
sensors

Article

Machine Learning on Mainstream Microcontrollers †

Fouad Sakr, Francesco Bellotti * , Riccardo Berta and Alessandro De Gloria

Department of Electrical, Electronic and Telecommunication Engineering (DITEN)-University of Genoa,
Via Opera Pia 11a, 16145 Genova, Italy; Fouad.Sakr@elios.unige.it (F.S.); riccardo.berta@unige.it (R.B.);
alessandro.degloria@unige.it (A.D.G.)
* Correspondence: franz@elios.unige.it
† This paper is an extended version of the conference paper published in: Falbo, V.; Apicella, T.; Aurioso, D.;

Danese, L.; Bellotti, F.; Berta, R.; De Gloria, A. Analyzing Machine Learning on Mainstream Microcontrollers.
In Proceedings of the International Conference on Applications in Electronics Pervading Industry
Environment and Society, ApplePies 2019, Pisa, Italy, 12–13 September 2019.

Received: 27 March 2020; Accepted: 29 April 2020; Published: 5 May 2020
����������
�������

Abstract: This paper presents the Edge Learning Machine (ELM), a machine learning framework for
edge devices, which manages the training phase on a desktop computer and performs inferences on
microcontrollers. The framework implements, in a platform-independent C language, three supervised
machine learning algorithms (Support Vector Machine (SVM) with a linear kernel, k-Nearest Neighbors
(K-NN), and Decision Tree (DT)), and exploits STM X-Cube-AI to implement Artificial Neural
Networks (ANNs) on STM32 Nucleo boards. We investigated the performance of these algorithms on
six embedded boards and six datasets (four classifications and two regression). Our analysis—which
aims to plug a gap in the literature—shows that the target platforms allow us to achieve the same
performance score as a desktop machine, with a similar time latency. ANN performs better than
the other algorithms in most cases, with no difference among the target devices. We observed that
increasing the depth of an NN improves performance, up to a saturation level. k-NN performs
similarly to ANN and, in one case, even better, but requires all the training sets to be kept in the
inference phase, posing a significant memory demand, which can be afforded only by high-end edge
devices. DT performance has a larger variance across datasets. In general, several factors impact
performance in different ways across datasets. This highlights the importance of a framework like
ELM, which is able to train and compare different algorithms. To support the developer community,
ELM is released on an open-source basis.

Keywords: machine learning; edge computing; embedded devices; edge analytics; ANN; k-NN;
SVM; decision trees; ARM; X-Cube-AI; STM32 Nucleo

1. Introduction

The trend of moving computation towards the edge is becoming ever more relevant, leading
to performance improvements and the development of new field data processing applications [1].
This computation shift from the cloud (e.g., [2]) to the edge has advantages in terms of response
latency, bandwidth occupancy, energy consumption, security and expected privacy (e.g., [3]). The huge
amount, relevance and overall sensitivity of the data now collected also raise clear concerns about their
use, as is being increasingly acknowledged (e.g., [4]), meaning that this is a key issue to be addressed
at the societal level.

The trend towards edge computing also concerns machine learning (ML) techniques, particularly
for the inference task, which is much less computationally intensive than the previous training phase.
ML systems “learn” to perform tasks by considering examples, in the training phase, generally without
being programmed with task-specific rules. When running ML-trained models, Internet of Things

Sensors 2020, 20, 2638; doi:10.3390/s20092638 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4109-4675
https://orcid.org/0000-0003-1937-3969
http://www.mdpi.com/1424-8220/20/9/2638?type=check_update&version=1
http://dx.doi.org/10.3390/s20092638
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 2638 2 of 25

(IoT) devices can locally process their collected data, providing a prompter response and filtering the
amount of bits exchanged with the cloud.

ML on the edge has attracted the interest of industry giants. Google has recently released the
TensorFlow Lite platform, which provides a set of tools that enable the user to convert TensorFlow
Neural Network (NN) models into a simplified and reduced version, then run this version on edge
devices [5,6]. EdgeML is a Microsoft suite of ML algorithms designed to work off the grid in
severely resource-constrained scenarios [7]. ARM has published an open-source library, namely Cortex
Microcontroller Software Interface Standard Neural Network (CMSIS-NN), for Cortex-M processors,
which maximizes NN performance [8]. Likewise, a new package, namely X-Cube-AI, has been released
for implementing deep learning models on STM 32-bit microcontrollers [9].

While the literature is increasingly reporting on novel or adapted embedded machine learning
algorithms, architectures and applications, there is a lack of quantitative analyses about the
performance of common ML algorithms on state-of-the-art mainstream edge devices, such as ARM
microcontrollers [10]. We argue that this has limited the development of new applications and the
upgrading of existing ones through an edge computing extension.

In this context, we have developed the Edge Learning Machine (ELM), a framework that performs
ML inference on edge devices using models created, trained, and optimized on a Desktop environment.
The framework provides a platform-independent C language implementation of well-established ML
algorithms, such as linear Support Vector Machine (SVM), k-Nearest Neighbors (k-NN) and Decision
Tree. It also supports artificial neural networks by exploiting the X-Cube-AI package for STM 32
devices [9]. We validated the framework on a set of STM microcontrollers (families F0, F3, F4, F7, H7,
and L4) using six different datasets, to answer a set of ten research questions exploring the performance
of microcontrollers in typical ML Internet of Things (IoT) applications. The research questions concern
a variety of aspects, ranging from inference performance comparisons (also with respect to a desktop
implementation) to training time, and from pre-processing to hyperparameter tuning. The framework
is released on an open-source basis (https://github.com/Edge-Learning-Machine), with a goal to support
researchers in designing and deploying ML solutions on edge devices.

The remainder of this paper is organized as follows: Section 2 provides background information
about the ML techniques that are discussed in the manuscript. Section 3 describes the related work
in this field. Section 4 shows the implemented framework and the supported algorithms. Section 5
presents the extensive experimental analysis we conducted by exploiting the framework. Finally,
Section 6 draws conclusions and briefly illustrates possible future research directions.

2. Background

The Edge Learning Machine framework aims to provide an extensible set of algorithms to perform
inference on the edge. The current implementation features four well-established supervised learning
algorithms, which we briefly introduce in the following subsections. They all support both classification
and regression problems.

2.1. Artificial Neural Network (ANN)

An Artificial Neural Network is a model that mimics the structure of our brain’s neural network.
It consists of a number of computing neurons connected to each other in a three-layer system; one
input layer, several hidden layers, and one output layer. Artificial Neural Networks (ANNs) can model
complex and non-linear or hidden relationships between inputs and outputs [11]. This one of the most
powerful and well-known ML algorithms, which is used in a variety of applications, such as image
recognition, natural language processing, forecasting, etc.

2.2. Linear Kernel Support Vector Machine (SVM)

The SVM algorithm is a linear classifier that computes the hyperplane that maximizes the
distance from it to the nearest samples of the two target classes. It is a memory-efficient inference

https://github.com/Edge-Learning-Machine


Sensors 2020, 20, 2638 3 of 25

algorithm and is able to capture complex relationships between data points. The downside is that
the training time increases with huge and noisy datasets [12]. While the algorithm deals well with
non-linear problems, thanks to the utilization of kernels that map the original data in higher dimension
spaces, we implemented only the original, linear kernel [13] for simplicity of implementation into the
edge device.

2.3. K-Nearest Neighbor (k-NN)

k-NN is a very simple algorithm based on feature similarity that assigns, to a sample point,
the class of the nearest set of previously labeled points. k-NN’s efficiency and performance depends
on the number of neighbors K, the voting criterion (for K > 1) and the training data size. The training
phase produces a very simple model (the K parameter), but the inference phase requires exploring the
whole training set. Its performance is typically sensitive to noise and irrelevant features [12,14].

2.4. Decision Tree (DT)

This is a simple and useful algorithm, which has the advantage of clearly exposing the criteria
of decisions that are made. In building the decision tree, at each step, the algorithm splits data so
as to maximize the information gain, thus creating homogeneous subsets. The typical information
gain criteria are Entropy and Gini. DT is able to deal with linearly inseparable data and can handle
redundancy, missing values, and numerical and categorical types of data. It is negatively affected
by high dimensionality and high numbers of classes, because of error propagation [12,15]. Typical
hyperparameters that are tuned in the model selection phase concern regularization and typically
include depth, the minimum number of samples for a leaf, and the minimum number of samples for a
split, the maximum number of leaf nodes and the splitter strategy (the best one, which is the default,
or a random one, which is typically used for random forests), etc. Several DTs can be randomly built
for a problem, in order to create complex but high-performing random forests.

3. Related Work

A growing number of articles are being published on the implementation of ML on embedded
systems, especially with a focus on the methodology of moving computation towards the edge.
Zhang et al. [16] presented an object detector, namely MobileNet-Single Shot Detector (SSD), which was
trained using a deep convolutional neural network with the popular Caffe framework. The pre-trained
model was then deployed on NanoPi2, an ARM board developed by FriendlyARM, which uses
Samsung Cortex-A9 Quad-Core S5P4418@1.4GHz SoC and 1 GB 32bit DDR3 RAM. MobileNet-SSD
can run at 1.13FPS.

Yazici et al. [17] tested the ability of a Raspberry Pi to run ML algorithms. Three algorithms
were tested, Support Vector Machine (SVM), Multi-Layer Perceptron, and Random Forests, with an
accuracy above 80% and a low energy consumption. Fraunhofer Institute for Microelectronic Circuits
and Systems have developed Artificial Intelligence for Embedded Systems (AIfES), a library that can
run on 8-bit microcontrollers and recognize handwriting and gestures without requiring a connection
to the cloud or servers [18]. Cerutti et al. [19] implemented a convolutional neural network on STM
Nucleo-L476RG for people detection using CMSIS-NN, which is an optimized library that allows for
the deployment of NNs on Cortex-M microcontrollers. In order to reduce the model size, weights are
quantized to an 8-bit fixed point format, which slightly affects the performance. The network fits in
20 KB of flash and 6 KB of RAM with 77% accuracy.

Google has recently released Coral Dev Board, which includes a small low power
Application-Specific Integrated Circuit (ASIC) called Edge TPU, and provides high-performance
ML inferencing without running the ML model on any kind of server. Edge TPU can run TensorFlow
Lite, with a low processing power and high performance [20]. There are a few application
programming interfaces (APIs) in the Edge tencor processing unit (TPU) module that perform



Sensors 2020, 20, 2638 4 of 25

inference (ClassificationEngine) for image classification, for object detection (DetectionEngine) and
others that perform on-device transfer learning [21].

Microsoft is developing EdgeML, a library of machine learning algorithms that are trained on the
cloud/desktop and can run on severely resource-constrained edge and endpoint IoT devices (also with
2 KB RAM), ranging from the Arduino to the Raspberry Pi [7]. They are currently releasing tree- and
k-NN-based algorithms, called Bonsai and ProtoNN, respectively, for classification, regression, ranking
and other common IoT tasks. Their work also concerns recurrent neural networks [22]. A major
achievement concerns the translation of floating-point ML models into fixed-point code [23], which is,
however, not the case in state-of-the-art mainstream microcontrollers.

The Amazon Web Services (AWS) IoT Greengrass [24] supports machine learning inference locally
on edge devices. The user could use his own pre-trained model or use models that are created, trained,
and optimized in Amazon SageMaker (cloud), where massive computing resources are available.
AWS IoT Greengrass features lambda runtime, a message manager, resource access, etc. The minimum
hardware requirements are 1 GHz of computing speed and 128 MB of RAM.

Ghosh et al. [25] used autoencoders at the edge layer that are capable of dimensionality reduction
to reduce the required processing time and storage space. The paper illustrates three scenarios. In the
first one, data from sensors are sent to edge nodes, where data reduction is performed, and machine
learning is then carried out in the cloud. In the second scenario, encoded data at the edge are decoded
in the cloud to obtain the original amount of data and then perform machine learning tasks. Finally,
pure cloud computing is performed, where data are sent from the sensors to the cloud. Results show
that an autoencoder at the edge reduces the number of features and thus lowers the amount of data
sent to the cloud.

Amiko’s Respiro is a smart inhaler sensor featuring an ultra-low-power ARM Cortex-M
processor [26]. This sensor uses machine learning to interpret vibration data from an inhaler.
The processor allows for the running of ML algorithms where the sensor is trained to recognize
breathing patterns and calculate important parameters. The collected data are processed in an
application and feedback is provided.

Magno et al. [27] presented an open-source toolkit, namely FANNCortexM. It is built upon the Fast
Artificial Neural Network (FANN) library and can run neural networks on the ARM Cortex-M series.
This toolkit takes a neural network trained with FANN and generates code suitable for low-power
microcontrollers. Another paper by Magno et al. [28] introduces a wearable multi-sensor bracelet for
emotion detection that is able to run multilayer neural networks. In order to create, train, and test
the neural network, the FANN library is used. To deploy the NN on the Cortex-M4F microcontroller,
the above-mentioned library needs to be optimized using CMSIS and TI-Driverlib libraries.

FidoProject is a C++ machine learning library for embedded devices and robotics [29].
It implements a neural network for classification and other algorithms such as Reinforcement Learning.
Alameh et al. [30] created a smart tactile sensing system by implementing a convolutional neural
network on various hardware platforms like Raspberry Pi 4, NVidia Jetson TX2, and Movidius NCS2
for tactile data decoding.

As recent works used knowledge transfer (KT) techniques to transfer information from a large
neural network to a small one in order to improve the performance of the latter, Sharma et al. [31]
investigated the application of KT to edge devices, achieving good results by transferring knowledge
from both the intermediate layers and the last layer of the teacher (original model) to a shallower
student (target).

While most of the listed works use powerful edge devices (e.g., Cortex-A9, Raspberry PI) to test
algorithms, especially NNs, there is a lack of performance analysis of common ML algorithms on
mainstream microcontrollers. We intend to plug this gap by providing an open-source framework that
we used for an extensive analysis.



Sensors 2020, 20, 2638 5 of 25

4. Framework and Algorithm Understanding

The proposed Edge Learning Machine (EML) framework consists of two modules, one working on
the desktop (namely DeskLM, for training and testing), and one on the edge (MicroLM, for inferencing
and testing), as sketched in Figure 1.Sensors 2020, 20 5 of 25 

 
Figure 1. Block diagram of the Edge Learning Machine system architecture. 

1. Desktop: the Desk-LM module is implemented in python and works on a PC to identify the best 
models for an input dataset. The current implementation involves four algorithms for both 
classification and regression: artificial neural networks (ANN), linear support vector machines 
(SVM), K-Nearest Neighbors (k-NN), and Decision Tree (DT) algorithms. For each algorithm, 
Desk-LM identifies the best model through hyperparameter tuning, as is described later in Table 
2. Desk-LM relies on the scikit-learn python libraries [32] and exploits the TensorFlow [5] and 
Keras [33] packages for ANNs; 

2. Edge: the MicroLM module reads and executes the models generated by Desk-LM. It is 
implemented in platform-independent C language (for linear kernel SVM, k-NN, DT) and can 
run on both microcontrollers and desktops, in order to perform inferences. ANNs are deployed 
using the X-Cube-AI expansion package for STM32 microcontrollers (TensorFlow and Keras on 
desktops). 

The tool has been designed to support a four-step workflow, as shown in Figure 2. 

 
Figure 2. Supported workflow. 

1. Preparation: in this first phase, the user provides the dataset and defines the range of the 
parameters to be investigated for each algorithm. The parameters are listed in Tables 1 and 2 
(common and algorithm-specific, respectively—these common parameters are used by all the 
algorithms, even if they have different values); 

Figure 1. Block diagram of the Edge Learning Machine system architecture.

1. Desktop: the Desk-LM module is implemented in python and works on a PC to identify the
best models for an input dataset. The current implementation involves four algorithms for both
classification and regression: artificial neural networks (ANN), linear support vector machines
(SVM), K-Nearest Neighbors (k-NN), and Decision Tree (DT) algorithms. For each algorithm,
Desk-LM identifies the best model through hyperparameter tuning, as is described later in Table
2. Desk-LM relies on the scikit-learn python libraries [32] and exploits the TensorFlow [5] and
Keras [33] packages for ANNs;

2. Edge: the MicroLM module reads and executes the models generated by Desk-LM. It is
implemented in platform-independent C language (for linear kernel SVM, k-NN, DT) and
can run on both microcontrollers and desktops, in order to perform inferences. ANNs are
deployed using the X-Cube-AI expansion package for STM32 microcontrollers (TensorFlow and
Keras on desktops).

The tool has been designed to support a four-step workflow, as shown in Figure 2.

Sensors 2020, 20 5 of 25 

 
Figure 1. Block diagram of the Edge Learning Machine system architecture. 

1. Desktop: the Desk-LM module is implemented in python and works on a PC to identify the best 
models for an input dataset. The current implementation involves four algorithms for both 
classification and regression: artificial neural networks (ANN), linear support vector machines 
(SVM), K-Nearest Neighbors (k-NN), and Decision Tree (DT) algorithms. For each algorithm, 
Desk-LM identifies the best model through hyperparameter tuning, as is described later in Table 
2. Desk-LM relies on the scikit-learn python libraries [32] and exploits the TensorFlow [5] and 
Keras [33] packages for ANNs; 

2. Edge: the MicroLM module reads and executes the models generated by Desk-LM. It is 
implemented in platform-independent C language (for linear kernel SVM, k-NN, DT) and can 
run on both microcontrollers and desktops, in order to perform inferences. ANNs are deployed 
using the X-Cube-AI expansion package for STM32 microcontrollers (TensorFlow and Keras on 
desktops). 

The tool has been designed to support a four-step workflow, as shown in Figure 2. 

 
Figure 2. Supported workflow. 

1. Preparation: in this first phase, the user provides the dataset and defines the range of the 
parameters to be investigated for each algorithm. The parameters are listed in Tables 1 and 2 
(common and algorithm-specific, respectively—these common parameters are used by all the 
algorithms, even if they have different values); 

Figure 2. Supported workflow.



Sensors 2020, 20, 2638 6 of 25

1. Preparation: in this first phase, the user provides the dataset and defines the range of the
parameters to be investigated for each algorithm. The parameters are listed in Tables 1 and 2
(common and algorithm-specific, respectively—these common parameters are used by all the
algorithms, even if they have different values);

2. Preprocessing: in this phase, data goes through the scaling and dimensionality reduction steps,
which are important in order to allow optimal processing by the prediction algorithms [34].
The type of algorithm used for this step is one of the common parameters set by the user (Table 1);

3. Model generation: in this phase, all the configurations resulting from combining the values of the
user-specified parameters (both common and algorithm-specific; see Tables 1 and 2, respectively)
are evaluated through cross-validation, and their k values are, again, used as the parameters
(Table 1). Most of the parameters (the algorithm’s hyperparameters) can be assigned a list of
values, each one of which is evaluated (scikit-learn exhaustive grid search), in order to allow for
the selection of the best values. At the end of this step, the best model is saved in the disk, to
be deployed on the edge. Desk-LM also saves the preprocessing parameters and, if needed for
performance assessment purposes, the testing set (or a reduced version of it). All these files are
then compiled in Micro-LM for the processing of data on the edge;

4. Deployment: in this final phase, the MicroLM module loads the model prepared on the desktop.
The deployment process for our tests on microcontrollers is done using the STM32CubeIDE
integrated development environment, which exploits the X-Cube-AI pack for ANNs. The software
output by our framework supports both single-sample inference and whole dataset inference,
for performance analysis purposes. In the latter case, Micro-LM exploits the testing set file
produced by Desk-LM.

Table 1. Common configuration parameters.

Common Parameters

Algorithm type (SVM, k-NN, DT, ANN)
Dataset

Content format (dataset start and end column, target column, etc.)
Number of classes (if classification)

Testing set size
Regression (True or False)

PCA (a specific number of features or MLE algorithm)
Normalization (standard or minmax)

K-fold cross-validation
Scoring metrics (accuracy, R2)

Table 2. Algorithm-specific configuration parameters.

Algorithm-Specific Configuration

ANN Linear SVM k-NN DT

Layer Shape C K (number of neighbors) Splitting criterion
Activation Function Training set size for targets max_depth

Dropout min_samples_split
Loss metrics min_samples_leaf

Number of epochs max_leaf_nodes
Batch size

Number of repeats

As anticipated, the current version of the EdgeLM framework features four well-established
supervised learning algorithms, of which, in the following subsections, we briefly describe the
implementation on both the desktop and edge side.



Sensors 2020, 20, 2638 7 of 25

4.1. Artificial Neural Network (ANN)

In Desk-LM, ANNs are implemented through the TensorFlow [5] and its wrapper Keras [33]
packages. As an optimizer, we use adaptive moment estimation (‘adam’) [35]. At each execution run,
the DeskLM module performs the hyperparameter tuning by analyzing different ranges of parameters
(Table 1 and first column of Table 2) specified by the user. The ANN model hyperparameters include
layer shape (number and size of input, hidden, and output layers), activation function for the hidden
layers (Rectified Linear Unit (ReLU), or Tangent Activation Function (Tanh)), number of epochs,
batch size, number of repeats (in order to reduce result variance), and dropout rate. The best selected
model is then saved in the high-efficiency Hierarchical Data Format 5 (HDF5) compressed format [36].

For the edge implementation, DeskLM relies on the STM X-Cube-AI expansion package, which is
supported by STM32CubeIDE, and allows for its integration in the application of a trained Neural
Network model. The package offers the possibility of compressing models up to eight times, with an
accuracy loss which is estimated by the package. The tool also provides an estimation of the complexity,
through the Multiply and Accumulate Operation (MACC) figure, and of the Flash and RAM memory
footprint [37].

4.2. Linear Support Vector Machine (SVM)

As anticipated, for the simplicity of the implementation of the edge device, we implemented only
the original, linear kernel SVM [13]. The linear model executes the y = w*x + b function, where w is
the support vector and b is the bias. Model selection concerns the C regularization parameter [38]
(Table 2). As an output model, Desk-LM generates a C source file containing the w and b values.

4.3. K-Nearest Neighbor (KNN)

For simplicity of implementation, we used a Euclidean distance criterion and majority voting
(for K > 1). The training phase produces a very simple model (the K parameter), but deployment also
requires the availability of the whole training set (Table 2).

4.4. Decision Tree (DT)

In order to cope with the limited resources of edge devices, our framework allows us to analyze
different tree configurations in terms of depth, leaf size, and number of splits. Concerning the splitting
criterion, for simplicity of implementation on the target microcontrollers, we implemented only the
“Gini” method.

5. Experimental Analysis and Result

We conducted the experimental analysis using six ARM Cortex-M microcontrollers produced
by STM, namely F091RC, F303RE, F401RE, F746ZG, H743ZI2, and L452RE. The F series represents a
wide range of microcontroller families in terms of execution time, memory size, data processing and
transfer capabilities [39], while the H series provides higher performance, security, and multimedia
capabilities [40]. L microcontrollers are ultra-low-power devices used in energy-efficient embedded
systems and applications [41]. All listed MCUs have been used in our experiments with their
STM32CubeIDE default clock values, that could be increased for a faster response. Table 3 synthesizes
the main features of these devices. In the analysis, we compare the performance of the embedded
devices with that of a desktop PC hosting a 2.70 GHz Core i7 processor, with 16 GB RAM and
8 MB cache.

In order to characterize the performance of the selected edge devices, we have chosen six
benchmark datasets to be representative of IoT applications (Table 4). These datasets represent different
application scenarios: binary classification, multiclass classification, and regression. University of
California Irvine (UCI) heart disease is a popular medical dataset [42]. Virus is a dataset developed by
the University of Genova to deal with data traffic analysis [43–45]. Sonar represents the readings of



Sensors 2020, 20, 2638 8 of 25

a sonar system that analyses materials, distinguishing between rocks and metallic material [46,47].
Peugeot 207 contains various parameters collected from cars, which are used to predict either the road
surface or the traffic (two labels were considered in our studies: label_14: road surface and label_15:
traffic) [48]. The EnviroCar dataset records various vehicular signals through the onboard diagnostic
(OBDII) interface to the Controller Area Network (CAN) bus [49–51]. The air quality index (AQI)
dataset measures air quality in Australia during a period of one year [52]. Before processing, all data
were converted to float32, according to the target execution platform.

Table 3. Microcontroller specifications.

Microcontroller Flash Memory SRAM Processor Speed
Used (MHz) Processor Cost ($) Board Cost ($)

F091RC 256 Kb 32 Kb 48 (max: 48) 4.8 10.32
F303RE 512 Kb 80 Kb 72 (max: 72) 7.72 10.32
F401RE 512 Kb 96 Kb 84 (max: 84) 6.43 13
F746ZG 1 Mb 340 Kb 96 (max: 216) 12.99 23
H743ZI2 2 Mb 1 Mb 96 (max: 480) 13.32 27
L452RE 512 Kb 160 Kb 80 (max: 80) 7.03 14

Table 4. Dataset specifications.

Dataset Samples Features Type

Heart 303 × 13 Binary Classification
Virus 24736 × 13 Binary Classification
Sonar 209 × 60 Binary Classification

Peugeot 207 * 8615 × 14 Multiclass Classification
EnviroCar 47077 × 5 Regression

AQI 367 × 8 Regression

* For Peugeot 207, we considered two different labels.

Our analysis was driven by a set of questions, synthesized in Table 5, aimed at investigating
the performance of different microcontrollers in typical ML IoT contexts. We are also interested in
comparing the inference performance of microcontrollers vs. desktops. The remainder of this section
is devoted to the analysis of each research question. In a few cases, when the comparison is important,
results are reported for every tested target platform. On the other hand, in most of the cases, when not
differently stated, we chose the F401RE device as the reference for the embedded targets.

Table 5. Research questions.

Research Questions (RQ) Description

1. Performance Score (accuracy, R2) and inference time
2. Scaling Effect of scaling data
3. PCA Effect of dimensionality reduction on score
4. ANN Layer Configuration Different layer shapes (depth and thickness)
5. ANN Activation Function Effect of different neuron activation functions
6. ANN Batch Size Effect of batch size on score and time
7. ANN Epochs Effect of number of epochs in training
8. ANN Dropout Effect of a regularization technique to avoid overfitting

9. SVM Regularization Training Time SVM training time with different values of the “C”
regularization parameter

10. DT Parameters Tuning the decision tree



Sensors 2020, 20, 2638 9 of 25

5.1. Performance

The first research question concerns the performance achieved both on desktop and on edge.
For SVM, k-NN and DT on desktops, we report the performance of both our C implementation
and the python scikit-learn implementation, while for ANN we have only the TensorFlow Keras
implementation. The following set of tables show, for each algorithm, the obtained score, which is
expressed in terms of accuracy (in percent, for classification problems), or coefficient of determination,
R-Squared (R2, for regression problems). R2 is the proportion of the variance in the dependent variable
that is predictable from the independent variable(s). The best possible score for R2 is 1.0. In scikit-learn,
R2 can assume negative values, because the model can be arbitrarily worse. The second performance
we consider is the inference time.

In the following (Tables 6–13), we report two tables for each algorithm. The first one provides the
best performance (in terms of score) obtained in each dataset. The second shows the hyperparameter
values of the best model.

Table 6. Artificial Neural Network (ANN) performance.

ANN

DatasetDataset Performance Desktop MCUs

Type Name Python F0 F3 F4 F7 H7 L4

Binary Heart Accuracy 84% * 84% 84% 84% 84% 84%
Inf. Time <1 ms * 3 ms 1 ms <1 ms <1 ms 1 ms

Virus Accuracy 99% * 99% 99% 99% 99% 99%
Inf. Time <1 ms * 5 ms 3 ms 1 ms 1 ms 4 ms

Sonar Accuracy 87% * 87% 87% 87% 87% 87%
Inf. Time <1 ms * 16 ms 8 ms 3 ms 3 ms 10 ms

Multiclass Peugeot_Target 14 Accuracy 99% * 99% 99% 99% 99% 99%
Inf. Time <1 ms * 2 ms 1 ms <1 ms <1 ms 1 ms

Peugeot_Target 15 Accuracy 99% * 99% 99% 99% 99% 99%
Inf. Time <1 ms * 18 ms 10 ms 4 ms 4 ms 12 ms

Regression
Enviro Car

R2 0.99 * 0.99 0.99 0.99 0.99 0.99
Inf. Time <1 ms * <1 ms <1 ms <1 ms <1 ms <1 ms

AQI R2 0.86 * 0.86 0.86 0.86 0.86 0.86
Inf. Time <1 ms * 4 ms 2 ms 1 ms 1 ms 3 ms

*: F0 not supported by the STM X-Cube-AI package.

Table 7. ANN corresponding configurations.

Dataset
Best Configuration (Table 1, Table 2)

AF LC PCA Dropout Scaling

Heart Tanh [500] 30% 0 StandardScaler
Virus Tanh [100,100,100] None 0 StandardScaler
Sonar ReLU [300,200,100,50] 30% 0 MinMaxScaler

Peugeot_Target 14 ReLU [500] None 0 StandardScaler
Peugeot_Target 15 Tanh [300,200,100,50] None 0 StandardScaler

EnviroCar Tanh [50] mle 0 MinMaxScaler
AQI ReLU [300,200,100,50] None 0 MinMaxScaler

Activation Function (AF), Layer Configuration (LC), Principal Component Analysis (PCA).

1. ANN:

Remarkably, all the embedded platforms were able to achieve the same score (accuracy or R2) as
the desktop python implementation. None of the chosen datasets required the compression of the
models by the STM X-Cube-AI package. ANN performed well in general, except for the Heart and
Virus datasets, where the accuracy is under 90%. The inference time is relatively low in both desktop
and MCUs (with similar values, in the order of ms and sometimes less). However, there is an exception
in some cases—especially for Peugeot_Target_15 and Sonar—when using the F3 microcontroller.



Sensors 2020, 20, 2638 10 of 25

Table 8. Linear Support Vector Machine (SVM) performance.

Linear SVM

Dataset Score Desktop MCUs

Type Name Python C F0 F3 F4 F7 H7 L4

Binary Heart Acc. 84% 84% 84% 84% 84% 84% 84% 84%
Inf. Time <1 ms <1 ms <1 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Virus Acc. 94% 94% 94% 94% 94% 94% 94% 94%
Inf. Time <1 ms <1 ms 1 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Sonar Acc. 78% 78% 78% 78% 78% 78% 78% 78%
Inf. Time <1 ms <1 ms 3 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Multiclass Peugeot_Target 14 Acc. 91% 91% 91% 91% 91% 91% 91% 91%
Inf. Time <1 ms <1 ms 2 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Peugeot_Target 15 Acc. 90% 90% 90% 90% 90% 90% 90% 90%
Inf. Time <1 ms <1 ms 2 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Regress EnviroCar R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Inf. Time <1 ms <1 ms 5 ms 3 ms <1 ms <1 ms <1 ms <1 ms

AQI R2 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
Inf. Time <1 ms <1 ms 5 ms 3 ms <1 ms <1 ms <1 ms <1 ms

Table 9. Linear SVM corresponding configuration.

Dataset
Best Configuration (Table 1, Table 2)

C PCA Scaling

Heart 0.1 30% StandardScaler
Virus 1 None StandardScaler
Sonar 0.01 None StandardScaler

Peugeot_Target 14 0.1 mle StandardScaler
Peugeot_Target 15 10 mle StandardScaler

EnviroCar 0.1 None StandardScaler
AQI 1 mle StandardScaler

SVM regularization parameter (C), Principal Component Analysis (PCA).

Table 10. k-Nearest Neighbors (k-NN) performance.

k-NN

Dataset Score Desktop MCUs

Type Name Python C F0 F3 F4 F7 H7 L4

Bin. Heart Acc. 83% 83% 83% 83% 83% 83% 83% 83%
Inf Time <1 ms <1 ms 366 ms 71 ms 7 ms 4 ms 4 ms 8 ms

Virus Acc. 99% 99% 95% 95% 95% 95% 95% 95%
Inf Time <1 ms <1 ms 199 ms 38 ms 4 ms 3 ms 3 ms 4 ms

Sonar Acc. 92% 92% 76% 92% 92% 92% 92% 92%
Inf Time <1 ms <1 ms 329 ms 140 ms 14 ms 10 ms 10 ms 14 ms

Multi
class

Peugeot_Target 14 Acc. 98% 98% 88% 88% 88% 88% 98% 88%
Inf Time <1 ms <1 ms 205 ms 39 ms 4 ms 3 ms 200 ms 4 ms

Peugeot_Target 15 Acc. 97% 97% 86% 86% 86% 86% 97% 86%
Inf Time <1 ms <1 ms 204 ms 39 ms 4 ms 3 ms 200 ms 4 ms

Regr Enviro
Car

R2 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97
Inf Time <1 ms <1 ms 125 ms 30 ms 3 ms 2 ms 2 ms 4 ms

AQI R2 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
Inf Time <1 ms <1 ms 414 ms 85 ms 9 ms 6 ms 6 ms 10 ms

2. Linear SVM:

As with ANN, for the linear SVM, we obtained the same score across all the target platforms, and
relatively short inference times (again, with almost no difference between desktop and microcontroller
implementations). However, we obtained significantly worse results than ANN for more than half of the
investigated datasets. Table 9 stresses the importance of tuning the C regularization parameter, which
implies the need for longer training times, particularly in the absence of normalization. We explore
this in more depth when analyzing research question 9.



Sensors 2020, 20, 2638 11 of 25

Table 11. k-NN corresponding configurations.

Dataset
Best Configuration (Table 1, Table 2)

K PCA Scaling Notes

Heart 10 mle StandardScaler This configuration fits all targets
Virus 1 None StandardScaler In all MCUs K = 1, training set cap = 100
Sonar 1 None MinMaxScaler In F0 K = 1, training set cap = 50

Peugeot_Target 14 1 mle MinMaxScaler In F0, F3, F4, F7, L4 K = 4, training set cap = 100
Peugeot_Target 15 1 mle MinMaxScaler In F0, F3, F4, F7, L4 K = 3, training set cap = 100

EnviroCar 3 mle MinMaxScaler In all MCUs K = 2, training set cap = 100
AQI 1 mle StandardScaler This configuration fits all targets

Number of neighbors (K), Principal Component Analysis (PCA).

Table 12. Desktop (DT) performance.

DT

Dataset Score Desktop MCUs

Type Name Python C F0 F3 F4 F7 H7 L4

Bin. Heart Accuracy 78% 78% 78% 78% 78% 78% 78% 78%
Inf. Time <1 ms <1 <1 <1 <1 <1 <1 <1

Virus Accuracy 99% 99% 99% 99% 99% 99% 99% 99%
Inf. Time <1 ms <1 <1 <1 <1 <1 <1 <1

Sonar Accuracy 76% 76% 76% 76% 76% 76% 76% 76%
Inf. Time <1 ms <1 <1 <1 <1 <1 <1 <1

Multi
class

Peugeot_Target 14 Accuracy 99% 99% 99% 99% 99% 99% 99% 99%
Inf. Time <1 ms <1 <1 <1 <1 <1 <1 <1

Peugeot_Target 15 Accuracy 98% 98% 98% 98% 98% 98% 98% 98%
Inf. Time <1 ms <1 <1 <1 <1 <1 <1 <1

Regr Enviro
Car

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Inf. Time <1 <1 2 2 <1 <1 <1 <1

AQI R2 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
Inf. Time <1 ms <1 2 2 <1 <1 <1 <1

Table 13. DT corresponding configurations. Time is in ms (omitted for reasons of space).

Dataset
Best Configuration (Table 1, Table 2)

Max
Depth

Min Sample
Split

Min Sample
Leaf

Max Leaf
Nodes PCA Notes

Heart 7 2 10 80 mle *
Virus None 5 1 80 None *
Sonar 7 2 10 80 mle *

Peugeot_Target 14 None 2 3 80 None *
Peugeot_Target 15 None 2 1 200 None *

EnviroCar None 2 1 5000 None

Max leaf
nodes = 1000
in F3, F4, L4;

max leaf
nodes = 200

for F0
AQI None 10 3 80 None *

Principal Component Analysis (PCA). * This configuration fits all targets.

3. k-NN:

Notably, in some cases, the training set cap needed to be set to 100, because the Flash size was a
limiting factor for some MCUs. Hence, for different training sets, we also had a different number of
neighbors (K). Accordingly, the accuracy is also affected by the decrease in training set size, since the
number of examples used for training is reduced. This effect is apparent for Sonar with an F0 device.
This dataset has sixty features, much more than the others (typically 10–20 features). The inference time
varies a lot among datasets, microcontrollers and in comparison with the desktop implementations.



Sensors 2020, 20, 2638 12 of 25

This is because the k-NN inference algorithm always requires the exploration of the whole training set,
and thus its size plays an important role in performance, especially for less powerful devices. In the
multiclass problems, k-NN exploits the larger memory availability of H7 well, outperforming SVM,
and reaching a performance level close to that of ANN. It is important to highlight that the Sonar
labels were reasonably well predicted by k-NN compared to ANN and SVM (92% vs. 87% and 78%).
In general, k-NN achieves performance levels similar to ANN, but requires a much larger memory
footprint, which is possible only on the highest-end targets.

4. DT:

When processing the EnviroCar dataset, the DT algorithm saturated the memory in most of
the targets. We had to reduce the leaf size for all MCU families, apart from F7 and H7. However,
this reduction did not significantly reduce the R2 value. In addition, DT performs worse than the
others in two binary classification datasets, Heart and Sonar, and in the AQI regression dataset as
well, but performs at the same level as the ANNs for the multiclass datasets and in the EnviroCar
regression problem. Notably, DT achieves the fastest inference time among all algorithms, with F0 and
F3 performing worse than the others, particularly in the regression problems.

As a rough summary of the first research question, we can conclude that ANN and, surprisingly,
k-NN, had the highest accuracy in most cases, and Decision Tree had the shortest response time,
but accuracy results were quite dependent on the dataset. The main difference between ANN and
k-NN results is represented by the fact that high performance in ANN is achieved by all the targets
(but not F0, which is not supported by the STM X-Cube-AI package), while k-NN poses much higher
memory requirements. Concerning the timing performance, microcontrollers perform similarly to
desktop implementations on the studied datasets. The only exception is found in k-NN, for which
each inference requires the exploration of the whole dataset, and the corresponding computational
demand penalizes the performance, especially on low-end devices. When comparing the edge devices,
the best time performance is achieved by F7 and H7 (and we used default clock speeds, that can be
significantly increased). Unsurprisingly, given the available hardware, F0 performs worse than all
the others. Considering the score, we managed to train all the edge devices to achieve the same level
of performance as the desktop in each algorithm, with the exception of k-NN in the multiclass tests
(Peugeot), where only H7 is able to perform like a desktop, but with a significant time performance
penalty. On the other hand, F0 performs significantly worse than the other edge devices in the k-NN
Sonar binary classification.

5.2. Scaling

Feature preprocessing is applied to the original features before the training phase, with the goal
of increasing prediction accuracy and speeding up response times [34]. Since the range of values
is typically different from one feature to another, the proper computation of the objective function
requires normalized inputs. For instance, the computation of the Euclidean distance between points is
governed by features with a broader value range. Moreover, gradient descent converges much faster
on normalized values [53].

We considered three cases that we applied on ANN, SVM, and k-NN: no scaling, MinMax Scaler,
and Standard Scaler (Std) [54]. The set of tables below (Tables 14–18) show the accuracy of R2 for all
datasets under various scaling conditions. Most common DT algorithms are invariant to monotonic
transformations [55], so we did not consider DT in this analysis.



Sensors 2020, 20, 2638 13 of 25

1. ANN:

Table 14. Performance and configuration of ANN with no scaling.

ANN

Dataset None
Configuration

AF LC PCA

Heart 78% ReLU [500] mle
Virus 74% Tanh [100, 100, 100] mle
Sonar 85% ReLU [100, 100, 100] mle

Peugeot_Target 14 95% Tanh [500] mle
Peugeot_Target 15 92% ReLU [100, 100, 100] mle

EnviroCar 0.97 Tanh [50] mle
AQI 0.70 ReLU [300, 200, 100, 50] None

Activation Function (AF), Layer Configuration (LC), Principal Component Analysis (PCA).

Table 15. Performance and configuration of ANN with MinMax scaling.

ANN

Dataset MinMax
Configuration

AF LC PCA

Heart 80% Tanh [300, 200, 100, 50] 30%
Virus 99% ReLU [100, 100, 100] None
Sonar 87% ReLU [300, 200, 100, 50] 30%

Peugeot_Target 14 99% ReLU [100, 100, 100] mle
Peugeot_Target 15 98% Tanh [300, 200, 100, 50] mle

EnviroCar 0.99 ReLU [50] mle
AQI 0.86 ReLU [300, 200, 100, 50] None

Activation Function (AF), Layer Configuration (LC), Principal Component Analysis (PCA).

Table 16. Performance and configuration of ANN with StandardScaler normalization.

ANN

Dataset Std
Configuration

AF LC PCA

Heart 84% Tanh [500] 30%
Virus 99% Tanh [100, 100, 100] None
Sonar 86% ReLU [100, 100, 100] mle

Peugeot_Target 14 99% ReLU [500] None
Peugeot_Target 15 99% Tanh [300, 200, 100, 50] None

EnviroCar 0.99 Tanh [50] mle
AQI 0.84 ReLU [300, 200, 100, 50] None

Activation Function (AF), Layer Configuration (LC), Principal Component Analysis (PCA).

2. SVM:

Table 17. Performance and configuration of SVM for different scaling techniques.

SVM

Dataset None
Configuration

MinMax
Configuration

Std
Configuration

C PCA C PCA C PCA

Heart 78% 0.01 mle 79% 1 mle 84% 0.1 30%
Virus 71% 0.01 mle 94% 100 None 94% 1 None
Sonar 77% 0.1 mle 73% 0.1 None 78% 0.01 None

Peugeot_Target 14 50% 0.1 mle 91% 10 mle 91% 0.1 mle
Peugeot_Target 15 76% 0.01 mle 90% 10 mle 90% 10 mle

EnviroCar 0.97 Slow mle 0.98 0.1 None 0.99 0.1 None
AQI 0.7 100 mle 0.62 100 30% 0.73 1 mle

SVM regularization parameter (C), Principal Component Analysis (PCA).



Sensors 2020, 20, 2638 14 of 25

3. k-NN:

Table 18. Performance and configuration of k-NN for different scaling techniques.

k-NN

Dataset None
Configuration

MinMax
Configuration

Std
Configuration

K PCA K PCA K PCA

Heart 63% 3 mle 75% 3 None 83% 10 mle
Virus 95% 1 mle 99% 1 None 99% 1 None
Sonar 77% 1 mle 92% 1 None 87% 1 None

Peugeot_Target 14 91% 1 mle 98% 1 mle 97% 1 mle
Peugeot_Target 15 89% 2 mle 97% 1 mle 97% 1 None

EnviroCar 0.98 5 mle 0.99 3 mle 0.99 3 None
AQI 0.73 4 mle 0.7 3 mle 0.73 6 mle

Number of neighbors (K), Principal Component Analysis (PCA).

These results clearly show the importance across all the datasets and algorithms of scaling the
inputs. For instance, MinMax scaling allowed ANNs to reach 99% accuracy in Virus (from a 74%
baseline), and Peugeot 14 (from 95%) and 0.86 R2 (from 0.70) in AQI. The application of MinMax
allowed SVM to achieve 94% accuracy in Virus (form 71%) and 91% accuracy in Peugeot 14 (from 50%).
Standard input scaling improved the k-NN accuracy of Heart from 63% to 83%. For large regression
datasets, especially with SVM (see also research question 9), input scaling avoids large training times.

5.3. Principal Component Analysis (PCA)

Dimensionality reduction allows us to reduce the effects of noise, space and processing
requirements. One well-known method is Principal Component Analysis (PCA), which performs an
orthogonal transformation to convert a set of observations of possibly correlated variables into a set of
values of linearly independent variables, which are called principal components [24]. We tried different
values of PCA dimension reduction: none, 30% (i.e., the algorithm selects a number of components
such that the amount of variance that needs to be explained is greater than 30%), and automatic
maximum likelihood estimation (mle) [56], whose results are shown in Tables 19–26.

1. SVM:

Table 19. SVM performance and configuration for various PCA values.

SVM

Dataset PCA = None PCA = 30% PCA =mle

Score
Configuration

Score
Configuration

Score
Configuration

C Scaling C Scaling C Scaling

Heart 78% 0.01 Std 84% 0.1 Std 79% 0.1 Std
Virus 99% 1 Std 86% 100 MinMax 94% 0.1 Std
Sonar 78% 0.01 Std 75% 100 Std 77% 0.01 Std

Peugeot_Target 14 91% 10 MinMax 83% 0.1 MinMax 91% 0.1 Std
Peugeot_Target 15 90% 10 MinMax 86% 10 MinMax 90% 10 Std

EnviroCar 0.99 0.1 Std 0.94 0.1 MinMax 0.98 0.1 MinMax
AQI 0.73 10 Std 0.71 100 Std 0.73 1 Std

SVM regularization parameter (C).



Sensors 2020, 20, 2638 15 of 25

2. k-NN:

Table 20. k-NN performance and configuration for various PCA techniques.

k-NN

Dataset PCA = None PCA = 30% PCA =mle

Score
Configuration

Score
Configuration

Score
Configuration

K Scaling K Scaling K Scaling

Heart 77% 3 Std 76% 13 Std 83% 10 Std
Virus 99% 1 Std 99% 1 Std 99% 1 Std
Sonar 92% 1 MinMax 84% 1 MinMax 97% 1 Std

Peugeot Targ 14 98% 1 MinMax 92% 3 MinMax 98% 1 Std
Peugeot Targ 15 97% 1 MinMax 90% 6 MinMax 97% 1 Std

EnviroCar 0.99 3 MinMax 0.99 9 Std 0.99 3 MinMax
AQI 0.73 6 Std 0.57 3 MinMax 0.73 6 Std

Number of neighbors (K).

3. ANN:

Table 21. ANN performance and configuration for PCA = None.

ANN

Dataset Score
Configuration

AF LC Scaling

Heart 81% Tanh [100, 100, 100] Std
Virus 99% Tanh [100, 100, 100] Std
Sonar 84% ReLU [50] Std

Peugeot_Target 14 99% ReLU [500] Std
Peugeot_Target 15 99% Tanh [300, 200, 100, 50] Std

EnviroCar 0.99 Tanh [50] MinMax
AQI 0.86 ReLU [300,200,100,50] MinMax

Activation Function (AF), Layer Configuration (LC).

Table 22. ANN performance and configuration for PCA = 30%.

ANN

Dataset Score
Configuration

AF LC Scaling

Heart 84% Tanh [500] Std
Virus 98% ReLU [100, 100, 100] Std
Sonar 87% ReLU [300, 200, 100, 50] MinMax

Peugeot_Target 14 92% ReLU [50] MinMax
Peugeot_Target 15 90% ReLU [50] MinMax

EnviroCar 0.98 ReLU [50] MinMax
AQI 0.71 ReLU [100,100,100] MinMax

Activation Function (AF), Layer Configuration (LC).

Table 23. ANN performance and configuration for PCA = mle.

ANN

Dataset Score
Configuration

AF LC Scaling

Heart 83% Tanh [300,200,100,50] Std
Virus 99% Tanh [100,100,100] Std
Sonar 86% ReLU [100,100,100] Std

Peugeot_Target 14 99% Tanh [100,100,100] Std
Peugeot_Target 15 99% Tanh [300,200,100,50] Std

EnviroCar 0.99 Tanh [50] MinMax
AQI 0.82 Tanh [300,200,100,50] MinMax

Activation Function (AF), Layer Configuration (LC).



Sensors 2020, 20, 2638 16 of 25

4. DT:

Table 24. DT performance and configuration for PCA = None.

DT

Dataset Score
Configuration

Max-Depth Min_Sample
_Split

Min_Sample
_Leaf

Max_Leaf
_Nodes

Heart 67% 7 2 10 80
Virus 99% None 5 1 80
Sonar 65% 7 2 10 80

Peugeot_Target 14 99% None 2 3 80
Peugeot_Target 15 98% None 2 1 200

EnviroCar 0.99 None 2 1 5000
AQI 0.65 None 10 3 80

Table 25. DT performance and configuration for PCA = 30%.

DT

Dataset Score
Configuration

Max-Depth Min_Sample
_Split

Min_Sample
_Leaf

Max_Leaf
_Nodes

Heart 62% 3 2 1 80
Virus 96% None 2 1 1000
Sonar 75% 7 2 3 80

Peugeot_Target 14 84% None 2 1 200
Peugeot_Target 15 87% 7 2 10 80

EnviroCar 0.98 None 2 10 1000
AQI 0.62 7 10 1 80

The results reported in the above tables are quite varied. The 30% PCA value is frequently too
low, except for the Sonar dataset, which has 60 features, much more than the others, and thus looks
less sensitive to such a coarse reduction. For SVM, PCA does not perform better than or equal to mle,
while the opposite is true for k-NN. Moreover, in ANNs, mle tends to provide better results, except
AQI. In DT, there is a variance of outcomes. Mle does not perform any better than the other algorithms
in Heart (78% vs. 67% accuracy) and Sonar (76% vs. 65%), while performance decreases for Peugeot 14
(93% vs. 99%) and AQI (0.49 vs. 0.65). For AQI, PCA never improves performance. The opposite is
true for Heart and (except SVM) Sonar.

Table 26. DT performance and configuration for PCA = mle.

DT

Dataset Score
Configuration

Max-Depth Min_Sample
_Split

Min_Sample
_Leaf

Max_Leaf
_Nodes

Heart 78% 7 2 10 80
Virus 99% None 2 1 200
Sonar 76% 7 2 10 80

Peugeot_Target 14 93% None 5 1 80
Peugeot_Target 15 92% None 10 1 80

EnviroCar 0.98 None 2 10 5000
AQI 0.49 7 5 1 80



Sensors 2020, 20, 2638 17 of 25

5.4. ANN Layer Configuration

To answer this question, we investigated performance among four ANN hidden-layer
configurations, as follows:

1. One hidden layer of 50 neurons;
2. One hidden layer of 500 neurons;
3. Three hidden layers of 100 neurons each;
4. Four hidden layers with 300, 200, 100, 50 neurons, respectively.

Tables 27–29 indicate the highest performance for each layer shape.

Table 27. Results for layer configuration LC = [50] and LC = [500]. We have omitted columns with all
zero Dropout values.

Dataset LC = [50]
Configuration

LC = [500]
Configuration

AF PCA Scaling AF PCA Scaling

Heart 83% Tanh 30% Std 84% Tanh 30% Std
Virus 98% ReLU None Std 98% ReLU None Std
Sonar 84% ReLU None Std 81% ReLU mle Std

Peugeot_Target 14 98% ReLU mle Std 99% ReLU None Std
Peugeot_Target 15 98% ReLU mle Std 98% ReLU None Std

EnviroCar 0.99 Tanh mle MinMax 0.99 ReLU mle MinMax
AQI 0.76 Tanh mle MinMax 0.78 ReLU mle MinMax

Activation Function (AF), Principal Component Analysis (PCA).

Table 28. Layer configuration LC = [100,100,100] results.

Dataset LC = [100,100,100]
Configuration

AF PCA Scaling Dropout

Heart 84% Tanh 30% Std 0
Virus 99% Tanh None Std 0
Sonar 87% ReLU 30% Std 0

Peugeot Target 14 99% ReLU mle Std 0
Peugeot Target 15 98% Tanh mle Std 0.1

EnviroCar 0.99 Tanh mle MinMax 0
AQI 0.80 ReLU mle MinMax 0

Activation Function (AF), Principal Component Analysis (PCA).

Table 29. Layer Configuration (LC) = [300,200,100,50] results.

Dataset LC = [300,200,100,50]
Configuration

AF PCA Scaling

Heart 84% Tanh 30% Std
Virus 99% ReLU None Std
Sonar 87% ReLU 30% MinMax

Peugeot Target 14 99% ReLU mle MinMax
Peugeot Target 15 99% Tanh None Std

EnviroCar 0.99 Tanh mle MinMax
AQI 0.86 ReLU None MinMax

Activation Function (AF), Principal Component Analysis (PCA).



Sensors 2020, 20, 2638 18 of 25

By observing the results, we can see that deepening the network tends to improve the results,
but only up to a certain threshold. For the Heart dataset, which has the lowest overall accuracy, we tried
additional, deeper shapes beyond those reported in Tables 27–29, but with no better results. On the
other hand, widening the first layer provides only slightly better results (and in one case worsens them).

5.5. ANN Activation Function

Another relevant design choice concerns the activation function in the hidden layers. Activation
functions are attached to each neuron in the network and define its output. They introduce a non-linear
factor in the processing of a neural network. Two activation functions are typically used: Rectified
Linear Unit (ReLU) and Tangent Activation Function (Tanh). On the other hand, for the output
layer, we used a sigmoid for binary classification models as an activation function, and a softmax for
multiclassification tasks. For regression problems, we created an output layer without any activation
function (i.e., we use the default “linear” activation), as we are interested in predicting numerical
values directly, without transformation. Tables 30 and 31 show the highest accuracy achieved in hidden
layers for each function, alongside its corresponding configuration.

Table 30. ReLU activation function results.

Dataset Score
Best Configuration

LC PCA Scaling

Heart 83% [500] 30% Std
Virus 99% [100,100,100] mle Std
Sonar 87% [300,200,100,50] 30% MinMax

Peugeot_Target 14 99% [500] None Std
Peugeot_Target 15 99% [300,200,100,50] None Std

EnviroCar 0.99 [50] mle MinMax
AQI 0.86 [300,200,100,50] None MinMax

Layer Configuration (LC), Principal Component Analysis (PCA).

Table 31. Tanh activation function results.

Dataset Score
Best Configuration

LC PCA Scaling Dropout

Heart 84% [500] 30% Std 0
Virus 99% [100,100,100] None Std 0
Sonar 81% [50] 30% MinMax 0

Peugeot_Target 14 99% [100,100,100] mle Std 0
Peugeot_Target 15 99% [300,200,100,50] None Std 0

EnviroCar 0.99 [50] mle MinMax 0
AQI 0.82 [300,200,100,50] mle MinMax 0.1

Layer Configuration (LC), Principal Component Analysis (PCA).

The results are similar, with a slight prevalence of ReLU, with a valuable difference for Sonar
(+7% accuracy) and AQI (+5% R2).

5.6. ANN Batch Size

The batch size is the number of training examples processed in one iteration before the model
being trained is updated. To test the effect of this parameter, we considered three values, one, 10,
and 20, keeping the number of epochs fixed to 20. Table 32 shows the accuracy of each dataset for
various batch sizes.



Sensors 2020, 20, 2638 19 of 25

Table 32. Performance on difference batch size.

Dataset
Epoch = 20

Batch Size = 1 Batch Size = 10 Batch Size = 20

Heart 84% 84% 84%
Virus 99% 99% 99%
Sonar 87% 87% 84%

Peugeot_Target 14 98% 99% 98%
Peugeot_Target 15 97% 99% 99%

EnviroCar 0.99 0.99 0.99
AQI 0.63 0.86 0.76

The results show that the value of 10 provides optimal results in terms of accuracy. Actually,
the difference becomes relevant only for the case of AQI. A batch size equal to one poses an excessive
time overhead (approximately 30% slower than the batch size of 10), while a batch size of 20 achieves a
speedup of about 40%.

5.7. ANN Accuracy vs. Epochs

ANN training goes through several epochs, where an epoch is a learning cycle in which the learner
model sees the whole training data set. Figures 3 and 4 show that the training of ANN on all datasets
converges quickly within 10 epochs.

5.8. ANN Dropout

Dropout is a simple method to prevent overfitting in ANNs. It consists of randomly ignoring a
certain number of neuron outputs in a layer during the training phase.

The results in Table 33 show that this regularization step provides no improvement in the
considered cases, but has a slight negative effect in a couple of datasets (Sonar and AQI).

Table 33. Dropout effect on ANN.

Dataset
Dropout

0 0.1

Heart 84% 84%
Virus 99% 99%
Sonar 87% 83%

Peugeot_Target 14 99% 99%
Peugeot_Target 15 99% 99%

EnviroCar 0.99 0.99
AQI 0.86 0.82

5.9. SVM Regularization Training Time

In SVM, C is a key regularization parameter, that controls the tradeoff between errors of the SVM
on training data and margin maximization [13,57]. The classification rate is highly dependent on this
coefficient, as confirmed by Tables 8 and 9. Desk-LM uses the grid search method to explore the C
values presented by the user, which require long waiting times in some cases. To quantify this, we
measured the training latency time in a set of typical values (C = 0.01, 0.1, 1, 10, and 100), with the
results provided in Table 34.

Different values of the C parameter have an impact on the training time. The table shows that
higher C values require higher training time. We must stress that the above results represent the training
time for the best models. In particular, when no normalization procedure was applied, the training
time using large values of C became huge (also up to one hour), especially for regression datasets.



Sensors 2020, 20, 2638 20 of 25

Sensors 2020, 20 19 of 25 

AQI 0.63 0.86 0.76 

The results show that the value of 10 provides optimal results in terms of accuracy. Actually, the 
difference becomes relevant only for the case of AQI. A batch size equal to one poses an excessive 
time overhead (approximately 30% slower than the batch size of 10), while a batch size of 20 achieves 
a speedup of about 40%. 

5.7. ANN Accuracy vs. Epochs: 

ANN training goes through several epochs, where an epoch is a learning cycle in which the 
learner model sees the whole training data set. Figures 3 and 4 show that the training of ANN on all 
datasets converges quickly within 10 epochs. 

 

Figure 3. Accuracy vs. Epochs for (a) Heart, (b) Virus, (c) Sonar, (d) Peugeot target 14, and (e) Peugeot 
target 15. 

Figure 3. Accuracy vs. Epochs for (a) Heart, (b) Virus, (c) Sonar, (d) Peugeot target 14, and (e) Peugeot
target 15.

Table 34. Training time for different values of the C parameter.

Dataset
C Parameter

0.01 0.1 1 10 100

Heart <1 ms <1 ms <1 ms <1 ms <1 ms
Virus 100 ms 300 ms 500 ms 600 ms 600 ms
Sonar <1 ms <1 ms <1 ms <1 ms <1 ms

Peugeot_Target 14 <1 ms 100 ms 200 ms 300 ms 400 ms
Peugeot_Target 15 <1 ms 100 ms 300 ms 300 ms 300 ms

EnviroCar 100 ms 100 ms 100 ms 100 ms 100 ms
AQI <1 ms <1 ms <1 ms <1 ms 300 ms



Sensors 2020, 20, 2638 21 of 25Sensors 2020, 20 20 of 25 

 

Figure 4. Mean Squared Error vs. Epochs for (a) EnviroCar, and (b) air quality index (AQI). 

5.8. ANN Dropout: 

Dropout is a simple method to prevent overfitting in ANNs. It consists of randomly ignoring a 
certain number of neuron outputs in a layer during the training phase. 

The results in Table 33 show that this regularization step provides no improvement in the 
considered cases, but has a slight negative effect in a couple of datasets (Sonar and AQI). 

Table 33. Dropout effect on ANN. 

Dataset 
Dropout 
0 0.1 

Heart 84% 84% 
Virus 99% 99% 
Sonar 87% 83% 

Peugeot_Target 14 99% 99% 
Peugeot_Target 15 99% 99% 

EnviroCar 0.99 0.99 
AQI 0.86 0.82 

5.9. SVM Regularization Training Time: 

In SVM, C is a key regularization parameter, that controls the tradeoff between errors of the SVM 
on training data and margin maximization [13,57]. The classification rate is highly dependent on this 
coefficient, as confirmed by Tables 8 and 9. Desk-LM uses the grid search method to explore the C 
values presented by the user, which require long waiting times in some cases. To quantify this, we 
measured the training latency time in a set of typical values (C = 0.01, 0.1, 1, 10, and 100), with the 
results provided in Table 34. 

Table 34. Training time for different values of the C parameter. 

Dataset 
C Parameter 

0.01 0.1 1 10 100 
Heart < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms 
Virus 100 ms 300 ms 500 ms 600 ms 600 ms 
Sonar < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms 

Peugeot_Target 14 < 1 ms 100 ms 200 ms 300 ms 400 ms 
Peugeot_Target 15 < 1 ms 100 ms 300 ms 300 ms 300 ms 

EnviroCar 100 ms 100 ms 100 ms 100 ms 100 ms 
AQI < 1 ms < 1 ms < 1 ms < 1 ms 300 ms 

Figure 4. Mean Squared Error vs. Epochs for (a) EnviroCar, and (b) air quality index (AQI).

5.10. DT Parameters

Tuning a decision tree requires us to test the effect of various hyperparameters, such as max_depth,
min_simple_split. Figure 5 shows the distribution of the tested parameter values for the best models in
the different datasets (see also Table 13 to see the best results).

Sensors 2020, 20 21 of 25 

Different values of the C parameter have an impact on the training time. The table shows that 
higher C values require higher training time. We must stress that the above results represent the 
training time for the best models. In particular, when no normalization procedure was applied, the 
training time using large values of C became huge (also up to one hour), especially for regression 
datasets. 

5.10. DT Parameters: 

Tuning a decision tree requires us to test the effect of various hyperparameters, such as 
max_depth, min_simple_split. Figure 5 shows the distribution of the tested parameter values for the 
best models in the different datasets (see also Table 13 to see the best results). 

 

Figure 5. Number of occurrences of each DT parameter. 

In most cases, the whole tree depth is needed, and this does not exceed the memory available in 
the microcontrollers. However, Max_Leaf_Nodes values usually need a low threshold (80). EnviroCar 
required a high value of 5000, which had to be reduced down to 1000 for F3, F4, L4 and to 200 for F0 
because of the limited RAM availability. 

6. Conclusions and Future Work 

This paper presented the Edge Learning Machine (ELM), a machine learning platform for edge 
devices. ELM performs training on desktop computers, exploiting TensorFlow, Keras, and scikit-
learn, and makes inferences on microcontrollers. It implements, in platform-independent C language, 
three supervised machine learning algorithms (Linear SVM, k-NN, and DT), and exploits the STM X-
Cube-AI package for implementing ANNs on STM32 Nucleo boards. The training phase on Desk-
LM searches for the best configuration across a variety of user-defined parameter values. In order to 
investigate the performance of these algorithms on the targeted devices, we posed ten research 
questions (RQ 1–10, in the following) and analyzed a set of six datasets (four classifications and two 
regressions). To the best of our knowledge, this is the first paper presenting such an extensive 
performance analysis of edge machine learning in terms of datasets, algorithms, configurations, and 
types of devices. 

Figure 5. Number of occurrences of each DT parameter.

In most cases, the whole tree depth is needed, and this does not exceed the memory available in
the microcontrollers. However, Max_Leaf_Nodes values usually need a low threshold (80). EnviroCar
required a high value of 5000, which had to be reduced down to 1000 for F3, F4, L4 and to 200 for F0
because of the limited RAM availability.



Sensors 2020, 20, 2638 22 of 25

6. Conclusions and Future Work

This paper presented the Edge Learning Machine (ELM), a machine learning platform for edge
devices. ELM performs training on desktop computers, exploiting TensorFlow, Keras, and scikit-learn,
and makes inferences on microcontrollers. It implements, in platform-independent C language,
three supervised machine learning algorithms (Linear SVM, k-NN, and DT), and exploits the STM
X-Cube-AI package for implementing ANNs on STM32 Nucleo boards. The training phase on Desk-LM
searches for the best configuration across a variety of user-defined parameter values. In order to
investigate the performance of these algorithms on the targeted devices, we posed ten research questions
(RQ 1–10, in the following) and analyzed a set of six datasets (four classifications and two regressions).
To the best of our knowledge, this is the first paper presenting such an extensive performance analysis
of edge machine learning in terms of datasets, algorithms, configurations, and types of devices.

Our analysis shows that, on a set of available IoT data, we managed to train all the targeted
devices to achieve, with at least one algorithm, the best score (classification accuracy or regression R2)
obtained through a desktop machine (RQ1). ANN performs better than the other algorithms in most
of the cases, without differences among the target devices (apart from F0, that is not supported by STM
X-Cube-AI). k-NN performs similarly to ANN, and in one case even better, but requires that all the
training sets are kept in the inference phase, posing a significant memory demand, which penalizes
time performance, particularly on low-end devices. The performance of Decision Tree performance
varied widely across datasets. When comparing edge devices, the best time performance is achieved
by F7 and H7. Unsurprisingly, given the available hardware, F0 performs worse than all the others.

The preprocessing phase is extremely important. Results across all the datasets and algorithms
show the importance of scaling the inputs, which lead to improvements of up to 82% in accuracy
(SVM Virus) and 23% in R2 (k-NN Heart) (RQ2). The applications of PCA have various effects across
algorithms and datasets (RQ3).

In terms of the ANN hyperparameters, we observed that increasing the depth of a NN typically
improves its performance, up to a saturation level (RQ4). When comparing the neuron activation
functions, we observed a slight prevalence of ReLU over Tanh (RQ5). The batch size has little influence
on score, but it does have an influence on training time. We established that 10 was the optimal
value for all the examined datasets (RQ6). In all datasets, the ANN training quickly converges within
10 epochs (RQ7). The dropout regularization parameter only led to some slight worsening in a couple
of datasets (RQ8).

In SVM, the C hyperparameter value selection has an impact on training times, but only when
inputs are not scaled (RQ9). In most datasets, the whole tree depth is needed for DT models, and this
does not exceed the memory available in the microcontrollers. However, the values of Max_Leaf_Nodes
usually require a low threshold value (80) (RQ10).

As synthesized above, in general, several factors impact performance in different ways across
datasets. This highlights the importance of a framework like ELM, which is able to test different
algorithms, each one with different configurations. To support the developer community, ELM is
released on an open-source basis.

As a possible direction for future work, we consider that the analysis should be extended to include
different types of NNs (Convolutional Neural Networks, Recurrent Neural Networks) with more
complex datasets (e.g., also including images and audio streams). An extensive analysis should also be
performed on unsupervised algorithms that look particularly suited for immediate field deployment,
especially in low-accessibility areas. As the complexity of IoT applications is likely to increase, we also
expect that distributed ML at the edge will probably be a significant challenge in the coming years.



Sensors 2020, 20, 2638 23 of 25

Author Contributions: F.S.: conceptualization, data curation, investigation, software, validation; F.B.:
conceptualization, data curation, investigation, methodology, software, validation; R.B.: conceptualization,
methodology, software, validation; A.D.G.: conceptualization, methodology, supervision, validation. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lin, L.; Liao, X.; Jin, H.; Li, P. Computation offloading toward edge computing. Proc. IEEE 2019, 107,
1584–1607. [CrossRef]

2. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

3. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016,
3, 637–646. [CrossRef]

4. Zuboff, S. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power;
PublicAffairs: New York, NY, USA, 2019.

5. TensorFlow Lite. Available online: http://www.tensorflow.org/lite (accessed on 10 February 2020).
6. Louis, M.; Azad, Z.; Delhadtehrani, L.; Gupta, S.L.; Warden, P.; Reddi, V.; Joshi, A. Towards deep learning

using tensorFlow lite on RISC-V. Workshop Comput. Archit. Res. RISC-V 2019. [CrossRef]
7. Dennis, D.K.; Gopinath, S.; Gupta, C.; Kumar, A.; Kusupati, A.; Patil, S.G.; Simhadri, H.V. EdgeML Machine

LEARNING for Resource-Constrained Edge Devices. Available online: https://github.com/Microsoft/EdgeML
(accessed on 24 April 2020).

8. Suda, N.; Loh, D. Machine Learning on ARM Cortex-M Microcontrollers; Arm Ltd.: Cambridge, UK, 2019.
9. X-CUBE-AI—AI Expansion Pack for STM32CubeMX—STMicroelectronics. Available online: http://www.st.

com/en/embedded-software/x-cube-ai.html (accessed on 10 February 2020).
10. Bai, N. Practical Microcontroller Engineering with ARM Technology; Wiley-IEEE Press: Hoboken, NJ, USA, 2016.
11. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, UK, 2016.
12. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge

University Press: Cambridge, UK, 2014.
13. Vapnik, V.N.; Lerner, A.Y. Recognition of Patterns with help of Generalized Portraits. Avtomat. Telemekh.

1963, 24, 774–780.
14. Shakhnarovich, G.; Darrell, T.; Indyk, P. Nearest-Neighbor Methods in Learning and Vision; The MIT Press:

Cambridge, UK, 2005.
15. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R. Classification and Regression Trees; Chapman and Hall/CRC:

Boca Raton, FL, USA, 1984.
16. Zhang, Y.; Bi, S.; Dong, M.; Liu, Y. The Implementation of CNN-Based Object Detector on ARM Embedded

Platforms. In Proceedings of the 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing,
Athens, Greece, 12–15 Auguest 2018.

17. Yazici, M.T.; Basurra, S.; Gaber, M.M. Edge Machine learning: Enabling smart Internet of Things applications.
Big Data Cogn. Comput. 2018, 2, 26. [CrossRef]

18. Embedded Machine Learning on 8-Bit Microcontrollers, Including Arduino—Hackster.io. Available online:
http://www.hackster.io/news/embedded-machine-learning-on-8-bit-microcontrollers-includingarduino-
783155e7a135 (accessed on 10 February 2020).

19. Cerutti, G.; Prasad, R.; Farella, E. Convolutional Neural Network on Embedded Platform for People Presence
Detection in Low Resolution Thermal Images. In Proceedings of the ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019.

20. Frequently Asked Questions | Coral. Available online: http://www.coral.ai/docs/edgetpu/faq/ (accessed on
11 February 2020).

21. Edge TPU Python API Overview | Coral. Available online: http://www.coral.ai/docs/edgetpu/api-intro
(accessed on 11 February 2020).

http://dx.doi.org/10.1109/JPROC.2019.2922285
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://www.tensorflow.org/lite
http://dx.doi.org/10.1145/1122445.1122456
https://github.com/Microsoft/EdgeML
http://www.st. com/en/embedded-software/x-cube-ai.html
http://www.st. com/en/embedded-software/x-cube-ai.html
http://dx.doi.org/10.3390/bdcc2030026
http://www.hackster.io/news/embedded-machine-learning-on-8-bit-microcontrollers-includingarduino-783155e7a135
http://www.hackster.io/news/embedded-machine-learning-on-8-bit-microcontrollers-includingarduino-783155e7a135
http://www.coral.ai/docs/edgetpu/faq/
http://www.coral.ai/docs/edgetpu/api-intro


Sensors 2020, 20, 2638 24 of 25

22. Kusupati, A.; Singh, M.; Bhatia, K.; Kumar, A.; Jain, P.; Varma, M. FastGRNN: A Fast, Accurate, Stable and
Tiny Kilobyte Sized Gated Recurrent Neural Network. In Proceedings of the 32nd Conference on Neural
Information Processing Systems (NeurIPS 2018), Montréal, QC, Canada, 3–8 December 2018.

23. Gopinath, S.; Ghanathe, N.; Seshadri, V.; Sharma, R. Compiling KB-Sized Machine Learning Models to Tiny
IoT Devices. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2019), Phoenix, AZ, USA, 22–26 June 2019.

24. AWS Greengrass Machine Learning Inference—Amazon Web Services. Available online: http://www.aws.
amazon.com/greengrass/ml/ (accessed on 10 February 2020).

25. Ghosh, A.M.; Grolinger, K. Deep Learning: Edge-Cloud Data Analytics for IoT. In Proceedings of the
IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada,
5–8 May 2019.

26. AI Technology Helping Asthma Sufferers Breathe Easier—Hackster.io. Available online: http://
www.hackster.io/news/ai-technology-helping-asthma-sufferers-breathe-easier-50775aa7b89f (accessed on
12 February 2020).

27. Magno, M.; Cavigelli, L.; Mayer, P.; von Hagen, F.; Luca Benini, F. Fanncortexm: An open source toolkit for
deployment of multi-layer neural networks on arm cortex-m family microcontrollers: Performance analysis
with stress detection. In Proceedings of the IEEE 5th World Forum on Internet of Things, Limerick, Ireland,
15–18 April 2019.

28. Magno, M.; Pritz, M.; Mayer, P.; Benini, L. DeepEmote: Towards Multi-Layer Neural Networks in a Low
Power Wearable Multi-Sensors Bracelet. In Proceedings of the 7th IEEE International Workshop on Advances
in Sensors and Interfaces (IWASI), Vieste, Italy, 15–16 June 2017.

29. FidoProject/Fido: A lightweight C++ Machine Learning Library for Embedded Electronics and Robotics.
Available online: http://www.github.com/FidoProject/Fido (accessed on 12 February 2020).

30. Alameh, M.; Abbass, Y.; Ibrahim, A.; Valle, M. Smart tactile sensing systems based on embedded CNN
implementations. Micromachines 2019, 11, 103. [CrossRef] [PubMed]

31. Sharma, R.; Biookaghazadeh, S.; Li, B.; Zhao, M. Are Existing Knowledge Transfer Techniques Effective
for Deep Learning with Edge Devices? In Proceedings of the 2018 IEEE International Conference on Edge
Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018.

32. Scikit-Learn: Machine Learning in Python—Scikit-Learn 0.22.1 Documentation. Available online:
http://www.scikit-learn.org/stable/ (accessed on 2 March 2020).

33. Home—Keras Documentation. Available online: http://www.keras.io/ (accessed on 2 March 2020).
34. Bengio, Y.; LeCun, Y. Scaling learning algorithms towards AI. In Large Scale Kernel Machines; Bottou, L.,

Chapelle, O., DeCoste, D., Weston, J., Eds.; MIT Press: Cambridge, UK, 2007.
35. Kingma, D.P.; Ba, L.J. Adam: A Method for Stochastic Optimization. Available online: https://arxiv.org/abs/

1412.6980 (accessed on 24 April 2020).
36. The HDF5 Group. Available online: https://www.hdfgroup.org/solutions/hdf5 (accessed on 2 March 2020).
37. STMicroelectronics. Getting Started with X-CUBE-AI Expansion Package for Artificial Intelligence (AI) User

Manual | Enhanced Reader. Technical Report. Available online: https://www.st.com/en/embedded-software/

x-cube-ai.html (accessed on 24 April 2020).
38. Parameters | SVMS.org. Available online: http://www.svms.org/parameters/ (accessed on 4 March 2020).
39. STM32 High Performance Microcontrollers (MCUs)—STMicroelectronics. Available online:

http://www.st.com/en/microcontrollers-microprocessors/stm32-high-performance-mcus.html (accessed on
13 February 2020).

40. STM32H7—Arm Cortex-M7 and Cortex-M4 MCUs (480 MHz)—STMicroelectronics. Available online:
http://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html (accessed on 13 February 2020).

41. STM32L4—ARM Cortex-M4 ultra-low-power MCUs—STMicroelectronics. Available online: http://www.st.
com/en/microcontrollers-microprocessors/stm32l4-series.html (accessed on 13 February 2020).

42. Heart Disease UCI | Kaggle. Available online: http://www.kaggle.com/ronitf/heart-disease-uci (accessed on
13 February 2020).

43. Boero, L.; Cello, M.; Marchese, M.; Mariconti, E.; Naqash, T.; Zappatore, S. Statistical fingerprint—Based
intrusion detection system (SF-IDS). Int. J. Commun. Syst. 2017, 30, e3225. [CrossRef]

http://www.aws. amazon.com/greengrass/ml/
http://www.aws. amazon.com/greengrass/ml/
http://www.hackster.io/news/ai-technology-helping-asthma-sufferers-breathe-easier-50775aa7b89f
http://www.hackster.io/news/ai-technology-helping-asthma-sufferers-breathe-easier-50775aa7b89f
http://www.github.com/FidoProject/Fido
http://dx.doi.org/10.3390/mi11010103
http://www.ncbi.nlm.nih.gov/pubmed/31963622
http://www.scikit-learn.org/stable/
http://www.keras.io/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.hdfgroup.org/solutions/hdf5
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
http://www.svms.org/parameters/
http://www.st.com/en/microcontrollers-microprocessors/stm32-high-performance-mcus.html
http: //www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
http://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
http://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
http://www.kaggle.com/ronitf/heart-disease-uci
http://dx.doi.org/10.1002/dac.3225


Sensors 2020, 20, 2638 25 of 25

44. Fausto, A.; Marchese, M. Implementation Details to Reduce the Latency of an SDN Statistical
Fingerprint-Based IDS. In Proceedings of the IEEE International Symposium on Advanced Electrical
and Communication Technologies (ISAECT), Rome, Italy, 27–29 November 2019.

45. Falbo, V.; Apicella, T.; Aurioso, D.; Danese, L.; Bellotti, F.; Berta, R.; Gloria, A.D. Analyzing Machine
Learning on Mainstream Microcontrollers. In Proceedings of the International Conference on Applications in
Electronics Pervading Industry Environment and Society (ApplePies 2019), Pisa, Italy, 26–27 September 2019.

46. Benchmark Datasets Used for Classification: Comparison of Results. Available online: http://www.fizyka.
umk.pl/kis-old/projects/datasets.html#Sonar (accessed on 13 February 2020).

47. Parodi, A.; Bellotti, F.; Berta, R.; Gloria, A.D. Developing a machine learning library for microcontrollers.
In Proceedings of the International Conference on Applications in Electronics Pervading Industry,
Environment and Society, Pisa, Italy, 26–27 September 2018.

48. Traffic, Driving Style and Road Surface Condition | Kaggle. Available online: http://www.kaggle.com/gloseto/

traffic-driving-style-road-surface-condition (accessed on 13 February 2020).
49. EnviroCar—Datasets—The Datahub. Available online: http://www.old.datahub.io/dataset/envirocar

(accessed on 13 February 2020).
50. Massoud, R.; Poslad, S.; Bellotti, F.; Berta, R.; Mehran, K.; Gloria, A.D. A fuzzy logic module to estimate a

driver’s fuel consumption for reality-enhanced serious games. Int. J. Serious Games 2018, 5, 45–62. [CrossRef]
51. Massoud, R.; Bellotti, F.; Poslad, S.; Berta, R.; De Gloria, A. Towards a reality-enhanced serious game to

promote eco-driving in the wild. In Games and Learning Alliance. GALA 2019; Liapis, A., Yannakakis, G.,
Gentile, M., Ninaus, M., Eds.; Springer: Berlin, Germany, 2019.

52. Search for and download air quality data | NSW Dept of Planning, Industry and Environment. Available
online: http://www.dpie.nsw.gov.au/air-quality/search-for-and-download-air-quality-data (accessed on
13 February 2020).

53. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal474Covariate Shift; 2015. Available online: https://dblp.uni-trier.de/rec/html/conf/icml/IoffeS15
(accessed on 17 February 2020).

54. Sklearn.Preprocessing Data—Scikit-Learn 0.22.2 Documentation. Available online: https://scikit-learn.org/

stable/modules/preprocessing.html (accessed on 17 February 2020).
55. Decision Trees: How to Optimize My Decision-Making Process. Available online: http:

//www.medium.com/cracking-the-data-science-interview/decision-trees-how-to-optimize-my-decision-
making-process-e1f327999c7a (accessed on 17 February 2020).

56. Sklearn. Decomposition.PCA—Scikit-Learn 0.22.1 Documentation. Available online: http://www.scikit-learn.
org/stable/modules/generated/sklearn.decomposition.PCA.html (accessed on 17 February 2020).

57. Sentelle, C.G.; Anagnostopoulos, G.C.; Georgiopoulos, M. A simple method for solving the SVM regularization
path for semidefinite kernels. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 709–722. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.fizyka.umk.pl/kis-old/projects/datasets.html#Sonar
http://www.fizyka.umk.pl/kis-old/projects/datasets.html#Sonar
http://www.kaggle.com/gloseto/traffic-driving-style-road-surface-condition
http://www.kaggle.com/gloseto/traffic-driving-style-road-surface-condition
http://www.old.datahub.io/dataset/envirocar
http://dx.doi.org/10.17083/ijsg.v5i4.266
http://www.dpie.nsw.gov.au/air-quality/search-for-and-download-air-quality-data
https://dblp.uni-trier.de/rec/html/conf/icml/IoffeS15
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
http://www.medium.com/cracking-the-data-science-interview/decision-trees-how-to-optimize-my-decision-making-process- e1f327999c7a
http://www.medium.com/cracking-the-data-science-interview/decision-trees-how-to-optimize-my-decision-making-process- e1f327999c7a
http://www.medium.com/cracking-the-data-science-interview/decision-trees-how-to-optimize-my-decision-making-process- e1f327999c7a
http://www.scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://www.scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://dx.doi.org/10.1109/TNNLS.2015.2427333
http://www.ncbi.nlm.nih.gov/pubmed/26011894
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Artificial Neural Network (ANN) 
	Linear Kernel Support Vector Machine (SVM) 
	K-Nearest Neighbor (k-NN) 
	Decision Tree (DT) 

	Related Work 
	Framework and Algorithm Understanding 
	Artificial Neural Network (ANN) 
	Linear Support Vector Machine (SVM) 
	K-Nearest Neighbor (KNN) 
	Decision Tree (DT) 

	Experimental Analysis and Result 
	Performance 
	Scaling 
	Principal Component Analysis (PCA) 
	ANN Layer Configuration 
	ANN Activation Function 
	ANN Batch Size 
	ANN Accuracy vs. Epochs 
	ANN Dropout 
	SVM Regularization Training Time 
	DT Parameters 

	Conclusions and Future Work 
	References

