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The protease SPRTN degrades DNA-protein crosslinks
(DPCs) that threaten genome stability. SPRTN has been
connected to the ubiquitin-directed protein unfoldase p97 (also
called VCP or Cdc48), but a functional cooperation has not
been demonstrated directly. Here, we biochemically recon-
stituted p97-assisted proteolysis with purified proteins and
showed that p97 targets ubiquitin-modified DPCs and unfolds
them to prepare them for proteolysis by SPRTN. We demon-
strate that purified SPRTN alone was unable to degrade a
tightly-folded Eos fluorescent reporter protein even when Eos
was crosslinked to DNA (Eos-DPC). However, when present,
p97 unfolded poly-ubiquitinated Eos-DPC in a manner
requiring its ubiquitin adapter, Ufd1-Npl4. Notably, we show
that, in cooperation with p97 and Ufd1-Npl4, SPRTN proteo-
lyzed unfolded Eos-DPC, which relied on recognition of the
DNA-crosslink by SPRTN. In a simplified unfolding assay, we
further demonstrate that p97, while unfolding a protein
substrate, can surmount the obstacle of a DNA crosslink site in
the substrate. Thus, our data demonstrate that p97, in
conjunction with Ufd1-Npl4, assists SPRTN-mediated prote-
olysis of tightly-folded proteins crosslinked to DNA, even
threading bulky protein-DNA adducts. These findings will be
relevant for understanding how cells handle DPCs to ensure
genome stability and for designing strategies that target p97 in
combination cancer therapy.

Chromatin-associated proteins commonly form covalent
crosslinks with the DNA, termed DNA-protein crosslinks
(DPCs) that are induced by physical or chemical crosslinkers
and can even occur naturally (1, 2). DPCs represent bulky
barriers that interfere with transcription, DNA replication and
repair, and therefore threaten cell survival and genome
stability.

DPCs can be removed by dedicated metalloproteases such
as SPRTN (SprT-like N-terminal domain, also known as
Spartan or DVC1), its yeast counterpart Wss1, or related
proteases (1–7). DPC proteases do not have any defined sub-
strate sequence preference consistent with the diversity of
proteins that form DPCs. However, proteolytic activity of
SPRTN requires recognition of the crosslinked DNA by a
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zinc-binding domain (ZBD) and a basic region (BR) in SPRTN
to ensure specificity for DPCs (8, 9). Consistent with its central
role, SPRTN is essential in mice while mutations in SPRTN
cause severe genetic disorders in humans (10, 11).

In vitro assays that directly monitor proteolysis of DPCs by
SPRTN have relied on structurally unstable reporter proteins
(9), raising the question if and how tightly folded proteins
crosslinked to DNA are proteolyzed by SPRTN. SPRTN and
Wss1 have been connected in cells to the AAA+ ATPase p97
(also called VCP or Cdc48 in yeast) (3, 12–14). Of note, p97 is
a protein unfolding machine and therefore may assist SPRTN
by unfolding tightly folded DPCs for proteolysis.

The hexameric p97 is best known for unfolding ubiq-
uitylated proteins and preparing them for proteolysis in the
proteasome (15, 16). Notably, p97 unfolds even tightly fol-
ded proteins lacking any disordered regions, which are
otherwise required for the proteasome in the absence of p97
(17). For ubiquitin-directed unfolding by p97, substrate-
conjugated ubiquitin serves as a universal unfolding tag
that is recognized by the ubiquitin adapter complex Ufd1-
Npl4 bound to p97 (18, 19). However, Ufd1-Npl4 not only
recruits the ubiquitylated substrate to p97 but also inserts
one of the ubiquitin moieties into the central pore of the
p97 hexamer (19). Upon ATP hydrolysis, p97 threads
ubiquitin and the attached substrate through its central
channel, thereby unfolding the substrate for degradation in
the proteasome (20, 21).

In this study, we asked whether p97-mediated unfolding can
directly assist also SPRTN-catalyzed proteolysis of tightly fol-
ded DPCs. We hypothesized that, in this case, unfolding by
p97 may be directed by ubiquitin and, possibly, Ufd1-Npl4.
Alternatively, given that SPRTN harbors both substrate-
binding elements and a p97-interacting suppressor of high
copy PP1 (SHP) box motif (1, 2), SPRTN itself could in prin-
ciple serve as a substrate adapter for p97.

Using biochemical reconstitution with purified proteins, we
show here directly that p97-mediated unfolding prepares
DPCs for proteolysis by SPRTN. Importantly, we find that p97
and SPRTN alone do not suffice but require the Ufd1-Npl4
adapter that recognizes substrate ubiquitylation. Thus, p97
supports proteolysis of DPCs by assisting SPRTN in an ubiq-
uitin and Ufd1-Npl4–dependent manner, and this can occur
independently of the proteasome.
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Results

Generation of an ubiquitylated DPC reporter protein
To enable investigation of the cooperation between p97 and

SPRTN, we first aimed to generate a substrate reporter protein
that combines a DNA crosslink required for targeting by
SPRTN with ubiquitylation for targeting by p97, as well as
providing reliable readouts for unfolding and proteolysis.

The majority of p97-mediated unfolding events is directed
by ubiquitylation of the substrate, and cell-based assays sug-
gested ubiquitylation also involved in DPC proteolysis (14).
Ubiquitin-dependent unfolding by p97 can be conveniently
examined with a di-ubiquitin fusion to the mEos3.2 fluores-
cent reporter moiety (Ub-Eos) that is subsequently enzymati-
cally polyubiquitinated (17, 20, 22). Unfolding of the reporter
protein can be directly monitored by the loss of Eos fluores-
cence using fluorescence spectrometry. A backbone break in
Eos induced by UV irradiation results in a fluorescence shift
from green to red. Crucially, this photoconversion
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conveniently prevents refolding and thus regaining of fluo-
rescence of Eos after p97-mediated unfolding. In contrast, the
remaining unbroken green Eos refolds after unfolding. Loss of
green fluorescence therefore strictly reports on proteolysis. As
a first step, we generated the Ub-Eos reporter protein in
bacteria (Fig. 1, A and B). The UV-induced backbone break
occurs typically in 30% of the protein fraction and therefore
resulted in two fragments in addition to the full length Ub-Eos
in denaturing SDS-gels (Fig. 1, A and B).

To allow targeting by SPRTN, we crosslinked a DNA
oligonucleotide to cysteines in Ub-Eos. The oligonucleotide
was hybridized with a complementary strand resulting in a 5
base overhang which is specifically recognized by SPRTN and
activates its protease activity (9). Cysteines are only present in
the C-terminal part downstream of the backbone break site of
the reporter. Therefore, the DNA crosslink occurred to the
nonfragmented full-length Ub-Eos-DNA as well as to the
smaller C-terminal fragment of Eos, leading to a gel shift in
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both cases (Fig. 1, A–C). For easier detection, we used a DNA
oligonucleotide coupled to the Dy781 chromophore. Consis-
tent with the DNA crosslink to Ub-Eos, we detected fluores-
cence exclusively of the crosslinked bands in fluorescence
scans of the SDS-gel (Fig. 1, A and B).

In the next step, we enzymatically polyubiquitylated the
Ub-Eos-DPC reporter substrate with long ubiquitin chains to
allow efficient targeting by p97. Ubiquitylation was mediated
with a previously established gp78-Ubc7 fusion protein that
efficiently ubiquitylates the di-ubiquitin acceptor site in the
Ub-Eos reporter (21). Ubiquitylation resulted in a quantitative
shift of Ub-Eos-DPC reporter to a high molecular weight
smear in the SDS-gel that was positive for the fluorescence
probe on the DNA oligo, as expected (Fig. 1, A and B). Because
the C-terminal photoconversion fragment of Ub-Eos lacked
the ubiquitylation site, but was labeled with the
DNA-chromophore, it was detected in the fluorescence scans
in a nonubiquitylated form migrating with an apparent
molecular weight of �35 kDa (Fig. 1B).

SPRTN and the ubiquitin adapter Ufd1-Npl4 bind the p97
hexamer simultaneously

SPRTN and p97 have been functionally linked in cells, but
whether SPRTN can act as a substrate ubiquitin adapter for
p97 or needs to cooperate with the canonical ubiquitin adapter
Ufd1-Npl4 of p97 is unclear. Intriguingly, both SPRTN and
Ufd1-Npl4 contain an SHP box motif to interact with p97
(11, 13) raising the question as to whether SPRTN and Ufd1-
Npl4 can bind p97 at the same time. To clarify this question,
we performed a competition experiment with purified pro-
teins, in which we incubated p97 and SPRTN with increasing
concentrations of Ufd1-Npl4. We then immunoisolated
SPRTN and analyzed associated proteins. Importantly,
SPRTN-bound p97 did not decrease in the presence of Ufd1-
Npl4 showing that Ufd1-Npl4 did not compete with SPRTN
for p97 binding (Fig. 2A). Instead, Ufd1-Npl4 coisolated with
the SPRTN–p97 complex but not SPRTN alone (Fig. 2A),
demonstrating that Ufd1-Npl4 and SPRTN bind simulta-
neously to p97, most likely by interacting with different
N-domains within the p97 hexamer. Thus, simultaneous
binding is consistent with both factors cooperating during
DPC proteolysis by SPRTN assisted by p97.

p97-assisted proteolysis by SPRTN

SPRTN activity can be monitored by detecting the genera-
tion of proteolytic fragments of its DPC substrate (9). We
therefore asked whether SPRTN could generate proteolytic
fragments of our poly-Ubiquitin-Eos-DNA reporter substrate
protein and whether that was stimulated by p97. We incubated
our substrate alone or with SPRTN and p97-Ufd1-Npl4 either
in the absence of presence of ATP to compare the contribution
of ATP-driven unfolding activity by p97. The reactions were
stopped at different time points during the course of 30 min.
Samples were loaded on denaturing SDS-gels and fluorescence
scanned to detect DNA-chromophore–crosslinked protein
and fragments (Fig. 2, B and D).
In the absence of SPRTN, only the polyubiquitylated species
of the substrate and the C-terminal nonubiquitylated �35 kDa
fragment was detected, as in the input (Fig. 2B). In the pres-
ence of SPRTN without ATP, a cleavage product was gener-
ated migrating with an apparent molecular weight of �40 kDa
(Fig. 2B). This �40 kDa band is consistent with
DNA-crosslinked Eos core, whose N-terminal flexible ubiq-
uitylation acceptor moiety along with the ubiquitin chain was
clipped by SPRTN. Western blot confirmed that the band was
derived from Eos (Fig. S1). The fact that no smaller fragments
were detected indicated that the tightly folded Eos core was
resistant to cleavage by SPRTN. Of note, in the presence of
ATP (and thus of p97 unfolding activity), a smaller fragment
was generated over time (Fig. 2, B and C). The fact that the
smaller fragment migrated at an apparent molecular weight of
only �20 kDa and harbored the DNA crosslink indicated that
it was a fragment derived from the Eos core. The �20 kDa
fragment was not generated when either SPRTN or p97 was
omitted (Fig. 2, D and E), showing that both factors cooper-
ated. Moreover, proteolysis was largely reduced by the p97
inhibitors CB-5083 or NMS-873 (Fig. 2, D and E), indicating
that p97 unfolding activity was required for the generation of
proteolytic fragments. Of note, SPRTN-mediated Eos prote-
olysis was dependent on the p97 ubiquitin adapter Ufd1-Npl4
(Fig. 2, D and E), showing that substrate protein ubiquitylation
and binding was required for proteolysis to occur and that
SPRTN did not suffice as a substrate adapter of p97.

Both ATP requirement and sensitivity to p97 inhibitors indi-
cated that p97 unfolding activity was required and that this was
coupled to SPRTN-mediated proteolysis. To further substantiate
the involvement of substrate unfolding, wemonitored loss of Eos
fluorescence during the reaction. We profited from the fact that
our substrate fraction contained both “unbroken” as well as
“broken” Eos with green and red fluorescence, respectively (see
Fig. 3A for cartoon depiction). Unfolding of red “broken” Eos by
p97 leads to a net loss of fluorescence already, because “broken”
Eos cannot refold. In contrast, green “unbroken” Eos refolds after
p97-mediated unfolding leading to only an initial drop in fluo-
rescence followed by a steady state of unfolding and refolding.We
confirmed this notion for our substrate reporter by adding the
GroELD87Kmutant that traps the unfolded state (23) (Fig. S2). If a
protease is added instead, any additional loss of fluorescence can
therefore be attributed to proteolysis (17).

Consistent with that prediction, in a reaction containing the
polyubiquitylated Ub-Eos-DPC as well as p97, Ufd1-Npl4, and
ATP, we observed a loss of fluorescence in the red channel
demonstrating that p97-Ufd1-Npl4was able to efficiently unfold
our DNA-crosslinked reporter protein (Fig. 3B). Of note, loss of
fluorescence was not increased by addition of SPRTN (Fig. 3B),
consistent with unfolding being sufficient for red fluorescence
loss and indicating that p97 unfolding was rate determining.

In contrast, for green “unbroken” Ub-Eos-DNA, p97 alone
only caused a minor net decrease in fluorescence, as expected,
because refolding was not prevented by a backbone break.
Importantly, in this case, addition of SPRTN to the unfolding
reaction led to a continuous decline of fluorescence (Fig. 3B)
demonstrating that the substrate was proteolyzed after
J. Biol. Chem. (2022) 298(6) 101976 3



p97/VCP assists SPRTN-mediated proteolysis of DPCs
unfolding. These experiments demonstrate that, for tightly
folded protein moieties, proteolysis by SPRTN is coupled to
p97-mediated protein unfolding and requires the recognition
of the ubiquitin chain by Ufd1-Npl4.

Functional elements in SPRTN required for p97-assisted
proteolysis

SPRTN obtains specificity for DPCs by binding of the DNA
moiety via its ZBD and BR domains (9). To ask whether
substrate proteolysis by SPRTN was still dependent on DNA
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recognition by SPRTN after p97-mediated unfolding, we per-
formed Ub-Eos-DPC degradation assays with SPRTN lacking
the ZBD and BR domains, and compared it to wild type
SPRTN. Notably, proteolysis was abolished by the mutations
(Fig. 4, A–D) demonstrating that DNA recognition was
essential and that SPRTN retained its selectivity for DPCs even
for proteins unfolded by p97. For comparison, the reaction was
also performed with SPRTN harboring the E112Q mutation in
the catalytic center (4) which abolished proteolysis, as
expected (Fig. 4, A–D).
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SPRTN contains two additional elements relevant for this
analysis, a linear SHP box that mediates binding to p97 and a
ubiquitin-binding zinc-finger (UBZ) domain that binds ubiq-
uitin (4, 24). Deletion of the UBZ domain had only a minor
effect (Fig. 4, A-D). Notably, mutations of the SHP box
significantly affected proteolysis, but only partially, and even
the combination with the UBZ deletion did not further
decrease proteolytic activity (Fig. 4, A–D). We confirmed the
effect of SHP box mutation on SPRTN binding to p97 by
in vitro interaction reactions followed by coimmunoprecipi-
tation (Fig. 4E). This indicates that, while p97-Ufd1-Npl4 is
required to bind the ubiquitin moieties of the substrate,
ubiquitin and p97 binding by SPRTN contributes to efficiency
of the reaction, but is not essential in the in vitro setting.

p97 surmounts DNA crosslink sites during protein unfolding

p97 unfolds client proteins by threading them through the
central channel of the p97 hexamer (20, 22). The fact that p97
can unfold DPCs, as shown above, raised the question as to
how p97 processes substrates when it encounters the DNA
crosslink site in a protein. To address this question, we turned
to a simplified unfolding reaction that does not rely on ubiq-
uitylation but initiates at a defined internal site within a sub-
strate protein (Fig. 5A). In this reaction, p97, in concert with an
alternative substrate adapter p37 (encoded by UBXN2B), tar-
gets inhibitor-3 (I3, encoded by PPP1R11) bound to a complex
of protein phosphatase-1 catalytic subunit (PP1) and SDS22
(encoded by PPP1R7) (22). By threading I3 through its central
channel, p97 strips I3 off PP1-SDS22. I3 threading is initiated
at an internal recognition site in I3 and then progresses to the
Eos-unfolding reporter fused to the N-terminus of I3 (25). To
test the effect of DNA crosslinks, we introduced a SNAP
domain between Eos and I3 and expressed the resulting Eos-
SNAP-I3 fusion protein as a complex with PP1 and SDS22
for efficient targeting by p97-p37 (Fig. 5B). A fraction of the
purified protein was further modified by linking the SNAP
domain to a 30 bp DNA oligonucleotide which resulted in a
quantitative shift of the Eos-SNAP-I3 proteins in SDS-gels
(Fig. 5B).

We next compared unfolding of unmodified Eos-SNAP-I3
with DNA-linked Eos-SNAP-I3 by fluorescence spectrometry
as above. The position of the SNAP domain linked to DNA
J. Biol. Chem. (2022) 298(6) 101976 5
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between the unfolding initiation site in I3 and the fluorescence
reporter demands that protein processing by p97 needs to pass
the DNA crosslink before unfolding of Eos can be detected.
Importantly, both substrate proteins were unfolded at nearly
identical rates irrespective of whether linked to DNA or not
(Fig. 5C). This result demonstrates that p97 can efficiently
surmount a DNA crosslink site while processing substrate
proteins.
Discussion

In this study, we provide direct biochemical evidence that
SPRTN cooperates with the p97 unfolding machine to pro-
teolyze tightly folded proteins crosslinked to DNA that SPRTN
alone is unable to degrade (Fig. 6). In doing so, our
biochemical dissection of the reaction establishes the key
hallmarks of this cooperation.

By extending an only recently established approach to
recapitulate protein unfolding by p97 and combining it with
proteolysis analysis, we demonstrate that p97-assisted prote-
olysis by SPRTN relies on substrate unfolding by p97 and on
targeting of the substrate by the Ufd1-Npl4 ubiquitin adapter.
This strongly suggests that SPRTN alone cannot serve as a
ubiquitin substrate adapter for p97, despite the fact that
SPRTN harbors both a ubiquitin-binding UBZ domain as well
6 J. Biol. Chem. (2022) 298(6) 101976
as a SHP box motif that could bridge the substrate and p97.
This can be explained by the fact that substrate adapters such
as Ufd1-Npl4 not only link p97 to the ubiquitylated substrate
but also have specific structural features to guide the substrate
into the central channel of p97 for unfolding (19, 26).
Consistent with a role of Ufd1-Npl4 in SPRTN-mediated
proteolysis, Ufd1-Npl4 was shown to associate with SPRTN
along with p97 in cells (14). The fact that the Ufd1-Npl4
ubiquitin adapter is required also implies that SPRTN cannot
simply recruit DPC substrates to p97 by binding to the DNA
moiety of DPCs. Therefore, if a tightly folded protein is
crosslinked to DNA, ubiquitylation can serve to attract the
p97–Ufd1-Npl4 complex and trigger unfolding to assist
SPRTN in proteolysis. Recently, the protein TEX264 has been
proposed as a ubiquitin-independent p97 substrate adapter in
SPRTN-mediated proteolysis of the TOP1 cleavage complex
(27), which is a special form of DPC. However, TEX264 is
specific for the TOP1 cleavage complex only (27) and therefore
cannot account for the large diversity of possible DPCs.

We find that the SHP box that links SPRTN to the p97
N-domain, although not essential, significantly contributes to
p97-assisted proteolysis by SPRTN. This suggests that physical
interaction of SPRTN with p97 is critical for the efficient
coupling of protein unfolding by p97 with proteolysis by
SPRTN. In contrast, the UBZ domain in SPRTN is not
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essential, further speaking against a role of SPRTN as a
ubiquitin adapter. This is consistent with the fact that ubiq-
uitin binding of the UBZ domain in SPRTN has been
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The unfolding of DPCs shown here raises the question as to
how DPCs are processed by p97. Of note, by placing the DNA
crosslink between a well-defined internal unfolding initiation
site and the unfolding reporter moiety Eos, we demonstrate
that p97 can surmount the protein crosslink site during sub-
strate protein processing. Based on these data, it is likely that
p97 threads the protein along with the DNA through the
central pore of the p97 hexamer. Threading of elements wider
than a single peptide strand is not unheard of because p97 can
thread protein loops through its pore and even processes
ubiquitin chains (19, 25). Alternatively, p97 has been proposed
to open the hexamer sideways to let pass bulky moieties while
the peptide chain is translocated in the channel (29). Impor-
tantly, we demonstrate that efficient proteolysis by SPRTN of
the unfolded substrate still requires the DNA recognition
domains of SPRTN showing that SPRTN maintains selectivity
for DPCs even when cooperating with p97. Together, our data
establish the hallmarks of p97-assisted proteolysis of DPC by
SPRTN and, in turn, show that p97 cooperates with proteases
other than the proteasome for protein degradation.

Experimental procedures

Plasmids

The cDNA of human SPRTN (NM_032018) was cloned into
pGEX-6P-1 vector. A C-terminal His-tag or TwinStrep-tag
was added to SPRTN by site-directed mutagenesis. Deletion
and point mutants of SPRTN were generated by site-directed
mutagenesis. His-diUb-mEos3.2 was generated by replacing
GFP in pET28a His-diUB-GFP (21) with PCR-amplified
mEos3.2 (Addgene plasmid #54550, (30)), using BamHI and
XhoI restriction sites. In the plasmid encoding the E1 enzyme
His-mUbe1 (Addgene plasmid # 32534, (31)), the thrombin
site was replaced by a PreScission site and His-tag by a Strep-
tag by consecutive site-directed mutageneses. In the recom-
binant E3-E2 enzyme His-gp78-ubc7 (21), the tobacco etch
virus site was replaced by a PreScission site via site-directed
mutagenesis. All constructs generated in this study were
confirmed by DNA sequencing. See supporting information
Table S1 for a complete list of plasmids and Table S2 for a
complete list of primers used for site-directed mutagenesis.

SPRTN purification

For protein expression, plasmids were transformed into
BL21(DE3) or Rosetta (DE3) Escherichia coli cells and grown
at 37 �C in Terrific broth medium until they reached an OD600

0.8. Protein expression was induced by addition of 0.5 mM
IPTG overnight at 18 �C. Cells were harvested and resus-
pended in buffer A1 (50 mM Hepes, 500 mM NaCl, 1 mM
MgCl2, 10% glycerol, pH 7.5) supplemented with 25 mM
imidazole (Sigma-Aldrich, 56750). Resuspended cells were
incubated for 30 min with lysozyme (PanReac AppliChem,
A3711), lysed by sonication (5× 30 s at 60% intensity) and
centrifuged at 20,000g for 45 min. Supernatant was filtered,
loaded onto a HisTrap FF 5 ml column (Cytiva), and washed
with 40 column volumes of buffer A1. Proteins were eluted
with NiNTA elution buffer A1 supplemented with 300 mM
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imidazole directly onto a GSTrap High Performance 5 ml
(Cytiva) and washed with 15 column volumes of buffer A1.
SPRTN was eluted by cleaving off the GST-tag using PreSci-
ssion protease. SPRTN was further purified by size-exclusion
chromatography using a HiLoad 16/600 Superdex 200 pg
column equilibrated in buffer A1 supplemented with 1 mM
DTT. For purification of SPRTN-TwinStrep, the NiNTA pu-
rification step was replaced by a StrepTag purification as fol-
lows. Cleared lysate was loaded onto a StrepTrap HP 5 ml
column (Cytiva) and eluted with buffer A1 supplemented with
2.5 mM desthiobiotin. All purification steps were carried out at
4 �C and proteins were concentrated using 10 kDa centrifugal
concentrator (Vivaspin Turbo 15) before snap freezing in
liquid nitrogen and stored at −80 �C.

Purification of recombinant Ub2-Eos and ubiquitylation
enzymes

Proteins were expressed as described above. Cells were
resuspended in buffer A2 (50 mM Hepes, 150 mM KCl, 2 mM
MgCl2, 5% glycerol) or buffer A2 supplemented with 25 mM
imidazole for Strep- and His-tagged proteins. Lysis, centrifu-
gation, and purification steps were performed as described for
SPRTN using buffer A2. His-tag of recombinant gp78-ubc7
was cleaved off by GST-PreScission. His-diUb-mEos3.2 was
converted to the red form by irradiation at 365 nm wavelength
for 1 h on ice using a longwave UV lamp (B-100AP, Blak-Ray)
as previously described (22).

Ubiquitin purification

Untagged ubiquitin was expressed in bacteria and lysates
resuspended in buffer A2 (50 mM Hepes, 150 mM KCl, 2 mM
MgCl2, 5% Glycerol, pH 7.4). Cleared supernatant was stirred
at 4 �C for 10 min after addition of 70% perchloric acid and
centrifuged at 20,000g for 1 h. The supernatant was dialyzed
overnight in ubiquitin wash buffer A3 (25 mM ammonium
acetate pH 4.5) and loaded onto a 5 ml HiTrap SP HP cation
exchange column (Cytiva). Protein was gradually eluted using
buffer A4 (250 mM ammonium acetate 200 mM NaCl pH 7.6).
Buffer was exchanged to buffer A2 and ubiquitin was
concentrated with 5 kDa centrifugal concentrator (Vivaspin
Turbo 15) before snap freezing in liquid nitrogen and stored
at −80 �C.

p97, p37, Ufd1-Npl4, and GroEL purification

Expression and purification of His-p97, p37, His-Ufd1-Npl4
and GroELD87K was performed as previously described (22, 25)

Generation of DNA-Protein–Crosslink substrate

Amide-tagged 30 nucleotide X30 oligo (Microsynth,
Table S2) was hybridized in hybridization buffer (10 mM Tris,
50 mM NaCl, 1 mM EDTA, pH 8) with 25 nucleotide oligos
X30_G_5_rv or X30_G_5_rv_Dy781 (Table S2) with six-fold
excess of Dy781-labeled oligonucleotides. Hybridized primers
were purified with Zeba Spin desalting column (Thermo Sci-
entific, 89890) in crosslink buffer (100 mM NaH2PO4, 150 mM
NaCl, 5 mM EDTA, pH 7.3) and incubated with SMCC
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(succinimidyl 4-[N-maleimidomethyl]cyclohexane-1-
carboxylate; Thermo Scientific, 22360) crosslinker for 2 h at
room temperature. After purification via Zeba Spin column in
crosslink buffer, maleimide crosslink reaction was performed
at 4 �C overnight using a 10-fold excess of DNA over
recombinant Eos protein. Crosslinked protein was separated
by size-exclusion chromatography using a HiLoad 16/600
Superdex 75 pg column in buffer A2 (50 mM Hepes, 150 mM
KCl, 2 mM MgCl2, 5% glycerol, pH 7.4).

For DNA crosslinking with SP-Eos-SnapTag-I3, amide-
tagged 30 bp S30 oligo (IDT, Table S2) was incubated with
ten-fold excess of N-hydroxysuccinimide (NHS)-reactive
SnapTag (BG-GLA-NHS, New England Biolabs) overnight at
room temperature in buffer A2. Excess NHS-reactive SnapTag
was quenched by addition of 20 mM Tris pH 8.0 and subse-
quently removed by ethanol precipitation, and the oligonu-
cleotide was resuspended in buffer A2. Crosslinking with SP-
Eos-SnapTag-I3 was performed for 90 min at room tempera-
ture with ten-fold excess of DNA oligonucleotide.
Enzymatic poly-ubiquitylation reaction and purification

DPC substrate was enzymatically polyubiquitylated as pre-
viously described (21). Briefly, DPC-substrate was incubated
with mUbe1 (2 μM), gp78-ubc7 (20 μM), ubiquitin (400 μM),
and ATP (10 mM) overnight at 37 �C before the poly-
ubiquitylated substrate was purified from free ubiquitin chains
by NiNTA affinity chromatography (HisTrap FF, 1 ml; Cytiva)
and size-exclusion chromatography (Superdex 10/300,200 Gl;
Cytiva), as described above.
Fluorescence-based DPC unfolding and proteolysis assay

p97 unfolding activity and SPRTN proteolytic activity was
assessed by decrease in Ubn-Eos-DPC fluorescence. Reactions
with DPC substrate (40 nM), p97 hexamer (125 nM), and
Ufd1-Npl4 (250 nM) were incubated in reaction buffer
(25 mM Hepes pH 7.4, 100 mM NaOAc, 5 mM MgCl2, 1 mM
DTT) for 5 min at 37 �C before the reaction was started by
addition of SPRTN (80 nM) and ATP (3 mM). Fluorescence
decay was measured every 15 s over 45 min (green excitation:
500 nm; green emission: 520 nm; red excitation: 540 nm; red
emission: 580 nm) in a Cary Eclipse fluorescence spectro-
photometer (Varian). Results were normalized to the first data
point after addition of SPRTN and ATP. Background was
subtracted using control samples without ATP.
DPC proteolysis assay

The proteolytic activity of SPRTN was visualized by Dy781
detection after SDS-PAGE. DPC model substrate (80 nM) was
incubated with p97 hexamer (250 nM), Ufd1-Npl4 (500 nM),
SPRTN (20 nM), and ATP (3 mM) in reaction buffer at 37 �C
for indicated times before the reaction was stopped by addition
of Laemmli sample buffer. Samples were boiled for 5 min at 95
�C and slowly cooled down. After SDS-PAGE, Dy781 infrared
fluorescence was scanned (Odyssey DLx, LI-COR). Images
were analyzed using ImageJ.
Immunoprecipitation of p97

Reactions with p97 (200 nM hexamer), SPRTN-His (400 nM
WT or ShpMut), ATPyS (5 mM), and bovine serum albumin
(BSA) (1%), were incubated with anti p97/VCP antibody (see
below) or IgG control and loaded onto Protein G beads
(ProteinG Sepharose 4 Fast Flow, GE Healthcare) for 3 h at 4
�C in buffer A5 (50 mM Hepes, 150 mM KCl, 5 mM MgCl2,
5% Glycerol, pH 8, 1% Triton) supplemented with 1% BSA.
Beads were washed with buffer A5 before proteins were eluted
by boiling in Laemmli sample buffer.
Antibodies

The following antibodies were used for Western blot anal-
ysis: mouse monoclonal anti-VCP (Santa Cruz Biotechnology,
sc-57492); rabbit polyclonal anti-SPRTN (Atlas Antibodies,
HPA025073); rabbit polyclonal anti-C1orf124/SPRTN (Ori-
gene, TA333626); rabbit polyclonal anti-NPLOC4/Npl4 (Atlas
Antibodies, HPA021560); mouse monoclonal anti-Ufd1L (BD
Transduction Laboratories, 611642); and rabbit polyclonal
anti-mEos2 (Badrilla, A010-mEOS2).
Pull down of SPRTN-Twin-Strep

Reaction of a final concentration of p97 (200 nM hexamer),
SPRTN-TwinStrep (400 nM), BSA (2%), and Ufd1-Npl4
(0–4 μM as indicated) were incubated with Strep beads (Strep-
Tactin Sepharose, iba) for 1 h at 4 �C in buffer A5 supple-
mented with 2% BSA. Beads were washed with buffer A5 and
eluted by boiling in Laemmli sample buffer at 95 �C.
Data availability

All data are contained within the article and supporting
information.
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