did not invade the host upon contact. Furthermore, Δchs1 and the myosin motor

domain mutants Δchs5 and Δchs7, but also Δcda1 showed massive hyphal leakage (examples of

deflated cell contents are indicated, Fig 7B(L)). The Δchs1 strain responded to host stress with

extensive clamydospore development and in both, Δchs1 and Δcda1, intra-hyphal growth

caused by the fungicidal effect on hyphae was observed (S7B Fig). Δcda1 was blocked in

growth or retracted (Fig 7B(r)) upon contact with the host, and often balloon-like structures

were visible. In Δchs8 an exorbitant and irregular apical branching was observed (Fig 7B(�)).

No direct attachment could be observed, but lysis of the host.

Trichoderma inhibits or kills a host by parasitizing on its hyphae through cell wall degrading

enzymes like chitinases (e.g. ech42), proteases (e.g. prb1) and glucanases [95]. Interestingly,

although cda mutant strains seemed to be strongly compromised in host invasion, it seemed
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Fig 7. Cell wall chitin and chitosan affect the mycoparasitic attack and resistance to hosts. (A) Dual confrontation assays: A 5 x

30 mm slice of fully overgrown PDA plates of the indicated T. atroviride WT and mutant strains (T) was placed on the left side of a

PDA plate 5 cm apart from a slice of the host S. sclerotiorum (H, right side) and incubated for 5 days. Arrows indicate the zonal

overgrowth (dotted line) by T. atroviride over S. sclerotiorum. (B) Microscopic analysis of the confrontation zone of. T. atroviride
WT and selected mutant strains against S. sclerotiorum using CFW staining in the inverted agar method for live-cell imaging [91];

arrows indicate hyphal attachment; L, hyphal leakage; r, hyphal retreat; �, increased hyphal branching; scale bar indicated. (C) Plates

from dual confrontation assay in (A) were photographed from the bottom to show the brownish contact zone, in cda mutants

compared to the wild type. (D) Relative expression of mycoparasitic indicator genes, prb1, nag1, ech42 in the WT (wt, striped

columns) and cda deletion (12356) mutants against S. sclerotiorum. Samples were collected at contact and after contact (4 mm

overgrowth). WT alone (control condition) was arbitrarily set to ‘1’, (wt, striped columns). Expression data was normalized to the

housekeeping gene sar1. Data were generated from two independent experiments and three technical replicates. Mean +/- SEM and

p>0.005 are indicated with �, upregulated; ˚, downregulated. (E) Effects of antifungal metabolites and secreted enzymes from the
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that they increased their production of lytic enzymes as a compensatory mechanism, which

was visible by a browning of the growth medium most probably from generated oxidation

products (Fig 7C). Transcriptional profiling of the mycoparasitic indicator genes supports this

hypothesis by showing significantly higher prb1 and ech42 transcript levels in Δcda1-6 than in

the WT (Fig 7D). Expression of ech42 was strongly induced at contact with S. sclerotiorum
(*13-fold) as well as prb1 expression in the Δcda2 and Δcda3 mutants (~5-fold). Expression

of nag1 (N-acetyl-glucosaminidase), and after contact also prb1, were strongly downregulated

in Δcda5 clones, indicative for a synergistic regulation of cda5 and these enzymes. Importantly,

the absence of cda3, that was found massively induced during overgrowth of S. sclerotiorum
(Fig 6A), resulted in a sustained induction of all indicator genes (Fig 7D), confirming its criti-

cal role in mycoparasitism.

Next we wanted to distinguish between an increased production of lytic enzymes by the chi-

tin deacetylase mutants and their susceptibility to metabolites or active compounds, which are

produced by the host and secreted into the growth medium. First all mutant strains and the

wild type were grown on PDA plates covered with a cellophane disc to investigate the effect of

secreted enzymes (and smaller diffusible factors) on the growth of the host (details are

described in Materials and methods). S. sclerotiorum was placed on the plates after removal of

the T. atroviride strains and growth was monitored.

As expected, S. sclerotiorum was highly susceptible to diffusible factors produced by the

WT. Interestingly, growth was completely abolished on plates from mutant strain diffusible

active compounds with the exception of Δcda6 (58.5% +/-6.9), Δcda5 (44.7% +/-5.9%) and

Δchs8 (26.7% +/- 5.1), were growth of S. sclerotiorum was better compared to growth on the

WT exudates (4.2% +/-1.9, and S7C Fig). Δchs3 (2.3% +/-0.4) had comparable growth to the

WT. These results corroborate our findings and indicate that a perturbance of the cell wall

composition results in elevated secretion of diffusible factors as defense strategy. Since cello-

phane allows passage of enzymes and small molecules an increase of secondary metabolite pro-

duction is also very likely. In a second test series the susceptibility of mutant strains towards S.

sclerotiorum secreted secondary metabolites and enzymes was tested. WT growth was reduced

to 66% by the presence of exudates of S. sclerotiorum compared to growth on fresh PDA and

growth of Δchs strains was further decreased to 30–45% (Fig 7E). Strikingly, the Δcda strains

showed a pronounced growth reduction by 80 to nearly 100 percent. Thus, the deletion of the

chitin synthases and deacetylases might affect cell wall composition in general leading to

increased porosity with a negative impact on their resistance to extracellular active compounds

produced by the host.

We further tested the sensitivity of the mutant strains towards H2O2 to simulate the pres-

ence of ROS (Fig 7F). In the past years the generation of reactive oxygen species in plant-path-

ogens, such as B. cinerea, M. oryzae, Claviceps purpurae and S. sclerotiorum, was discovered as

conserved mechanism in virulence, infectious structure- and sclerotia formation and it has

been speculated that ROS also serves as defense strategy during a mycoparasitic attack, similar

to plant defense systems [78, 98–101]. Interestingly, growth of the chitin deacetylase knockout

host S. sclerotiorum on growth of T. atroviride WT and mutant strains. S. sclerotiorum was cultured on top of a diffusible cellophane

membrane covering PDA plates and after 48 h of growth the cellophane disc was removed and plates containing the secreted active

compounds were inoculated with an agar plug of Trichoderma WT and mutant strains. The percent growth inhibition by S.

sclerotiorum secreted active extract was calculated from comparison with the growth of the respective strains on fresh PDA. A

representative of three independent experiments is shown. (F) The susceptibility to oxidative stress of Δchs and Δcda strains was

demonstrated on a solid medium containing H2O2. Colony extension in percent of the parental strain on minimal medium with

(right panel) or without (left panel) the addition of 0.0075% H2O2 and growth for 72 h was determined. WT (white), chitin synthase

mutants (grey), chitin deacetylase mutants (light grey) were compared. Mean +/- SEM from two independent experiments is shown.

https://doi.org/10.1371/journal.ppat.1008320.g007
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strains was most severely affected on plates containing H2O2 but also all Δchs mutants showed

decreased growth rates in comparison to the control condition (Fig 7F). Since most of the cda
genes and chs2, chs5—chs8 were also highly induced during ROS treatment in the wild type

(Fig 3A) we conclude that chitin and especially chitosan play a critical role in scavenging ROS,

which is putatively produced by the host as defense mechanism, and might contribute to the

reduced virulence observed in the confrontation assays.

Discussion

Data on how metabolic systems work together to build and modulate cell wall components to

equip Trichoderma with its mycoparasitic activity is scarce. In particular, characterization of

chitin synthesis and its regulatory systems remain largely enigmatic. Given the importance of

chitin for fungal cell wall integrity and survival and the abundance of chs genes in the Tricho-
derma genome (Fig 1), our in-depth characterization of fungal chitin and chitosan formation

sheds light on a biotechnologically highly relevant aspect of fungal activity.

We provide evidence that all eight chitin synthases of T. atroviride are part of a complex,

intricately regulated chitin manufacturing machinery. The most important chitin synthases

for vegetative and asexual development are the division one (chs1-3) and MMD containing

synthases chs5 and chs7. These class V and VII chitin synthases are highly conserved (S1 Fig)

and critical for the co-delivery of not only chitin- but also glucan synthases to the plasma

membrane along actin filaments [28, 79]. They promote specialized cellular processes associ-

ated with polarized growth and branching. MMD-CHS are only found in filamentous fungi

and gene deletions showed strong and nearly lethal phenotypes in phytopathogenic fungi [38,

79], which we confirmed in T. atroviride (Fig 4A). Both MMD-CHS mutants further had

strongly reduced chitin levels, a severe polar growth defect and an aberrantly high number of

septa, which might be caused by a failure in transport of the remaining chitin synthases (Fig 5

and Table 1). Deletion of division 1 chitin synthases chs1 to chs3 seems to critically contribute

to vegetative development but only chs2 upregulation seems to compensate also for cell wall

stress (Fig 3A). Moreover, environmental stimuli trigger remodeling processes in the cell wall,

including chitin and chitosan rearrangements to protect the fungus in hostile environments

[72, 102]. For example, we identified the class VI CHS6 as an exclusive osmo-responder (Fig

3A). Interestingly, this gene is located directly next to a HSP88 homolog and a fungal specific

transcription factor that might regulate its expression upon osmotic changes (Fig 2B). In other

fungi the roles of class VI synthases are very diverse and not conserved among different species

[52]. Different from C. albicans and A. fumigatus [76] Tachs are not transcriptionally activated

upon treatment with the echinocandin Caspofungin, but interestingly cda transcription was

affected (Fig 3A), indicating that the cell wall rigidity is changed due to deacetylation which

might counteract the loss or decrease of β-1,3-glucan [72]. In silico analysis (Fig 3B) of the

eight chitin synthase promoters with known response elements that confer binding of stress

and development related transcription factors in S. cerevisiae provided further evidence that

external stimuli have a high impact on transcriptional regulation of the chitin processing

enzymes. Strong response to ROS and mycoparasitism related stresses coincided with a higher

enrichment of such elements. Interestingly, among the binding motives that were found highly

enriched was also the Msn2/Msn4 homologous AGGGG-binding element that is recognized

in T. atroviride and N. crassa by the transcription factor Seb1 [81, 103] and is related to HOG-

stress and nutrient availability. Moreover, a highly conserved enrichment of the TEC1 binding

motif in the promoters of chs5 and chs7 was identified. In T. atroviride Ste12/Tmk1 govern

processes in vegetative development and mycoparasitism [104]. For Tec1, which is the co-fac-

tor of the Ste12 in yeast no orthologue has yet been identified in T. atroviride. Using the
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sequence of the Tec1 homolog in A. nidulans, AbaA, we were able to identify a distantly related

homolog, pID322845. If this protein is indeed involved in stress related transcriptional regula-

tion of chitin synthesis remains to be determined.

Chitin synthase activity can also strongly depend on posttranslational activators, such as

ScChs4/ScSkt5, which serves as a ScChs3 (class IV) enhancer [105, 106]. Moreover, correct

transport through chaperons (e.g. ScChs7/ NcCse7 [83, 87]), association with adaptor proteins

(e.g. ScCHS5 [82, 84]), as well as phosphorylation and/or prenylation [107] are important play-

ers in regulation. Among these (additional) regulators, the ScChs7 chaperone function seems

to be crucial to mediate ScChs3 activity, which has been confirmed also in N. crassa and F. oxy-
sporum [87, 88]. Interestingly, in contrast to TaΔchs4, which revealed a less pronounced phe-

notype, the absence of the ScCHS5 and ScCHS7/Nccse7 orthologs, Tacse5 and Tacse7, led to an

increased branching phenotype, probably due to altered chitin deposition (Fig 5A). In addi-

tion, the formation of an aerial mycelium indicates an osmotic imbalance due to the observed

altered cell wall chitin content, and evidenced in particular by the strong inhibition with CFW.

The fact that the deletion of these genes leads to a stronger growth defect than observed for

their corresponding chitin synthase (chs4), suggests an involvement of these chaperons in the

secretion of other chitin synthases [88]. For now, we cannot rule out that it is a secondary effect

concerning exocytosis. Future studies are needed to enhance our understanding on the inter-

action of these auxiliary proteins with other chitin synthases.

Transglycosylases (CRHs) play an essential role in branching and cross-linking of glucan

with chitin, which adds to the structural integrity of the cell wall. We identified two CRH1 and

one CRH2 orthologues in T. atroviride, the latter is considered to be the leading contributor to

chitin-glucan synthesis in S. cerevisiae. In T. atroviride transcription of all crhs was significantly

decreased during vegetative hyphal network formation (48 h) upon chs deletion, especially in

the ΔMMD-chs strains. Thus, the proposed strong decrease in cellular chitin seems to nega-

tively affect also transcription of the crosslinking enzymes (Fig 4E). Interestingly, the tran-

scriptional levels of crh1a and crh2 considerably increased in the Δcda strains (Fig 4F). It was

shown that the nascent chitin chains are transferred directly after extrusion to the periplasm to

the glucan matrix as acceptor, which in turn increases solubility of the chitin-glucan complexes

[89, 90]. The higher expression of the crhs in the chitin deacetylase mutants might therefore

hint at a compensatory action of these crosslinking enzymes to increase solubility of the other-

wise too crystalline chitin.

Mycoparasitism includes shaping infection structures as well as the production of antimi-

crobial secondary metabolites [108, 109], which facilitate penetration of plant pathogens. Our

analysis of cell wall remodeling enzymes in T. atroviride during mycoparasitism on three dif-

ferent hosts revealed that a concerted action of chitin synthesis and deacetylation that differs

greatly from the vegetative transcriptional profile is involved in the parasitic attack. Intrigu-

ingly, all of the created knockout mutants were severely compromised in mycoparasitism, with

the ΔMMD-chs, Δchs1 and Δcda1 most severely affected. Two high responders, chs8 and cda1,

were identified, while transcription of chs1, 4, 5 and 7 was only moderately induced and chs2
and chs6 levels did not change (Fig 6A). Interestingly, chs8, which shows also homology to hya-

luronan synthases, is located downstream of cda1 and a gene encoding an UDP-N-acetylgluco-

samine 6-dehydrogenase (UNGD, manuscript in preparation). This gene cluster is conserved

among fungi harboring this special type of chitin synthase [53, 57, 58]. In contrast to other chi-

tin synthases, such chitin/hyaluronan synthases may sequentially use two different sugar

monomer substrates (UDP-N-acetyl-D-glucosamine and UDP-D-glucuronate [110]) to pro-

duce either hyaluronan or chitin [111]. We therefore speculate that during interaction with the

host a complex cell wall remodeling takes place and CHS8, together with CDA1, forms a pro-

tective chitin glycopolymer layer, which might lead to increased resistance. For instance, a cell
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surface protective function of human-epithelial cells against Candida infections is mediated by

extracellular hyaluronan [112]. Although CHS8 homologs are present in some fungi with para-

sitic life styles, the enzyme has only been characterized in the phytopathogen and closely

related F. graminearium. The disruption of Fgchs8 also led to strongly impaired virulence [56].

Trichoderma inhibits or kills the host by breaking down its hyphae through cell wall degrad-

ing enzymes like chitinases, proteases and glucanases [95]. T. virens and T. atroviride contain

the highest number of genes encoding chitinolytic enzymes among described fungal genomes

[9, 113, 114] and we showed only recently that transcription of cho5 is regulated in a tmk1
MAPK kinase dependent manner [115]. Here we demonstrate that all of the six identified chit-

osanases are highly upregulated during contact and feeding (after contact) of T. atroviride on

the hosts (Fig 6B). It has already been shown that R. solani contains high levels of chitin in its

cell wall [116] and regarding our new findings we speculate that a considerable amount of that

might be present as chitosan. Interestingly, chitosanases were also highly expressed during Tri-
choderma self-contact, suggesting a more fundamental role in the cell wall remodeling process

that might stretch beyond mycoparasitism. For chitinases, such an additional function, apart

from mycoparasitism, has already been described [21]. We plan to decipher the distinct roles

of chitosanases in the self and non-self recognition process, and hope that such insights will

further enhance our understanding of biocontrol mechanisms.

It is likely, that successful mycoparasites such as Trichoderma suppress the host recognition

and defense system via use of their chitin/chitosan remodeling enzymes; one of the most rele-

vant activities of CDAs was reported in plant–pathogen interactions during penetration [50].

In several fungal species chitin deacetylation is essential for cell wall rigidity and for resistance

to chitinolytic enzymes. Cell wall chitosan in phytoparasites contributes to their resistance

against hostile (endo-) chitinases, an involvement of CDAs in mycoparasitism was therefore

strongly suggested. Phylogenetic analysis of published CDAs from other fungi with well-char-

acterized functions showed that the CDAs can be grouped into four different clades (Fig 1C).

Interestingly, a very large group of fungi contains CDAs (P. chlamydosporia C. lindemuthia-
num, P. graminis, Pestalotiopsis sp. and M. oryzae), that all play a major role in virulence [43,

61, 62]. They are extracellular, contain a secretion signal peptide, and some of them have

already been shown to be involved in different parasitism strategies [117]. TaCDA1 and

TaCDA5 group to this clade most closely related to M. oryzae MggCBP1 and MggCDA2 and

P. chlamydosporia, hinting at their importance in virulence. In fact, Δcda1 and to a lesser

extent Δcda5 strains displayed severely compromised mycoparasitic capabilities. In the wild-

type strain, expression levels of cda1 and cda5 were highly elevated during mycoparasitism

and oxidative stress caused by ROS. Moreover, the CBMs present in these enzymes are impor-

tant for substrate recognition of oligosaccharides and are implicated in enhancing deacetylase

activity by increasing the accessibility of the substrate to the catalytic domain [62, 118].

TaCDA3, TaCDA4 and TaCDA6 do not group with any of the other deacetylases, except for

their T. reesei CDA4 orthologue. Given their expression during vegetative development and

self-recognition in the confrontation assays, they might be involved in distinguishing the own

cell wall from that of the host fungus. CDA4 and CDA6 are highly homologous, which is a

strong evidence for gene duplication that increases genetic variability and may contribute to

adaptability in a changing environment [119]. However, we were not able to delete cda4,

pointing at a different but yet crucial role of this gene in vegetative development. Regarding

mutant morphology, the conidia of the Δcda6 mutant seemed more crystalline in comparison

to the WT or other mutant strains. Intriguingly, cda3 was only expressed during spore forma-

tion, and the Δcda3 mutant produced also considerably less conidia while hyphal development

was only mildly compromised. Since the predicted protein does neither have a signal peptide,

nor a fully functional deacetylase domain it is plausible that this protein evolved as a regulatory
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protein rather than an active enzyme. Taken together, our data suggests a critical involvement

of these enzymes in (conidial) CW maturation.

The third group of CDAs in the phylogenetic analysis harbors a transmembrane domain

and is needed for vegetative development. Amylomyces rouxii, C. neoformans and the two

CDAs of S. cerevisiae critical for spore formation are present in this group [41, 63–66]. No

CDAs from Trichoderma were found directly connected with this branch, but in the adjacent

branch all proteins harbor a transmembrane helix at their N-terminus, including Trichoderma
CDA2 (Fig 1C). Preliminary experiments also detected TaCDA2 bound only to the cell wall or

membrane but not secreted into the culture filtrate (Gruber and Kappel, unpublished results).

Given the constitutive expression of cda2 together with chs3 throughout the whole cell cycle,

these enzymes might act in a tandem mechanism to maintain a certain level of deacetylation of

the nascent chitin chains or even chitosan, which has been proposed earlier [41]. Δcda2 dele-

tion mutants showed a dysregulated apical dominance (Fig 5A), which has been observed in a

large number of fungi [120, 121] presumably in response to the abnormal accumulation of

exocytic vesicles at the hyphal tip. We believe that elucidating the specific role of the six CDAs

will greatly enhance our understanding of cell wall formation in T. atroviride.
Even though most of the cda mutants have a strong mycoparasitic defect, they could at least

partly overgrow the host (Fig 7A). We hypothesize that this is due to a reduced protection of

the hyphal cell wall during this interaction. To this end, we observed a robust transcriptional

induction of lytic enzyme production as compensatory means to evade the counterstrike by

the host in the chitin deacetylase mutants (Fig 7D). However, this still failed to fully restore the

mycoparasitic capability. Remarkably, some of these enzymes are up-regulated even before

contact and during overgrowth of the host fungus in the wild type [114, 122]. With ROS being

another potent effector in phyto- and mycoparasitism [78, 101] and chitosan being implicated

in ROS scavenging [123] we looked at the influence of ROS upon growth of these strains. Con-

sequently, ROS hampered growth of all deletion mutants, especially the Δcda strains (Fig 7F).

Production of ROS throughout different growth stages of S. sclerotiorum was demonstrated

[101] and it is noteworthy that susceptibility of the Trichoderma mutants to metabolites or

enzymes produced by the host S. sclerotiorum was increased in the Δcda strains, but less pro-

nounced in the Δchs. All of these findings therefore provide the first evidence that chitosan is

important in the mycoparasitic attack by T. atroviride and apart from serving as simple dis-

guise towards hostile chitinases and chitin receptors might decrease the reactive oxygen bur-

den and/or protect against other diffusible active compounds. Since the Δcda strains contain

similar amounts of chitin as the WT this might be due to differences in the chitosan levels of

the mutants. It will be necessary to determine the exact amounts of chitosan in T. atroviride
and mutant strains and exact nature of diffusible factors secreted by the plant-pathogens dur-

ing mycoparasitism to corroborate our hypothesis.

Trichoderma derived products are already used in agriculture but there is still a consider-

able need to enhance their applicability in crop control, particularly towards plant pathogens.

This demands the extension of our knowledge on how Trichoderma manages to bypass the

host defense mechanisms, for cell wall penetration and ultimately host degradation. Our

results elucidate critical aspects of cell wall synthesis and remodeling in mycoparasites (Fig 8).

Five out of eight chitin synthases (chs1, 2, 3, 5 and 7) are non-redundant and indispensable for

mycoparasitism and play critical roles in chitin biosynthesis during vegetative development.

Our findings further highlight the importance of chitin deacetylases for the plasticity of the

cell wall throughout the whole vegetative development and in asexual maturation. Even more

important for aspects of biocontrol CDAs are essential for mycoparasitism. The excessive pro-

duction of six newly identified chitosanases during mycoparasitism but also self/non-self-rec-

ognition processes is especially intriguing and expands the enzymatic repertoire known from
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Trichoderma spp. This implies that the first line of attack engaged by Trichoderma involves chi-

tin and chitosan degrading enzymes that compromise the host cell wall integrity by targeting

also its chitinous backbone. Hence, cell wall construction of the hosts will be another issue that

has to be considered in future studies.

Materials and methods

Strains and cultivation conditions

T. atroviride IMI206040 (teleomorph: Hypocrea atroviridis, (http://genome.jgi-psf.org/Triat2/

Triat2.home.html) maintained on potato dextrose agar (PDA, BD, Franklin Lakes, USA), incu-

bated at 28 ˚C with a 12h/12h light/dark cycle. Chemicals were obtained from Roth (Karlsruhe,

Germany), Sigma (Sigma Aldrich, St. Louis, MO) and enzymes and kits were obtained from

Thermo Fisher (Thermo Fisher Scientific, Waltham, MA USA) and Bio-Rad (Bio-Rad Labora-

tories, Hercules, CA, USA). For assessing the growth rate of WT and mutant strains mycelial

agar plugs were placed on PDA, with or without hygromycin B (200 μg/ml) and incubated for

72 h. In order to test susceptibility towards CW disturbing agents and HOG on solid medium,

PDA was supplemented with 200 μg/ml Calcofluor white (Fluorescent brightener 28, CFW),

150 μg/ml Congo red (CR) or 1.2M sorbitol. Sensitivity to oxidative stress provoked by hydro-

gen peroxide (0.0075%) was tested on SM medium [124] (2% agar agar, 2% glucose). Radial

growth was measured and captured every 24 h. Conidial maturation, spore size and concentra-

tion were investigated after 7 days on PDA. Conidia were harvested in a defined volume of

0.9% NaCl /0.05% Tween-80 solution and counted with a Tecan reader (Spark multimode

microplate reader, Tecan Group Ltd., Männedorf, Switzerland) in a cell counting chamber

(Cell Chip, NanoEnTeK, Tecan). Conidia from different maturation stages were prepared as

described in [70] for RNA preparation. For shake flask cultivations SM with 0.05% peptone

and 1% glucose was inoculated with 1×106 conidia/ml and cultivated at 28 ˚C and 250 rpm. To

investigate the stress induced transcription replacement studies [70] were performed by trans-

ferring pre-cultures (WT) from liquid medium grown for 24 h to medium with different

Fig 8. Specified roles of chitin-modifying enzymes during the life cycle of T. atroviride. Schematic representation of the involvement of chitin

synthases (chs, yellow), chitin deacetylases (cda, pink), chitosanases (cho, orange) and transglycosylases (crh, turquoise) in various stages of development

of Trichoderma atroviride. Vegetative development, including germination, conidiophore formation, conidial maturation and self recognition,

environmental stress response and mycoparasitism with invasion and feeding on a host cell wall, are depicted. The most important players are depicted

in bold letters. The role of putatively secreted and membrane-bound enzymes in mycoparasitism (in association with secondary metabolites and other

enzymes, not shown), exogenous chitin and chitosan degradation (released by the fungi), and in the remodeling and recycling of the own cell wall (self-

recognition) and the host is demonstrated.

https://doi.org/10.1371/journal.ppat.1008320.g008

Chitin and chitosan in Trichoderma biocontrol

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008320 February 20, 2020 23 / 36

http://genome.jgi-psf.org/Triat2/Triat2.home.html
http://genome.jgi-psf.org/Triat2/Triat2.home.html
https://doi.org/10.1371/journal.ppat.1008320.g008
https://doi.org/10.1371/journal.ppat.1008320


stressors: 10% and 40% glucose, 10% glycerol, 0.7 M NaCl, 1.2 M sorbitol, 0.025% SDS, 0.75%

H2O2, 150 μg/ml CR, 200 μg/ml CFW, 15 μg/ml Caspofungin (CF). After 1 h and 24 h mycelia

were harvested for RNA extraction and biomass determination, respectively.

Generation of knockout strains—Genetic manipulation of T. atroviride
Knockout lines were established using the split marker technique [125] with an E. coli hph-

phosphotransferase marker cassette. The hph gene marker cassette is under control of the

Trichoderma pki1 promoter and cbh2 [126] terminator, derived from plasmid pan7-1 [127]

and cloned in pBluescript II KS/SK- backbone (unpublished). Primers (F1, F2, F5 and F6; S4

Table), were designed to amplify around 1.5 kb fragments up-und downstream of the ORF of

the target gene. Primer combinations HY/F4 and F3/YG amplify half of the 5´or the 3´ regions

of the hph gene plus 1.5 kb of the target gene 5´or 3´flanking region, respectively [125]. Puri-

fied single PCR-fragments were subjected to double joint PCR reaction [128] with primer

combination F1 and YG for the 5´ part, and HY and F6 for the 3´part, respectively. All PCR

reactions were performed using the Phusion High-Fidelity DNA Polymerase (Thermo Fisher).

Cassettes were fused in one single reaction and purified (to avoid unspecific integration),

using the GeneJET Gel Extraction Kit (Thermo Fisher). Purified cassettes in equimolar

amounts were used for protoplast [129] and spore mediated fungal transformation, which

was adapted for T. atroviride from a protocol described for T. reesei in [130]. Briefly, freshly

harvested spores were incubated in YPD (1% (w/ v) glucose) at 30˚C, 300 rpm for 6 hours for

conidial swelling, then carefully washed with decreasing amounts of 1.1 M ice cold sorbitol

until a final volume of 75 μl per reaction. Split marker inserts (3–6 μg) were added and sub-

jected to electroporation by use of the Biorad MicroPulser Electroporator (Bio-Rad) with 1.8

kV for ca. 5.5 ms. Regeneration followed with YPD/ 1.1 M sorbitol over night at 28˚C before

plating on PDA with 200 μg/ml hygromycin B. Positive transformants were confirmed by

PCR. A set of PCR amplifications (KO_Fw/KO_Rv; combination with YG and HY, S4 Table)

was used to discriminate homologous recombination from ectopically inserted constructs,

parental genotypes or heterokaryons (S4D Fig). Candidates were purified employing single

spore isolation until mitotic stability. As mock control, for all experiments the empty hph

plasmid was transformed into the WT.

Complementation strains (ReChs or ReCda) were generated by reintroducing the WT

sequence flanked by ca. 1,600 bp native promoter and terminator sequences into the genome

of the mutant by random integration or gene replacements by co-transformation with plasmid

p3SR2 [131]. Transformants were selected on acetamide containing medium and purified by

single spore isolation (S5A and S5C Fig). A list of all mutant lines generated in this study is

presented in S6 Table.

Isolation and purification of DNA

A rapid DNA purification protocol [132] and an isolation protocol for highly purified genomic

DNA were used [133].

Dual confrontation assays

Confrontation assays of T. atroviride WT, chs and cda deletion strains against Rhizoctonia
solani, Botrytis cinerea, and Sclerotina sclerotiorium were performed on PDA as described in

[104] with approximately 5 cm distance of parasite and host. Plates were incubated for five

days in circadian illumination and photographed. As controls, T. atroviride confrontation

with itself or non-challenged T. atroviride were used. For RNA extraction confrontation assays
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were performed on PDA covered with sterile cellophane discs. T. atroviride mycelia were har-

vested before contact (BC), and after contact (AC) and immediately frozen in liquid nitrogen.

Growth inhibition by metabolites and secreted enzymes

Susceptibility to secreted secondary metabolites and proteins of T. atroviride and mutant

strains was tested in plate assays according to [134] with some modifications. S. sclerotiorum
was inoculated on PDA plates covered with a cellophane disc for 72 h in the dark at 25˚C,

allowing the produced metabolites to diffuse through the membrane into the agar. Note, that

cellophane not only allows the passage of low-molecular-weight metabolites, but also active

enzymes [135]. The cellophane disc was removed when the mycelium covered about 3/4 of the

plate and an agar plug of T. atroviride wild type or mutant strains was placed in the middle

of the plate to assess the mutants putatively altered susceptibility. The growth diameter was

recorded after 52 h and growth inhibition was calculated in % compared to growth of the cor-

responding WT or mutant strains on fresh PDA. The same procedure was followed to investi-

gate the secretion of metabolites and enzymes of T. atroviride WT and mutant strains and

their potential to inhibit S. sclerotiorum growth. The antifungal activity against S. sclerotiorum
was evaluated by comparing growth to fresh PDA plates in %. Data was generated from two

independent experiments in both set-ups.

RNA isolation and cDNA synthesis

For RNA extraction ca. 100 mg of mycelium was ground to a fine powder with glass beads and

a bead mill (2x 60s at 6 m/s; Bead Ruptor 24 Elite Bead Mill Homogenizer, Omni International,

VWR). Total RNA from liquid shaking culture and from spores was isolated using the guanidi-

nium thiocyanate method [136]. When RNA was extracted from mycelium grown on plates

the GeneJET Plant RNA Purification Kit was used. Isolated RNAs were treated with DNAse I,

and purified with the GeneJET RNA Cleanup and Concentration Micro Kit. cDNAs were gen-

erated with the Revert Aid H-minus cDNA synthesis kit, using 1 or 5 μg RNA. All kits and

enzymes for RNA purification and cDNA synthesis were purchased from Thermo Fisher.

Gene expression analysis

qRT-PCR reactions were performed in a Biorad iCycler iQ (Bio-Rad) and a Rotor-Gene 6000

(QUIAGEN, Venlo, Netherlands) as described previously [137]. Primers and protein IDs from

the DOE Joint Genome Institute database are listed in S5 Table. Relative gene transcript levels

were quantified and normalized to the corresponding signals of sar1 (differentiation between

high sequence homologies of T. atroviride and hosts in confrontation assays), and tef1 [138,

139]. The fold change relative to the control conditions was calculated using the ΔΔCT method

[140] with REST software [141]. All samples were analyzed from at least two independent

experiments with three technical replicates.

Hyphal GlcNAc content assay

To measure the chitin content in the cell wall of wild type and mutant strains the protocol

described by [27] was adapted for Trichoderma atroviride. Strains were grown on PDA plates

covered with a cellophane disc until a diameter of approximately 2–2.5 cm was reached. 40–50

mg mycelium was harvested into tared 2-ml microcentrifuge tubes containing 2 large and

100 μl small glass beads (2.85–3.45 and 0.75–1.0 diameter, respectively) and dried overnight to

determine dry weight (typically 5–7 mg). The cell walls were extracted with 1 ml 6% KOH at

80˚C for 90 min. Samples were centrifuged at 14,000 rpm for 20 min, and the supernatants
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were used to indirectly determine dry biomass via a protein content assay with Bradford

reagent (Biorad). A linear correlation of protein content to biomass had been established with

defined amounts of dry weight, previously. Pellets were washed 3x in 1 ml 1xPBS, and 1x with

1 ml of Mc Ilvaine’s buffer (0.2 M Na2HPO4, 0.1 M citric acid, pH 6.0) and frozen at 20˚C or

directly processed further. 5μl of Chitinase from Trichoderma viride lyophilized powder,�600

units/g solid enzyme mix (5 mg/ml in PBS, Sigma) were added to 200μl of Mc Ilvaine´s buffer

to hydrolyze chitin to GlcNAc. Samples were incubated for 20–24 h at 37˚C. For colorimetric

determination the protocol given by [27] was followed.

Microscopic analysis

Strains grown on PDA for 18 h were applied in a droplet of 30μl CFW stain (20μM, Sigma

#F3543) with the inverted agar method [91] and imaged with an inverted Zeiss Axio Observer

Z1 (Zeiss, Oberkochen, Germany) with differential interference contrast optics and 405nm

excitation/ 430–470nm emission. Germlings were investigated on an Olympus CX33 (Olym-

pus, Hamburg, Germany) after 0, 4, 8, and 16 h of germination in liquid PDB at 28˚C, 300

rpm. Visualization and semi-quantification of Trichoderma cell wall chitin was performed

using the following cell wall stains: Calcofluor White (CFW) M2R at a final concentration

of 2 μM to non-specifically label β-1,4-glucans including chitin and Congo Red (CR, Sigma

#C6767) at a final concentration of 50 μM to very specifically label α- and β-chitin [115].

Fluorescence signals were assessed using CFW and CR. All samples were incubated for 5 min

before imaging. In order to compare hyphae from parental and mutant strains, all samples

were measured by densitometry using the MacBiophotonics ImageJ work package available at

(https://www.macbiophotonics.ca/software.htm) as described in [115]. Defined rectangular

areas were measured in the Spitzenkörper and in the lateral cell walls of the subapical zone.

On average 25–60 analysis were performed per hyphae.

Transcriptional response element detection

Literature search for stress response elements for different cellular processes in fungi found

four main groups whith specific elements: CWI (CDRE, RML1, crzA, Crz1p, CRZ1-sn2/4,

CRZ1-2, CreA), DEV (ARE, AREanalog, Are2/Nit2, BrlA), HOG (Sko1p, AtfA-1) and ROS

(Hap1, Yap1, AtfA-2,CRE-CRZ-Mn). Additional fungi jaspar matrixes, most due to yeast stud-

ies were used. Scanning of the chs1-8 promoters showed specific elements for groups of general

stress (TEC1, HSF1, STP4) and oxidative stress (ROX1, SKN7, STB5, AFT2). For more details

see S3 Table. For scanning of sequences against patterns the Regulatory Sequence Analysis

Tools (RSAT) http://rsat-tagc.univ-mrs.fr/rsat/ was used. For the eight chs promoters (1,200

bp upstream) sequences against our own and jaspar patterns only hits with a score< 5 were

discarded. Finally, overlapping motives and hits on the reverse strand were joined. Similar

enriched motives in groups of chs promoters (e.g. chs5,7) were detected using RSAT. Addition-

ally, the 50 most enriched motifs for the four condition groups CWI, ROS, HOG, FUS (here

using T. atroviride and related species orthologues) were detected with Meme http://meme-

suite.org/. The eight chs promoters from T. atroviride were then scanned with the 200 motives

using RSAT. Further, a correlation to known jaspar motives was calculated for functional hints

by RSAT.

Bioinformatics and statistics

For transcriptional analyses, the hierarchical clustering algorithm Hierarchical Clustering

Explorer 3 (HCE3) [142] with average linkage and Euclidean distance measure was applied

and values were quantitatively illustrated using the grey scale scheme in Fig 2 and color scheme
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in Figs 3 and 6. The colors were selected based on the jet color mapping for the results of the

function y = a�1/eb�x+c, where a, b, c are constants that were chosen so that value differences

are easy to compare visually and x represents the relative expression value that was calculated

with the REST software [141]. The values of a, b, c and the according formulas are freely avail-

able at https://github.com/mamut-m/expression-colormap. Statistical analysis for qRT-PCR

was performed with REST software with a pair wise fixed reallocation randomization test. For

all other experiments were statistical analysis was needed Student´s t-test was used, assuming

unequal variance of groups. At least two biological and three technical replicates were used for

statistical analysis. Phylogenetic analyses were performed in Mega7 [143], using Neighbor

Joining, a distance algorithmic method. Stability of clades was evaluated by 1,000 bootstrap

rearrangements. Structure/function prediction was performed using InterProScan [144],

signalP 5.0 [145], and transmembrane domain prediction tool TMHMM 2.0 [67].
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