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Abstract

Ki67 is a commonly used marker of cancer cell proliferation, and has significant prognostic

value in breast cancer. In spite of its clinical importance, assessment of Ki67 remains a chal-

lenge, as current manual scoring methods have high inter- and intra-user variability. A major

reason for this variability is selection bias, in that different observers will score different

regions of the same tumor. Here, we developed an automated Ki67 scoring method that

eliminates selection bias, by using whole-slide analysis to identify and score the tumor

regions with the highest proliferative rates. The Ki67 indices calculated using this method

were highly concordant with manual scoring by a pathologist (Pearson’s r = 0.909) and

between users (Pearson’s r = 0.984). We assessed the clinical validity of this method by

scoring Ki67 from 328 whole-slide sections of resected early-stage, hormone receptor-posi-

tive, human epidermal growth factor receptor 2-negative breast cancer. All patients had

Oncotype DX testing performed (Genomic Health) and available Recurrence Scores. High

Ki67 indices correlated significantly with several clinico-pathological correlates, including

higher tumor grade (1 versus 3, P<0.001), higher mitotic score (1 versus 3, P<0.001), and

lower Allred scores for estrogen and progesterone receptors (P = 0.002, 0.008). High Ki67

indices were also significantly correlated with higher Oncotype DX risk-of-recurrence group

(low versus high, P<0.001). Ki67 index was the major contributor to a machine learning

model which, when trained solely on clinico-pathological data and Ki67 scores, identified

Oncotype DX high- and low-risk patients with 97% accuracy, 98% sensitivity and 80% speci-

ficity. Automated scoring of Ki67 can thus successfully address issues of consistency,

reproducibility and accuracy, in a manner that integrates readily into the workflow of a

pathology laboratory. Furthermore, automated Ki67 scores contribute significantly to mod-

els that predict risk of recurrence in breast cancer.
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Introduction

Breast cancer is the most common form of cancer among women, and is the second-leading

cause of cancer-related death worldwide [1]. Treatment decisions for breast cancer are signifi-

cantly influenced by subtype, which is determined from expression of estrogen receptor (ER),

progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and the pro-

liferation marker Ki67 [2]. With advancement of the field of genomics, various genetic tools

have been developed which assist in the subtyping of breast cancers, in addition to the immu-

nohistochemical markers listed above. Some of the multigene assays that are currently avail-

able for early-stage breast cancers include the Oncotype DX1 (Genomic Health Inc.),

MammaPrint1 (Agendia BV), Prosigna1 (PAM50) (NanoString Technologies Inc.) and

EndoPredict1 (Myriad Genetics Inc.) [3]. The percentage of Ki67-positive tumor cells, or the

Ki67 index, is used clinically to distinguish between Luminal A and Luminal B subtypes [4].

Expression of Ki67 is also a good predictor of pathological complete response [5–8], response

to chemotherapy [9–14], and likelihood of relapse [15–17].

In spite of the significant body of evidence supporting the clinical application of Ki67, its

use is hampered by a few drawbacks. First, there are no universally-accepted guidelines for

analysis and clinical interpretation of Ki67 staining. For instance, while the St. Gallen Expert

Panel recommended a Ki67 cut-point of 14% for administration of neoadjuvant chemotherapy

in 2011 [18], they subsequently withdrew their recommendation of a cut-point, given the vari-

ability across different centers [19]. Second, there is no consensus about whether the Ki67

index should be calculated as the percentage of Ki67-positive tumor cells in a tissue section, or

from “hot spots” representing tumor regions in which cell proliferation is highest [20, 21].

Third, even with consensus amongst the cut-points and scoring methods, inter-observer vari-

ability in manual scoring still exists, even among pathologists [22–25]. While the hot spot

method is ideal to represent the highest-proliferating region of a heterogeneous disease, indi-

vidual biases in selecting these hot spots negatively affect inter-observer concordance in scor-

ing. These issues have prompted the development of several multi-center teams and clinical

studies to investigate the utility of automated scoring approaches for Ki67.

In the context of early-stage, ER/PgR-positive breast cancer, adjuvant chemotherapy is only

effective in a small subgroup of patients with a high risk of relapse [26–29]. A number of multi-

gene assays have emerged in recent years, which assist in clinical management of early-stage

breast cancer patients by estimating the risk of recurrence [30–32]. These assays include Onco-

type DX, which is used to support clinical decisions involving the administration of chemo-

therapy [29, 33–35]. The assay involves the use of gene expression analysis to generate a

Recurrence Score; this is a continuous variable, ranging from 0 to 100, that indicates risk of

cancer recurrence [29]. Based on the Recurrence Score, patients are classified into low (<18),

intermediate (18–30), or high (�31) risk-of-recurrence groups. The genes assessed by Onco-

type DX include those coding for ER, PgR, HER2 and Ki67, with the latter contributing the

most to calculation of the Recurrence Score [29, 36, 37]. The high cost of multigene assays

(~US$4,000 per patient for Oncotype DX) has prompted multiple groups to create similar risk

assessment models, by using biomarker expression data already collected as part of the stan-

dard of care [36, 38–41]. Nevertheless, the absence of reliable data on Ki67 remains a weak link

with these efforts.

Here, we report the development of a robust automated method of Ki67 scoring, using the

HALO1 image analysis platform. Our approach combines the biological value of hot spot

scoring with whole-slide analysis, to produce results that are unbiased and highly reproducible.

We validated the clinical value of Ki67 scores obtained by this approach using standard clin-

ico-pathological data and machine learning algorithms to predict the Oncotype DX risk
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category of patients in our cohort. These results, upon validation, may provide a method of

consistent and accurate Ki67 assessment that could be easily incorporated into current clinical

practice.

Materials and methods

Patient selection

This study received ethical approval from the Conjoint Health Research Ethics Board at the

University of Calgary. Patients included in this retrospective study were 328 women diagnosed

with early stage breast cancer (ER/PgR-positive, HER2-negative, lymph node-negative, stages I

to II) treated between 2014 and 2016 in Alberta, Canada. Samples from resected tissue speci-

mens were submitted for Oncotype DX testing (Genomic Health). A database (The Alberta

Provincial Oncotype DX Database) was developed by HY (Calgary, Canada) and GB (Edmon-

ton, Canada) from the information obtained from the Oncotype DX testing and other clinico-

pathological variables (Age, Tumor Size, Tumor Grade, Tumor Nuclear Grade, Tumor Archi-

tecture, Tumor Estrogen and Progesterone Receptor levels) available for these patients.

Specimen selection and immunohistochemistry

For each case of resected breast cancer, the formalin-fixed, paraffin-embedded tissue block

with the largest tumor cross-section was identified. One section (4 μm thickness) was stained

for hematoxylin & eosin (H&E). A consecutive section was stained with an antibody to Ki67

(clone MIB1, Dako [Santa Clara, California, USA], 1:200 dilution, EnVision FLEX low pH

buffer). The slides were counterstained with FLEX hematoxylin (Dako) and permanently

mounted per the manufacturer’s protocol.

Assessment of Ki67 index

Manual scores of Ki67 were generated by a pathologist (HY) from independent counting of at

least three high-power fields (40X objective) of the most mitotically active area in a section,

with a minimum of 500 invasive tumor cells counted per area. For automated Ki67 assessment,

an image analysis algorithm was designed in the HALO1 image analysis software platform

(version 2.0.1145.14, Indica Labs, Corrales, New Mexico, USA) that identified both Ki67-posi-

tive nuclei (brown) and Ki67-negative nuclei (hematoxylin-positive, blue) from slides stained

using chromogenic immunohistochemistry. Invasive breast cancers were marked on diagnos-

tic H&E slides by a pathologist (HY). Both the H&E slides and serial tissue sections stained for

Ki67 were digitized using an Aperio Scanscope XT slide scanner. The area to be analyzed on

the Ki67 image was identified and annotated from the matched H&E using the Image Registra-

tion tool in the HALO1 software. Once annotated, the entire tumor-bearing region was seg-

mented into 500 × 500 μm square tiles and submitted for image analysis. The results included

the number of nuclei detected, as well as the percentage of Ki67-positive nuclei from each tile.

The hot-spot Ki67 index for each case was calculated as the mean percentage of Ki67-positive

nuclei in the top five tiles having at least 500 cells per tile. The whole-slide Ki67 index was cal-

culated by determining the percentage of Ki67-positive nuclei present in each tile in the

marked area, and then calculating the mean per-tile percentage for all tiles on a slide. In this

approach, no criterion of having minimum 500 cells per tile was followed, and scores from all

tiles in the marked tumor-containing areas were used to calculate the final Ki67 index.

Ki67 assay for breast cancer
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Statistical analyses

Correlations involving the Ki67 index were statistically tested by Pearson’s correlation coeffi-

cient (Pearson’s r and two-tailed P values) and Lin’s concordance correlation coefficient where

appropriate using GraphPad PRISM (version 6.0). Correlations between Ki67 indices and vari-

ous clinico-pathological variables were assessed by nonparametric tests (Kruskal-Wallis to

compare among three or more groups; Wilcoxon rank sum for comparison across two groups)

for continuous variables and Fisher’s exact test for categorical factors in R (version 3.2.4).

Random Forest modeling

A Random Forest machine learning paradigm was used to evaluate our ability to predict

Oncotype DX risk-of-recurrence categories from available data. All modeling was performed

in R (version 3.2.4), using the “randomForest” package (version 4.6–12). The data set was

derived from the 199 patients from our cohort for whom we had complete data in all variables.

The modelling was designed to predict the Oncotype DX-derived Recurrence Score for all

patients in the test group. This was done using, in one instance, the first 13 clinico-pathological

variables listed in S2 Table that were obtained from the patients’ charts. The Recurrence Score

obtained from this modelling was referred to as the predicted Recurrence Score, pRS. The

Oncotype DX reports for each patient included gene expression scores for ER, PgR and HER2,

as determined by quantitative RT-PCR [42]. No other Oncotype DX gene expression scores

are available in the reports. To determine whether these data would improve the accuracy with

which a Random Forest model could predict Recurrence Scores, we created a second model-

ling instance. In this instance, the contributing variables consisted of the first 13 clinico-patho-

logical variables listed in S2 Table, as well as the Oncotype DX gene expression scores for ER,

PgR and HER2, obtained from reports. This Random Forest instance thus consisted of 16 vari-

ables that were again used to predict the actual Oncotype DX Recurrence Scores. The pre-

dicted Recurrence Scores in this instance were termed pRSodx, to differentiate them from the

pRS that were derived in the absence of any Oncotype DX data. The predicted Recurrence

Scores were then assigned to low, intermediate or high risk-of-recurrence groups, using the

standard cut points applied to this test (low<18, intermediate 18–30, high�31, range 0–100).

Random Forest parameters for ntree, mtry and sampsize were optimized using the method of

Huang and Boutros [43], and set at ntree = 1000; mtry = 15 or 12 for analysis including or not

including Oncotype DX ER/PgR/HER2 data, respectively; and sampsize = 40. For each round

of analysis, data from a randomly-selected 50% of patients were used to train the model, which

was then applied to predict Recurrence Scores of the remaining patients. The predicted Recur-

rence Scores were assigned to risk-of-recurrence groups, as described above. Performance in

each round was evaluated by constructing a confusion matrix (2×2 table) that matched each

patient’s predicted risk group against the Oncotype DX-determined risk group assignment.

For the purposes of assessing predictive performance of the analyses, correct prediction that a

patient was of low risk-of-recurrence constituted a true positive test result, and correct predic-

tion that a patient was of high risk constituted a true negative result. Incorrect prediction that

a high-risk patient was of low risk constituted a false positive, and incorrect prediction that a

low-risk patient was of high risk was a false negative. Patients with intermediate risk (from

either actual or predicted Oncotype DX scores) were not included in evaluation of perfor-

mance. Each round of model-building and prediction also generated data on percentage

Increased Mean Squared Error (%IncMSE). This is the difference in mean squared error of the

predicted Recurrence Score, between when a specific variable is used in the Random Forest

model, and when that variable is randomly permuted [44]. A higher %IncMSE thus indicates

Ki67 assay for breast cancer
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greater predictive value of a variable. Results presented are from 1,000 independent rounds of

cross-validation. Performance statistics were reported as mean ± standard deviation.

Results

Cohort description

The present study involved 328 patients who were treated for hormone receptor-positive,

HER2-negative, early-stage breast cancer in Alberta between 2014 and 2016. The clinico-path-

ological characteristics of these patients are listed in Table 1. All patients in the cohort under-

went Oncotype DX genomic testing and had available Recurrence Scores. Using the standard

Genomic Health cut-points, there were 185 low-risk (62%), 110 intermediate-risk (28%) and

33 (10%) high-risk patients. Clinico-pathological characteristics of these patients were also

grouped by Oncotype DX risk group (S1 Table).

Performance evaluation of automated Ki67 analysis

An overview of the analysis workflow is shown in Fig 1. Tumor areas were segmented into

square tiles as the first step in the automated analysis. The median number of tiles per slide

Table 1. Clinico-pathological characteristics of patients in the study cohort.

Age at Dx (Years) Patients % n

Mean 55 100 327*

Range 29–85

Tumor Size (mm)

Mean 18.1 100 316

Range 2.5–57

Tumor Grade

1 64 20.7 309

2 196 63.4

3 49 15.8

Tumor Nuclear Grade

1 32 10.3 309

2 172 55.6

3 105 33.9

Tumor Differentiation

1 31 10 309

2 88 28.4

3 190 61.4

Tumor ER Intensity

Weak 8 3.2 244

Moderate 13 5.3

Strong 223 91.3

Tumor PgR Intensity

Weak 14 6.1 228

Moderate 65 28.5

Strong 149 65.3

Recurrence Score

Low (<18) 185 56.4 328

Intermediate (18–30) 110 33.6

High (>30) 33 10.0

*: Age at Dx not available for one patient. ER, estrogen receptor; PgR, progesterone receptor

https://doi.org/10.1371/journal.pone.0188983.t001
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was 328 (range 11–1600, interquartile range 273). Only tiles with� 500 cells were selected for

analysis to determine Ki67 index. To evaluate the performance of the automated analysis, we

compared the Ki67 indices from 45 randomly selected cases to manual scoring of the same. The

manual scoring was performed by a breast pathologist (HY) who was blinded to the automated

Fig 1. Overview of the automated image analysis workflow. An H&E of the tumor specimen was manually annotated by a

pathologist (A). Annotations were transferred to the matching Ki67-stained slide, and segmented into tiles (B). Ki67-positive and

-negative nuclei in each tile (C) were identified and counted by the analysis algorithm, which colored them green and blue,

respectively (D).

https://doi.org/10.1371/journal.pone.0188983.g001
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assay’s results. There was a high correlation between both analysis methods (Fig 2A; Pearson’s

r = 0.909, P< 0.001) with high levels of concordance (Lin’s concordance = 0.881).

To test the ease of use and reproducibility of the method developed, 50 cases were selected

at random, and subjected to automated analysis separately by one novice and one expert user.

As expected, scores from both users were concordant and reproducible with minimal variance

(Fig 2B; Pearson’s r = 0.984; P<0.001).

Clinical validity of whole-slide hot spot analysis

There is no consensus about the relative validity of Ki67 scoring of hot spots, as compared to

scoring of the entire slide. The analysis of hot spots allows representation of the most aggres-

sive tumor regions from otherwise heterogeneously-proliferative tumor specimens [20, 45,

46]; however, the utility of this approach is normally marred by inter-user bias. We hypothe-

sized that the elimination of bias, as is the case with our assay, would allow the generation of

Ki67 indices that were more strongly correlated with common prognostic factors. Correlations

were assessed between whole-slide or hot-spot Ki67 indices and multiple clinico-pathological

variables (Table 2). There were interactions between Ki67 indices generated from both

approaches (whole-slide and hot-spot) and all three Oncotype DX risk groups. Ki67 indices

also correlated positively with the Recurrence Scores, tumor grade and mitotic score, and neg-

atively with ER and PgR Allred scores. There were no notable differences in the extent to

which either whole-slide or hot-spot indices interacted with the clinico-pathological variables.

It is worth mentioning here that Ki67 scores from both approaches (whole-slide and hot-

spot) were strongly correlated (Pearson r = 0.938); however, the hot-spot indices were signifi-

cantly higher than the whole-slide indices across the entire cohort (S1 Fig) and when patients

were stratified into Oncotype DX risk-of-recurrence groups (S2 Fig).

Since Ki67 is the greatest contributor to the Oncotype DX assay’s results, we evaluated the

association between hot-spot Ki67 indices and Oncotype DX Recurrence Scores. The correla-

tion between these, while modest, was significant (Fig 3A; Pearson’s r = 0.553, P<0.001).

While the distribution of Ki67 indices for low-risk patients overlapped with those for interme-

diate-risk patients, the median Ki67 indices were significantly higher in the latter (Table 2). In

contrast, Ki67 indices of high- and low-risk patients assorted into distinct clusters (Fig 3B). A

clear difference in the Ki67 indices between high- and low-risk patients was observed (Pear-

son’s r = 0.684, P<0.001), with 97% patients in the high-risk category having Ki67 indices over

20%.

The use of machine learning to infer Oncotype DX risk groups

Ki67 is the main contributor to the Oncotype DX recurrence score [29, 36, 37], and markers of

proliferation similarly contribute to the risk-of-recurrence assessments of other multigene

assays [30]. We asked if an integrated machine learning analysis of clinico-pathological data,

including the Ki67 scores generated by our automated assay, could provide useful information

about recurrence risk in these patients. We created and evaluated a Random Forest machine

learning model, using a subset of 199 patients for whom we had complete data sets. While we

used all available Oncotype DX data for model training, we focused our assessment of model

performance on high- and low-risk patients. This is because the intermediate risk patients con-

stitute an ambiguous group from both predictive and treatment standpoints [36, 41]. The out-

line for model training, evaluation and cross-validation is shown in Fig 4, the variables used

are listed in S2 Table, and the summary results from 1,000 rounds of cross-validation are in

Table 3. Predicted Recurrence Scores were obtained using 13 clinico-pathological variables

alone (pRS) or in addition to the gene expression scores for ER, PgR and HER2 as obtained
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from the Oncotype DX reports (pRSodx). Random Forest models trained with Oncotype DX-

derived expression data for ER, PgR and HER2 performed better than models trained without

these data; however, the differences were modest, particularly for accuracy (1.0%) and negative

predictive value (6.3%). Similar results were obtained when Ki67 indices from whole-slide

analyses were used in place of the hot-spot data (Table 3). To determine which variables con-

tributed the most to the accuracy of the model, we calculated the increase in mean squared

error, which indicates the degree to which the model’s accuracy would decrease if a specific

variable were omitted. In the pRSodx models, PgR (determined by RT-PCR in the Oncotype

DX assay) and Ki67 were the greatest contributors, together accounting for approximately

70% of the model’s accuracy (Fig 5A). In the absence of Oncotype DX data, Ki67 was the high-

est contributor towards model accuracy, with its loss creating a mean squared error increase of

45.3% (Fig 5B).

Discussion

Ki67 is commonly used as a marker for proliferation, and has significant value as a prognostic

biomarker in breast cancer [10, 20, 23, 47]. Nevertheless, it has proven challenging to establish

standards for the quantification and interpretation of Ki67 in clinical practice. In routine

Fig 2. Performance evaluation of automated Ki67 analysis. (A) Comparison of Ki67 indices (n = 45) as

assessed by manual and automated scoring. Pearson’s r = 0.909; Lin’s concordance correlation

coefficient = 0.881; P<0.001. (B) Assessment of inter-user concordance using the automated analysis

(n = 50). Pearson’s r = 0.984; P<0.001. Dashed lines indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0188983.g002

Table 2. Assessment of interaction between Ki67 indices and clinico-pathological variables.

RS Ki67 Index

(Whole-slide)

P Value Ki67 Index

(Hot-spot)

P Value

Low 6.86 Int. vs Low = 0.012 15.84 Int. vs Low = 0.005

Intermediate 8.33 High vs Low < 0.001 19.21 High vs Low < 0.001

High 20.21 High vs Int. < 0.001 43.66 High vs Int. < 0.001

Tumor Grade

1 8.15 2 vs 1 = 0.297 16.49 2 vs 1 = 0.704

2 6.53 3 vs 1 < 0.001 16.08 3 vs 1 < 0.001

3 7.46 3 vs 2 < 0.001 33.88 3 vs 2 < 0.001

ER Score

ER<5 16.96 0.004 36.98 0.002

ER = 5 7.05 16.46

PgR Score

PgR<5 8.98 0.012 20.63 0.008

PgR = 5 6.66 15.27

Nuclear Grade

1 7.11 2 vs 1 = 0.555 17.10 2 vs 1 = 0.232

2 6.85 3 vs 1 = 0.046 16.06 3 vs 1 = 0.129

3 10.5 3 vs 2 < 0.001 23.83 3 vs 2 < 0.001

Mitotic Score

1 6.63 2 vs 1 < 0.001 15.68 2 vs 1 < 0.001

2 11.95 3 vs 1 < 0.001 25.99 3 vs 1 < 0.001

3 17.54 3 vs 2 = 0.005 35.93 3 vs 2 = 0.008

RS, recurrence score; Int, intermediate-risk group; ER, estrogen receptor; PgR, progesterone receptor.

https://doi.org/10.1371/journal.pone.0188983.t002
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diagnostic procedures, Ki67 scoring, as performed manually by a pathologist, involves visual

inspection of a limited number of tumor cells [23]. This method suffers from considerable

inter-user discordance, creating difficulties in identification and validation of cut-points. In

this report, we present a simple, automated scoring method for Ki67 assessment which

addresses some of the key challenges currently associated with the analysis of this biomarker.

Furthermore, this method combines the advantages of an unbiased whole-slide analysis with

the clinical value of identifying the hot spots of highest tumor proliferation. The method fea-

tures very high concordance against expert manual scoring, and between users. Finally, the

Ki67 indices derived from this method correlate as expected with other clinico-pathological

variables, and allow accurate inference of Oncotype DX risk-of-recurrence groups.

While several other groups have applied automated methods to the quantification of Ki67

[23, 48, 49], including some large multi-center studies [50, 51], our approach addresses a num-

ber of limitations evident in those studies. Many hormone receptor-positive breast cancers

exhibit differences in proliferative rate across their spatial extents. In such tumors, the hot

spots of higher-than-average proliferative indices are clinically meaningful [52, 53]. Conse-

quently, automated analysis of tissue microarrays, or of manually-selected tumor regions,

incur the same potential for selection bias as do manual scoring approaches [20, 54]. We

addressed this problem by segmenting each slide image into tiles prior to analysis; since the

entire image was subsequently analyzed, the hot spots emerged naturally as the tiles with the

highest Ki67 scores. Furthermore, as the Ki67 index represents the mean of the top five tiles,

we captured Ki67 data from multiple hot spots across each slide, as well as from non-hot spot

regions. The result was a Ki67 index that accounted for proliferative heterogeneity without

sacrificing either accuracy or robustness of performance. In contrast, for whole-slide Ki67

index, Ki67 scores from the tiles comprising the entire marked area on the slide were assessed.

The key advantage of computer-assisted analysis of Ki67 is consistency of scoring, particu-

larly between users [23, 25]. The version of the analysis algorithm described here represented

Fig 3. Assessment of correlation between hot-spot Ki67 index and Oncotype DX scores. (A) Plot

showing association between Ki67 index and Oncotype DX low-risk (blue), intermediate-risk (green) and high-

risk (red) groupings. Pearson’s r = 0.5533; P<0.001. (B) Plot showing association between Ki67 and

Oncotype DX low- and high-risk groupings. Pearson’s r = 0.684; P<0.001.

https://doi.org/10.1371/journal.pone.0188983.g003

Fig 4. Outline of Random Forest training and evaluation workflow.

https://doi.org/10.1371/journal.pone.0188983.g004
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the end-point of an optimization process performed on a subset of slides, which was used to

analyze all 328 patient samples without any extra optimization. While the automated analysis

demonstrated high concordance against a pathologist’s manual scoring, the key demonstration

of utility was in the inter-user comparison. With less than 15 minutes of educational-instruc-

tion, a novice user of the software was successfully trained to perform an analysis of 50 slides,

obtaining almost perfect concordance with an expert user. The only manual intervention

required, and thus the only sources of inter-user variance, were in transferring the patholo-

gist’s annotations to the digital images, and visual quality assessment of the top-scoring tiles.

The automated analysis thus demonstrates a number of features–validity against the gold stan-

dard, reproducibility, and ease of use–that could facilitate its implementation in a clinical

environment.

Table 3. Summary performance of the Random Forest models predicting Oncotype DX risk groups. Recurrence Scores were predicted using the clin-

ico-pathological variables listed in S2 Table alone (pRS), or using the S2 Table variables in addition to gene expression scores for ER, PgR and HER2 that

were included in the official Oncotype DX reports (pRSodx). Evaluation of performance of the Random Forest models was based on the extent to which the

models correctly predicted, or failed to predict, each patient’s actual low- or high-risk Oncotype DX category. Values represent the mean outcomes ± standard

deviations over 1,000 testing iterations.

Using hot-spot Ki67 scores Using whole-slide Ki67 scores

Parameter pRSodx vs. RS (%) pRS vs. RS (%) pRSodx vs. RS (%) pRS vs. RS (%)

Accuracy 97.8 ± 1 96.8 ± 2 98.2 ± 2 97.2 ± 2

Sensitivity 99.4 ± 0.9 98.7 ± 1 99.9 ± 0.5 99.5 ± 1

Specificity 81.9 ± 16 80.1 ± 17 80.2 ± 17 75.5 ± 19

Positive predictive value 98.2 ± 1 97.8 ± 1 98.2 ± 2 97.5 ± 2

Negative predictive value 94.1 ± 10 87.8 ± 12 98.8 ± 6 94.4 ± 12

RS, Oncotype DX Recurrence Score.

https://doi.org/10.1371/journal.pone.0188983.t003

Fig 5. Contribution of individual variables to the accuracy of the respective Random Forest models, as assessed by increases in mean squared

error for models created without each variable. Graphs represent models after 1,000 cycles of validation trained with both clinico-pathological data and

Oncotype DX expression data for ER, PgR and HER2 (A) or with clinico-pathological data alone (B). Error bars represent standard deviation from the mean.

ER intensity, estrogen receptor staining intensity; ER score, estrogen receptor expression score (immunohistochemistry); PR intensity, progesterone

receptor staining intensity; PR score, progesterone receptor expression score (immunohistochemistry); ODX ER, Oncotype DX estrogen receptor gene

expression score; ODX HER2, Oncotype DX HER2 expression score; ODX PR, Oncotype DX progesterone receptor gene expression score; Tumor_arch,

tumor differentiation score; Tumor_nuc_grade, tumor nuclear grade.

https://doi.org/10.1371/journal.pone.0188983.g005
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While other studies have demonstrated the prognostic value of Ki67 as assessed by whole

slide- and hot spot-focused analysis methods, the value of the hybrid analysis approach we

applied in this study was not immediately apparent. We consequently used multiple methods

to evaluate the validity of our Ki67 data. Previous studies highlighted associations between

tumor proliferation and a variety of clinico-pathological endpoints, such as tumor grade,

stage, and ER/PgR expression [55–57]. We observed in this study that Ki67 indices, derived

from either whole-slide or hot-spot analysis approaches, correlated significantly with all of

these. It is thus likely that, at least for the purposes highlighted in this study, whole-slide and

hot-spot Ki67 analyses may be equally useful, so long as they are accurately determined. Ki67

is the greatest contributor to Oncotype DX recurrence score [31], and a strong correlation

between Ki67 index and recurrence score could provide evidence supporting the clinical valid-

ity of our approach [37, 48, 58]. We observed a particularly strong correlation between Ki67

index and the high and low Oncotype DX risk-of-recurrence categories. Finally, we applied a

multivariate machine learning approach to determine if Ki67 indices could contribute to pre-

diction of these Oncotype DX categories. Remarkably, a model trained solely on clinico-patho-

logical data, biomarker expression and Ki67 indices in both hot spot and whole-slide

approaches predicted high- and low-risk of recurrence groups with 97% accuracy. In this con-

text, Ki67 index was the most significant contributor to the accuracy of the model. Our results

are similar to those published recently by Kim and colleagues [41], who used an identical

machine learning approach to predict Oncotype DX risk-of-recurrence status from clinico-

pathological and biomarker expression data. Given that Oncotype DX prediction methods,

including the linear regression Magee equations [36, 40, 59], utilize potentially unreliable data

from manual Ki67 scoring, it is likely that the accuracy of such methods would be significantly

improved with robust Ki67 data from automated analyses.

Our study has a number of shortcomings that need to be addressed in the future. First, this

study was conducted in a single academic center; consequently, it is not clear what logistical

problems may occur in implementing this method in a multi-institutional setup. Secondly, the

manual scores in this study were generated by a single pathologist so the exact measure of the

inter-observer variability in calculating Ki67 index manually cannot be obtained and com-

pared with the automatically generated Ki67 indices. Also, the manual scores were generated

using a single tissue section from each patient with the largest tumor cross sectional area. It is

possible that the single section selected may not represent the true mitotic nature of the tumor,

due to intra-tumoral heterogeneity. The methodology as presented involves the use of expen-

sive, proprietary software (HALO1). However, the fundamentals should be reproducible on a

sufficiently robust open-source framework, such as CognitionMaster [41, 60]. This needs to be

tested and could determine the extent of variability in results amongst different image analysis

software. Furthermore, development and assessment of the machine learning model was only

possible on a subset of patients (199) for whom we had complete data sets, since the modeling

paradigm is not tolerant of missing data. In this, as in similar studies [36, 40, 59], there were

few patients in the high risk-of-recurrence group; further testing of the model needs to be car-

ried out in a larger patient population, with a more equitable distribution of patients in all

three risk categories. The small cohort size also precluded our ability to evaluate a locked-

down Random Forest model on a separate, independent group of patients. Such an approach

would constitute a more thorough validation of the concepts introduced in the current proof-

of-principle work.

In the present study, we have addressed the issue of Ki67 scoring which to date remains a

major hurdle in clinical use of Ki67 as a biomarker. We present an automated, robust and

reproducible method for quantification of Ki67 from whole-slide sections of breast cancer.

The consistency and ease-of-use of this Ki67 analysis approach may facilitate the standardized
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scoring of this biomarker across multiple clinical centers. We show that the Ki67 index derived

with this method contributes significantly to prediction of Oncotype DX risk-of-recurrence

status, when implemented in a multivariate machine learning model. The utility of predictive

modeling, bolstered by the availability of accurate Ki67 data, may reduce the need for expen-

sive multigene assays to assess risk of recurrence.
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