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SUMMARY
The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers,
including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers
into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight
the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respec-
tively. Approximately 22% of HepG2 enhancers, termed "repressive impact enhancers" (RIEs), are predom-
inantly populated byNARs and transcriptional repressionmotifs. Genes flanking RIEs exhibit a stage-specific
decline in expression during late development, suggesting RIEs’ role in trimming enhancer activities. About
16.7%of humanNARs emerge from neutral rhesusmacaqueDNA. This gain of repressor binding sites in RIEs
is associated with a 30% decrease in the average expression of flanking genes in humans compared to rhe-
sus macaque. Our work reveals modulated enhancer activity and adaptable gene regulation through the
evolutionary dynamics of TF binding sites.
INTRODUCTION

Enhancers recruit a combination of TFs and co-factors to regu-

late the transcriptional activity of their target genes.1–3 TFs can

be broadly categorized as repressors or activators based on

their impact on gene expression. Some TFs possess both acti-

vating and repressing functions.4,5 Precise gene regulation re-

quires both transcriptional activation and repression.6,7 Disrup-

ted TF binding in enhancers is frequently linked to various

phenotypic changes and diseases.8–10 For example, single-

nucleotide changes which subtly increase binding affinity may

drive gain-of-function expression and lead to organismal pheno-

types in the mouse and human limb.11

Experimental approaches, such as massively parallel reporter

assays (MPRA) and self-transcribing active regulatory region

sequencing (STARR-seq) identify DNA segments with regulatory

activities. Sharpr-MPRA recognizes functional regulatory nucle-

otides and distinguishes activating and repressive nucleotides

based on their inferred contribution to reporter gene expres-

sion.12 ATAC-STARR-seq experiments revealed that silent re-

gions occur at similar frequencies to active regions, and they

cluster by distinct TF footprint combinations for immune cell

function.13 Apart from experimental methods, computational

predictions have beenwidely used to identify the TF binding sites

(TFBSs) and the regulatory effects of TFs.14–19 For example,

BPNet uses DNA sequence to predict base-resolution binding

profiles of pluripotency TFs and identifies soft syntax rules for
iSci
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cooperative TF binding interactions.15 scBasset predicts acti-

vating and repressive TFs according to expression-activity cor-

relation at single-cell resolution.16 Transformers-based models

such as DNABERT-TF effectively distinguish very similar

TFBSs based on the distinct context windows.19

Previous research has also delved into the regulatory mecha-

nisms associated with activator and repressor TFs. For instance,

activator binding sites may not have a linear contribution to gene

expression due to potential competition between neighboring

binding sites.20 Enhancers can exhibit sensitivity or resistance

to repressive activity based on the specific combination

of co-repressors.21 Earlier studies have also aimed to unravel

the evolutionary dynamics of TF binding, crucial for compre-

hending the evolution of gene regulation. One study employed

comparative genomics approaches, assuming that binding

events in conserved noncoding elements indicate function-

ality.22 Conversely, another study, focusing on ChIP-identified

binding events for CEBPA and HNF4A in the liver tissue, showed

that aligned binding events across five vertebrate species are

rare.23 A recent study on the design of synthetic enhancers in

fruit flies showed that repressor binding sites are associated

with repressed enhancer activities.24 While these previous

studies have provided intricate insights into transcriptional regu-

lation by activators and repressors, the genomic features of

active enhancers enriched with repressor TFBSs, including their

regulatory role during development and their evolutionary ori-

gins, remain largely unexplored.
ence 28, 111658, January 17, 2025 Published by Elsevier Inc. 1
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In this study, we employed a DL approach to model both

typical enhancers and enhancers enriched for repressor binding

sites in HepG2 cells, unraveling intricate details of enhancers and

their impact on TF binding. Our systematic analysis allowed us to

discern activator and repressor binding sites within enhancers

and revealed a positive correlation between enhancer activity

and activator binding, while repressor binding displayed a nega-

tive correlation with enhancer activity. Notably, we demon-

strated that enhancers enriched with repressor binding sites

feature diminished regulatory impact and often coordinate with

nearby typical enhancers for gene regulation. By examining

gene expression profiles across prenatal and postnatal stages

in liver tissue, we demonstrate the influence of these enhancers

on differential gene expression during development. Moreover,

the evolution of the regulatory architecture, characterized by

gaining of repressor binding sites in these enhancers, signifies

a significant adaptation of biochemical processes in the liver be-

tween macaque and human species.

RESULTS

Systematic exploration of positive activity regions and
negative activity regions within HepG2 enhancers
In our study, we used TREDNet, a DL algorithm,25 to explore the

impact of mutations on enhancer activity within human HepG2

cells. The TREDNet model has three phases. Phase one uses

six convolutional layers (�143 million parameters) to predict

1,924 genomic and epigenomic features for a 2kb region,

including DHSs, TF ChIP-seq peaks, and histone marks from

ENCODE and NIH Roadmap studies. The model predicts prob-

abilities of these features in target DNA segments. Phase two

trains a deep learning model based on the output of phase one

to predict tissue-specific enhancers, providing an enhancer

score for each DNA segment. Delta scores measure changes

in enhancer activity between mutant and wildtype sequences,

creating an in-silico mutagenesis profile (Figure S1A). Phase

three, trained on delta scores from phase two, predicts TFBSs

by identifying consecutive nucleotides with significant effects

on enhancer scores (Figure 1A). All phases show strong accu-

racy in independent cross-validation (Figure S2).

Using ChIP-seq signals for open chromatin (marked by DNase

hypersensitivity sites, or DHS) aswell as H3K27ac andH3K4me1

histone modifications, we first trained a HepG2-specific

enhancer model using TREDNet (auROC = 0.91). An exhaustive

all-nucleotide in silico mutagenesis was performed next to quan-

tify the impact of mutations on enhancer activity (see STAR

Methods). Based on the predicted mutational impact on

enhancer activity, we binned enhancer sequences into three

types of activity regions. 1) negative activity regions (NARs;

NAR mutations increase predicted enhancer activity), 2) positive

activity regions (PARs; PAR mutations decrease predicted

enhancer activity), and 3) other regions. To be classified as a

NAR or PAR, a region from enhancer was required to have a

contiguous stretch of several nucleotides with a generally similar

impact on enhancer activity if mutated (see STAR Methods and

Figure 1A for details). In Figure 1A for example, the PAR/NAR

analysis of a HepG2 enhancer delineates the binding of proteins

from two HepG2 expressed TF genes, FOXA1 to a PAR region
2 iScience 28, 111658, January 17, 2025
and TCF12 to a NAR region, indicating an opposite impact of

these two TFs on the enhancer activity.

Our study encompasses 41,254 HepG2 enhancers, each

400 bp long centered at open chromatin regions, and features

the presence of the active histone mark H3K27ac and enhancer

mark H3K4me1 (see STAR Methods). We identified a total of

63,643 NARs and 71,965 PARs in HepG2 enhancers. These re-

gions exhibited an average length of 11.6 bp and 12.5 bp,

respectively (see STAR Methods). We binned these enhancers

into four distinct groups based on the composition of their activ-

ity regions (Figure 1B). We observed that 22.2% of these en-

hancers host NARs and no PARs (referred to as ‘‘NAR only’’),

16.3% host PARs and no NARs (referred to as ‘‘PAR only’’),

54.6% of enhancers exhibit a combination of both PARs and

NARs (referred to as ‘‘PAR+NAR’’), and 6.9% of enhancers

lack both PARs and NARs (named ‘‘other’’). A substantial portion

of the total enhancers–93.1%–contain at least one NAR or PAR.

These calculations underscore the prevalence of NARs and

PARs as critical components in the constitution of active en-

hancers. This is consistent with our previous study on pancreatic

islet enhancers, which has demonstrated that PARs and NARs

are enriched for TFBSs and functional variants, and significantly

improve the fine mapping of disease causal variants in Type II

diabetes.25

To investigate whether PARs and NARs impact enhancer ac-

tivity in relationship to TF binding, we evaluated HepG2 TF

ChIP-seq peak densities within distinct enhancer regions (Fig-

ure 1C). Our results revealed a statistically significant TFBS

enrichment within all categories of enhancers in comparison to

control regions (p-value%1 3 10�10, the binomial test). En-

hancers harboring PARs, both in isolation and in conjunction

with NARs (PAR only and PAR+NAR), exhibited substantially

higher enrichment levels for TF binding events (fold-enrichment

> 9.0) than those exclusively containing NARs (fold-enrichment

> 2.0). The comparatively lower enrichment observed in en-

hancers featuring solely NARs might be partially attributed to

the absence of repressor TF ChIP-seq data for HepG2 within

our computational framework, which includes 43 activator TFs,

only 9 repressor TFs, and 34 dual-function TFs. However, this

low density of ChIP-seq peaks in elements enriched for

repressor binding sites was also observed previously with a

larger cohort of TFs26 and is consistent with a ‘‘hit and run’’

model of transcriptional repression.27 To further demonstrate

the regulatory effects of our predicted active regions, we

computed the enrichment of reporter assay QTLs (raQTLs) in

these active regions, which alter the activity of putative regulato-

ry elements in HepG2 cells28 (Figure 1D). Inside HepG2 en-

hancers, the fold enrichment of raQTLs in PARs (17.0) and

NARs (2.8) are both larger than that in the neutral regions (2.2,

neither PARs nor NARs), which are all significantly larger than

the background DHS regions (p-value <10�6, the Wilcoxon

rank-sum test). TREDNet predictions of raQTLs, including both

magnitude and direction, correlate positively (R = 0.38) with

experimental measurements (Figure S1B). The log2FC values

from experiments and delta scores from TREDNet are similar,

with median values of 0.56 and 0.45, respectively (Figure S1D).

TREDNet accurately predicted the direction of regulatory effects

for 66% of raQTLs, confirming the validity of our predictions for
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Figure 1. Systematic exploration of PARs and NARs within HepG2 enhancers
(A) The schematic pipeline of our methodology, which involves the initial identification of enhancer regions by overlaying DNase hypersensitive sites (DHSs),

H3K27ac, and H3K4me1 marks. Subsequently, the TREDNet enhancer model is employed to assess the mutational effects on wild-type enhancers, quantifying

these effects at the nucleotide level through normalized delta scores. Regions featuring consecutive positive delta scores signify activating effects, designated as

PARs. Conversely, regions with consecutive negative delta scores denote repressive effects, identified as NARs. The associated transcription factor binding sites

(TFBSs) within PARs and NARs are further annotated using available ChIP-seq data or computationally predicted TFBSs.

(B) Fraction of HepG2 enhancers categorized as containing PAR only, NAR only, PAR+NAR, or other.

(C) The average number of TF ChIP-seq peaks (from HepG2) observed within various enhancer categories.

(D) Fold enrichment of raQTLs within the PAR, NAR and neutral (neither PAR nor NAR) regions inside enhancers (* p-value <0.05, ** p-value <0.001,

*** p-value <10�6, the binomial test).
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this experimental subset (Figure S1E). raQTLs are significantly

enriched in PAR and NAR regions compared to neutral HepG2

enhancer regions and random non-HepG2 open chromatin re-

gions. Enrichment analysis of PAR and NAR regions, ranked by

prediction scores (top 50%, 25%, 10%, and 5%), shows a pos-

itive correlation with the density of raQTLs, indicating a higher

likelihood of causative variants with higher delta scores (Fig-

ure S1C). These observations affirm the close association be-

tween our predicted activity regions with the experimentally
identified functional variants that alter the activity of putative reg-

ulatory elements.

Experimental evidence of repressive activity of negative
activity regions and enhancing activity of positive
activity regions
To investigate the association of predicted activity regions with

specific TFBSs, we conducted amotif enrichment analysis utiliz-

ing FIMO29 and only included TF genes expressed in the HepG2
iScience 28, 111658, January 17, 2025 3
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Figure 2. PARs and NARs display distinct associations with TFBSs and regulatory activity

(A) Illustration of the most significantly enriched predicted TFBSs within PARs and NARs originating from HepG2 enhancers. Only TFs with corresponding genes

being expressed in HepG2 are shown (RPKM>1.0). The x axis differentiates between PARs andNARs and those enhancers containing a cluster of PARs or NARs,

including those with a single region (1PAR and 1NAR), dual regions (2PAR and 2NAR), or more than two regions (3+PAR and 3+NAR).

(B) Distribution of activating/repressive activity scores from Sharpr-MPRA for enhancers with varying degrees of NAR and PAR enrichment.

(C) The correlation between enhancer activities determined by STARR-Seq and the number of PARs or NARs present within enhancers.

(D) The overall enhancer activities associated with at least one PAR (1+PAR) and at least one NAR (1+NAR).

(E) The distribution of expression level in adult liver tissue for genes proximal to enhancerswith varying degrees of NAR andPAR enrichment. The number of genes

included in this analysis is 542, 519, 582, 353, 336 and 668 for 3+NAR, 2NAR, 1NAR, 1PAR, 2PAR and 3+PAR, respectively.

(F) Expression of flanking genes for PAR or NAR enriched enhancers, silencers, and all genes as a background. The number of genes included in this analysis is

1133, 1280, 2413 and 18100 for 1+PAR, 1+NAR, silencer, and background, respectively. (* p-value <0.05, ** p-value <0.001, *** p-value <10�6, theWilcoxon rank-

sum test).
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cell line. This analysis shows distinct motifs enriched in PARs

and NARs (Figure 2A). Among the top enriched motifs in NARs,

many are linked to transcriptional repression. For example, one

motif maps to ZEB1, which mediates transcriptional repression

in breast cancer cells.30 TCF4 acts as a transcriptional repressor

in the central nervous system via HDAC,31 while SNAI1 blocks

E-cadherin expression and is necessary for early phases of em-

bryonic development32,33 but also actively participates in gene

transcription by binding to mesenchymal promoters.34,35

In contrast, the motifs enriched within PARs exhibit a different

profile. For example, JUNB, JUND, and CFOS from the activator

protein-1 (AP-1) family may function as pioneer factors, poten-

tially collaborating with the chromatin remodeling complex

SWI/SNF.36 Similarly, members of the FOXA family of TFs

specialize in binding to and facilitating the opening of densely

packed chromatin regions and their significant role as pioneer

factors in liver development is well-established.37 Other TFs,

such as GATA6, are necessary for the expansion of the liver

budandcommitment of theendoderm tohepatic cell fate,38while

FOXK2 can promote AP-1-dependent transcriptional regula-

tion.39 The topenrichedTFBSsalsoexhibit a concordance in their
4 iScience 28, 111658, January 17, 2025
fold-enrichment values across enhancerswith acluster of activity

regions, regardless of the density of either NARs or PARs, sug-

gesting a propensity for the clustering of repressor or activator

TFBSs within enhancers. Taken together, these findings demon-

strate that the predicted PARs and NARs are indeed enriched for

activator (15.9-fold on average) and repressor (3.4-fold on

average) TFBSs, respectively, aligningwith their anticipated roles

in either facilitating or suppressing enhancer activities.

To validate the functional significance of PARs and NARs, we

conducted an overlap analysis with experimentally verified acti-

vating and repressive regions identified using Sharpr-MPRA ex-

periments in HepG2 cells.12 Our findings revealed that Sharpr-

MPRA scores for NAR enhancers are significantly lower (p-value

< 2.2 3 10�16) and negative, compared to positive scores for

PAR enhancers, indicating strong repressive and activating ef-

fects for NAR and PAR enhancers, respectively (Figure 2B).

Additionally, there is a positive correlation between the number

of NARs and the negative Sharpr-MPRA scores, suggesting

that clustering more NARs leads to stronger repressive effects.

These results experimentally validate the positive and negative

impact of PARs and NARs, respectively, on enhancer activity.



iScience
Article

ll
OPEN ACCESS
To evaluate the relationship between regulatory activity and

the degree of enrichment of PARs and NARs within enhancers,

we selectively overlapped PAR-only and NAR-only enhancers

with putative regulatory elements whose activities had been

quantified via STARR-seq experiments conducted in HepG2

cells.40 Our observations reveal a clear dichotomy: enhancer ac-

tivity exhibits a negative correlation with the enrichment of NARs

but a positive correlation with the enrichment of PARs (Fig-

ure 2C), which underscores the cumulative impact of NARs on

repressive activity and PARs on activating activity within the

context of enhancer regulation. Furthermore, the overall activity

levels of enhancers containing at least one NAR are significantly

lower than those containing at least one PAR (Figure 2D).

This impact of PARs and NARs on enhancer activity can be

directly correlated with the expression of adjacent genes in the

liver. We computed the expression levels of genes in HepG2

cells that have only a single PAR or NAR enhancer within their

loci. Genes flanking NAR enhancers exhibit lower expression

compared to those flanking PAR enhancers (p-value < 0.08, Wil-

coxon rank-sum test), suggesting that NAR enhancers have

repressive effects on gene expression, whereas PAR enhancers

have activating effects (Figure S3A). In adult liver tissue, en-

hancers with three or more NARs are associated with signifi-

cantly lower gene expression compared to enhancers with two

NARs (p-value < 0.05, Wilcoxon rank-sum test) or a single NAR

(p-value < 0.05). Conversely, enhancers with three or more

PARs are linked to significantly higher gene expression than

those with just one PAR (p-value < 0.05) (Figure 2E). These find-

ings suggest a close relationship between PARs/NARs and the

alteration in the activating/repressive activities of enhancers,

as well as the expression level of genes located nearby. This im-

plies a potential mechanism in fine-tuning the expression of

target genes through the modulation of activator or repressor

TFBS density. Based on these observations, we classify en-

hancers enriched in NARs, which exert a repressive impact on

gene regulation, as ‘‘repressive impact enhancers’’ or ‘‘RIEs.’’

Our subsequent analysis will focus on unraveling their regulatory

characteristics.

Silencers, as a noteworthy class of regulatory elements, play a

pivotal role in gene repression. To gain deeper insights into the

distinctions between RIEs and silencers, we performed an ex-

amination of the co-localization of these two sets of elements.

What we observed was a notably diminished density of the

H3K27me3 histone mark, a characteristic of silencers, within

the same gene locus containing RIEs, which is less than half

the density in background regions (Figure S3B). Additionally,

we found that the density of the active mark H3K27ac is signifi-

cantly higher (>2.0-fold) in loci containing RIEs when compared

to loci containing silencers. This implies a significantly larger

number of active typical enhancers surrounding RIEs, while si-

lencers appear to operate with fewer active enhancers in their

neighborhood (Figure S3C). We also found that about 11.5% of

HepG2 RIEs are the result of a functional transformation of H1

hESC cell silencers, which is significantly higher than the

10.4% of all HepG2 enhancers (p-value < 0.0003, the binomial

test). The dichotomy of regulatory function and abundant

silencer-enhancer transitions has been documented in the

past41–43 and is not surprising. However, the elevated rate of
silencer-enhancer transitions into RIEs is likely reflective of the

repressor TFBSs embedded into these regulatory elements,

and those TFBSs could be instrumental in establishing silencing

activity when acting as silencers during early development.

To further explore the disparity in regulatory programs estab-

lished by silencers and RIE enhancers, we shifted our focus to

the expression levels of genes flanking these two types of ele-

ments. We observed that the gene expression in proximity to

RIEs is 2.8-fold higher than that associated with silencers (me-

dian value, p-value < 10�6, theWilcoxon rank-sum test). Further-

more, the overall gene expression linked to RIEs surpasses the

background expression of all genes, while the gene expression

associated with silencers falls below the background level thus

depicting RIE and silencers as positive and negative regulators

of gene expression, respectively (Figure 2F). In summary, these

observations underscore that RIEs exert subtle regulatory

impact and fine-tune target gene expression, upregulating

gene expression in a modulated manner. In contrast, silencers

repress target geneswhile being surrounded by a limited number

of typical enhancers.

Developmental gene regulation by repressive impact
enhancers
In previous sections, we established a compelling link between

NARs and their repressive influence on enhancer activity. These

regulatory elements appear to play a pivotal role in fine-tuning

the expression of target genes. Our hypothesis posits that these

target genes primarily pertain to developmental processes that

have remained well conserved throughout vertebrate evolution.

The perturbation of such genes through knockout experiments

frequently resulted in deleterious effects on species phenotypes

and embryonic viability.44,45 Consequently, the evolutionary tra-

jectory of these genes’ regulatory architecture, characterized by

the modulation via RIE activity, represents a pathway through

which vertebrate species have adapted by calibrating crucial

cellular mechanisms.

To test this hypothesis, we examined the expression levels of

genes flanking RIEs in liver tissue across a spectrum of develop-

mental and adulthood stages46 (Figure 3A). We noted a substan-

tial reduction in gene expression levels during the 12–20 weeks

post-conception (wpc) prenatal stage compared to both earlier

prenatal (4–11 wpc) and postnatal stages. This stage-specific

decline in expression suggests a potential involvement of RIEs

in trimming enhancer activities and modulation of the regulation

of associated genes during late development. Conversely, genes

flanking enhancers enriched for PARs displayed the highest

expression levels during postnatal stages, highlighting the acti-

vating function of these enhancers after development (Figure 3B).

To further confirm the regulatory effects of RIEs during develop-

ment, we investigated the coordination between RIEs and typical

enhancers within the same gene loci active in endoderm, fetal

liver,47 and adult liver by overlapping them with the H3K27ac

mark specific to the corresponding cell types and tissues (Fig-

ure 3C). Interestingly, we observed a significantly higher ratio

of active RIEs over typical enhancers in the fetal liver compared

to endoderm and adult liver, which aligns with the lowest gene

expression levels observed during the 12–20 wpc stages,

possibly due to the intensified repressive activities of RIEs. The
iScience 28, 111658, January 17, 2025 5



A

D E

F G H

CB

Figure 3. Developmental gene regulation by RIEs and their evolutionarily gained repressor binding sites

(A) The distribution of median fold values for gene expression proximal to RIEs, observed across different developmental stages andmature phases in the human

system. The fold value for each gene is calculated as the expression of that gene divided by the average expression of all genes in a specific stage. In this analysis,

the number of NAR and PAR enhancers included is 9149 and 6733, respectively. The number of genes included is 207 and 260, respectively.

(B) The distribution of median fold values for gene expression proximal to enhancers enriched for PARs.

(C) Ratio calculated as the total number of RIEs overlapping H3K27ac marks in a specific cell type and tissue divided by the total number of other H3K27ac in the

same gene loci in that corresponding tissue.

(D) Expression level of RIE-flanking genes FOXA2 and HNF4A in 12–20 wpc and postnatal stages as examples.

(E) Selected biological processes enriched for RIEs using GREAT for distinct categories of HepG2 enhancers.

(F) Inferred direction of selection for each category of HepG2 enhancers.

(legend continued on next page)
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increasing ratio of the total number of RIEs divided by the total

number of typical enhancers from early development (4–11

wpc) to late development (12–20 wpc) suggests a gradual shift

from overall activating effects to predominantly suppressive ef-

fects between these two stages coordinated by all enhancers

in the loci (Figures 3A and 3C). In addition, we also observed a

significant increase of nearby gene expression between late

development and postnatal stages, suggesting that the RIE nei-

ghboring genes also play crucial roles in adult liver function. For

example, RIE-neighboring genes HNF4A48–51 and FOXA2,52,53

which play essential roles in liver development and hepatocyte

differentiation, show significantly higher expression levels during

the postnatal stage compared to the 12–20 wpc stage. This im-

plies combinatory effects of the upregulation of these genes by

coordinated enhancers (Figure 3D). In concordance, gene

ontology analysis confirmed a close correlation between RIEs

and key biological processes in the liver, such as liver develop-

ment, as well as alcohol and lipid metabolism (Figure 3E). The

biological processes associated with PAR enhancers include

liver-related functions such as lipid biosynthesis and insulin

response (Figure S3D).

Fetal liver and adult liver cells may utilize different sets of non-

coding regulatory elements marked by H3K27ac peaks, leading

to divergent biological functions. Our motif enrichment analysis

in H3K27ac regions revealed that, in fetal liver, the top enriched

TFBSs, including TET and DNMT1, are associated with HSC

numbers and epigenetic regulation in postnatal liver growth

and regeneration, unlike in adult liver.54,55 This is consistent

with previous studies highlighting the interactions between

HSCs and fetal liver cells during liver development.56

Evolutionarily gained repressor binding sites in
repressive impact enhancers
Next, we explored the evolutionary origin of repressor binding

sites within RIEs. First, we observed that enhancers enriched

for PARs undergo robust negative selection according to the Di-

rection of Selection (DoS) metric (Figure 3F, the McDonald-

Kreitman test, see STAR Methods). In contrast, RIEs exhibit

the signature of a marginal negative selection pressure (Fig-

ure 3F). This suggests a weak selective constraint on RIEs,

potentially permitting gradual loss and gain of repressive

TFBSs during evolution and active fine-tuning of gene expres-

sion. To probe whether this diminished constraint is linked to

gene regulation specific to humans, we extracted orthologous

sequences of PARs and NARs in HepG2 enhancers from the rhe-

sus macaque genome marked by H3K27ac in rhesus macaque

liver tissue and predicted PARs and NARs within these ortholo-

gous regions in rhesus (see STAR Methods).

Most PARs (58.7%, p-value < 0.001, permutation test) and

NARs (54.2%, p-value < 0.001) have identical DNA sequences

between human and rhesus macaque orthologous, consistent
(G) Mapping of PARs and NARs within human HepG2 enhancers to orthologous

delineate identical human and rhesus macaque orthologous sequences (‘‘ident

active regions (‘‘PAR’’ and ‘‘NAR’’) and regions not PAR or NAR in rhesus ortholo

(H) Fold change of average expression between human and rhesusmacaque for g

NARs and sequence identical NARs in rhesus macaque orthologous sequences

test).
with the high similarity of the genomes between human and rhe-

sus macaque (Figure 3G). Notably, a substantial proportion of

NARs found in humans (28.4%, p < 0.08), of which the se-

quences are not identical to their rhesus macaque counterparts

due to sequence changes, were also identified as NARs in rhe-

sus macaques, implying functional conservation with partial

sequence conservation among this group of repressor binding

sites. Interestingly, a large fraction of NARs in humans (16.7%,

p-value < 0.001) were mapped to the neutral regions (neither

PAR nor NAR) in rhesus macaque sequence counterparts. This

indicates that this subset of NARs in human enhancers likely

emerged from either neutral sequences or non-liver-specific

binding sites present in the rhesus macaque genome via evolu-

tionary changes. This observation aligns with our earlier findings

ofmarginal negative selection in RIEs. Only a small fraction of hu-

man NARs (0.7%, p-value = 0.38) overlapped with the PARs

identified in rhesus macaque enhancers, suggesting that the

direct transition from activator to repressor TFBSs is a rare

event. A similar trend is also observed in the gain of PARs in hu-

man enhancers, with a larger fraction of PARs being conserved

(30.8%, p-value < 0.12) and a lower fraction being neutrally

derived (9.6%, p-value < 0.003) when compared to their rhesus

macaque counterparts.

To further investigate the evolutionary pattern of these NARs

derived from neutral rhesus macaque sequences, we assessed

their conservation in primates and placentals, categorizing

them as conserved or non-conserved (Figure S4A). We found

that approximately 53% of these NARs are human-specific,

with no conservation in primates or placentals. About 14% are

conserved only in primates, and 19% are conserved in both pri-

mates and placentals (Figure S4B).

We speculate that these emerged NARs in human enhancers

are associated with acquired repressed enhancer activities and

expression-modulating effects on nearby genes. To test this,

we focused on gene expression profiles in human prenatal

stages (12–20 wpc) and the compatible rhesus macaque gesta-

tion stages (e93-e130) using published experimental data.46,57

We computed the fold-change value as the average gene

expression in humans divided by the average expression of the

same set of genes in rhesus macaque flanking RIEs, binning

them into NARs derived from neutral sequences, NARs with

diverged sequences but functionally conserved and NARs with

identical sequence in rhesus macaque. This fold-change value

indicates the change of gene expression between the two spe-

cies, which partially reflects the change in the regulatory activity

of nearby enhancers. Our result shows that the fold change

associated with the emerged NARs in humans but neutral se-

quences in rhesus macaque is about 30% lower (0.68, p-value

< 10�20, the Wilcoxon rank-sum test) than the functionally

conserved NARs (1.01), identical sequence NARs (1.09) and all

genes flanking mappable RIEs as control level (1.04), suggesting
sequences in rhesus macaques. Permutation test. HepG2 model annotations

ical PAR’’ and ‘‘identical NAR’’), sequence mutated but functional conserved

gous (‘‘neutral’’).

enes flanking the RIEs with their NARsmapped to neutral, functional conserved

(* p-value <0.05, ** p-value <0.001, *** p-value <10�6, the Wilcoxon rank-sum
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Figure 4. Instances of PAR and NAR influenced by experimentally identified causal variants

(A) Comparison between computational predicted effect (PARs and NARs) and experimentally identified effects on enhancer activities for a list of 10 published

causal variants. Blue color: enhancer activity decreases after mutation. Red color: enhancer activity increases after mutation.

(B) Selected ChIP-seq profiles depicting epigenetic marks and TF binding patterns in the vicinity of the causal variant rs17293632 in the HepG2 cell line. This SNP

coincides with a binding site for the AP-1 family of TFs.

(C) Epigenetic and TF binding ChIP-seq profiles for the causal variant rs9987289 in the HepG2 cell line. Notably, this SNP aligns with a binding site for HNF4A.
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the acquisition of repressive effects in human enhancers associ-

ated with these newly derived NARs (Figure 3H). These findings

provide insight into the potential origins of newly gained

repressor binding sites within human enhancers during evolu-

tion, implying an evolutionary path that vertebrate species

have traversed.

Instances of positive activity region and negative
activity regions influenced by experimentally identified
causal variants
In agreement with the role of activator and repressor binding

sites in the regulation of gene expression, we observed a sub-

stantial concurrence between experimentally validated causal

variants and predicted PAR and NAR regions within liver en-

hancers. We collected 10 causal variants validated by experi-

ments from previous studies, including rs17293632,58 rs1967

017,59 rs10889352,60 rs11603334,61 rs2291702,62 rs6712203,63

rs1421085,8 rs12740374,64 rs2266788,65 and rs9987289.66 Our

model correctly predicted the directional effects on enhancer ac-

tivity for all 10 variants (Figure 4A). Here we focused on two ex-

amples of causal variants with available experimental validation

data. The variant rs17293632 has been shown to have a dam-

aging effect on enhancer activity,58,67,68 while the rs9987289

has a protective effect,66,69–71 which showed the largest effects

on enhancer activities in our predictions. To elucidate these find-

ings further, we present epigenomic profiles and TF binding

events obtained from ChIP-seq experiments.

The rs17293632 variant, identified as an eQTL for SMAD3

expression in human thyroid tissue, exerts a pronounced

influence on enhancer activity.67,72 GTEx portal (v8) shows that
8 iScience 28, 111658, January 17, 2025
rs17293632 is an eQTL in thyroid (SMAD3, PIAS1), esophagus-

mucosa (SMAD3, AAGAB), and whole blood (AAGAB), suggest-

ing that the enhancer containing this variant is potentially active

across multiple cell types, including HepG2, as evidenced by

active enhancer marks and TF ChIP-seq signals in HepG2. Its

(T) allele markedly disrupts enhancer functionality by obstructing

the transcriptional activity of AP-1 TFs.58,67 The rs17293632

variant resides within regions delineated by HepG2-specific

ChIP-seq peaks, including the open chromatin domain of DHS

and histone marks of H3K27ac and H3K4me1. This variant is sit-

uated squarely within a predicted PAR region, in concordance

with its disruptive impact on enhancer activity upon mutations.

Furthermore, it is located within the ChIP-seq peaks of FOSL2

and JUND TFs in the HepG2 cell line, aligning precisely with prior

observations of interference in AP-1 family TFBSs (Figure 4B).

The opposite regulatory effect can be attributed to

rs9987289, a liver-specific eQTL linked to a spectrum of

liver-related phenotypes, including effects on low-density li-

poprotein (LDL) cholesterol levels and high-density lipopro-

tein (HDL) cholesterol levels.66,69,70 This variant exhibits an

allelic bias in binding affinity for Hepatocyte Nuclear Factor

4 Alpha (HNF4A), with the (A) allele being associated with

aberrated HNF4A binding and, notably, substantially reduced

expression of the TNKS gene.66 While HNF4A is convention-

ally acknowledged as a transcriptional activator, it has

also been observed to play a role in transcriptional repres-

sion, as substantiated in previous studies.73–75 Our investi-

gation has disclosed that rs9987289 resides within a compu-

tationally predicted NAR region and an HNF4A binding site,

suggesting a potential strengthening of enhancer activity in
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response to mutations. This inference harmonizes with the

empirical observation of repressive effects and the corre-

sponding ChIP-seq signal of HNF4A within this genetic locus

(Figure 4C).

These instances serve to underscore the agreement between

the predicted regulatory effects of PARs and NARs and their

experimentally verified mutational effects within human liver en-

hancers. They provide additional support of robustness to our

methodology, affirming its proficiency in pinpointing activity re-

gions within regulatory elements.

DISCUSSION

The functional consequences and evolutionary transformations

associated with enhancers enriched for repressor binding sites

remain unclear. In our study, we used deep learning to system-

atically delineate positive and negative activity regions within

HepG2 enhancers, aiming to elucidate their intricate interplay

and regulatory roles. Our investigation reveals that PARs, char-

acterized by their capacity to strengthen enhancer activity,

exhibit an enrichment of activator TFBSs, including those asso-

ciated with pioneer factors. In contrast, NARs, characterized by

their negative influence on enhancer scores, are notably en-

riched in transcriptional repressor binding sites. The enhancer

activity and nearby gene expression are in pronounced positive

correlation with the increased abundance of PARs, whereas a

corresponding negative correlation is observed with the accu-

mulation of NARs.

Of particular interest is the discernible change in gene

expression within the vicinity of RIEs during later stages of liver

development. This observation suggests a modulating role of

RIEs in the regulatory activity of enhancers associated with

the expression of genes critical to developmental processes.

Our study reveals the adaptation of those genes subject to

this modulated regulation toward achieving moderate rather

than drastic changes in expression levels, thereby ensuring

the preservation of function while simultaneously facilitating

adaptive evolution. We also observed differences in the evolu-

tionary dynamics of NARs and PARs within human liver en-

hancers when compared to their counterparts in the rhesus ma-

caque genome. While most PARs and NARs are preserved

between the two species, more than 16% of NARs in human

RIEs are derived from neutral DNA in the rhesus macaque

genome, leading to diminished enhancer-based gene upregula-

tion and subsequent decline in gene expression in humans. The

accumulation of both activator and repressor binding sites

within human enhancers potentially implies an increased diver-

sity of TFs and more complex TF-TF combinations, which in

turn, enhances the capacity for intricate and multifaceted

gene regulation in the human genome.

Our investigation has established that enhancers enriched

with NARs play a pivotal role in the fine-tuning of gene regulation.

RIEs do not act in isolation—the genetic loci housing RIEs also

exhibit a concurrent enrichment of typical enhancers. In

contrast, loci harboring silencers exhibit a marked depletion of

active enhancers (Figure S3C). Furthermore, we observe that

the expression level of nearby genes associated with RIEs is

significantly higher compared to genes associated with si-
lencers. This observation leads us to postulate that RIEs provide

an additional layer of fine-tuned modulation of gene expression

that complements the regulatory orchestration conducted by

neighboring typical enhancers within the same locus and is an

alternative to robust and stringent repressive mechanisms

established by silencers.

In conclusion, we systematically explored HepG2 enhancers

and profiled enhancers enriched for repressor binding sites.

We showed that the activities of these enhancers are trimmed,

and their nearby gene expression ismodulated during late devel-

opment. Repressor binding sites in these enhancers appear to

have undergone evolutionary expansion, indicating the refined

and intricately orchestrated nature of gene regulation in humans.
Limitations of the study
This work demonstrates an interplay of activator and repressor

TFs in enhancer regions. Other regulatory elements such as si-

lencers and insulators are not the focus of this study, though

they may coordinate with enhancers for gene regulation. In addi-

tion, the TREDNet DL model is trained on an empirically estab-

lished enhancer set, defined as open chromatin regions (DHS)

marked by H3K27ac and H3K4me1 histone modifications. This

highly confident but not the most comprehensive set may limit

the ability of the model to detect potential enhancer elements

without these histone modifications.
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65. Caussy, C., Charrière, S., Marçais, C., Di Filippo, M., Sassolas, A., Delay,

M., Euthine, V., Jalabert, A., Lefai, E., Rome, S., and Moulin, P. (2014). An

APOA5 3’ UTR variant associated with plasma triglycerides triggers

APOA5 downregulation by creating a functional miR-485-5p binding

site. Am. J. Hum. Genet. 94, 129–134. https://doi.org/10.1016/j.ajhg.

2013.12.001.

66. He, Y., Chhetri, S.B., Arvanitis, M., Srinivasan, K., Aguet, F., Ardlie, K.G.,

Barbeira, A.N., Bonazzola, R., and Im, H.K.; GTEx Consortium (2020).

sn-spMF: matrix factorization informs tissue-specific genetic regulation

of gene expression. Genome Biol. 21, 235. https://doi.org/10.1186/

s13059-020-02129-6.
12 iScience 28, 111658, January 17, 2025
67. Miller, C.L., Pjanic, M., Wang, T., Nguyen, T., Cohain, A., Lee, J.D., Perisic,

L., Hedin, U., Kundu, R.K., Majmudar, D., et al. (2016). Integrative functional

genomics identifies regulatory mechanisms at coronary artery disease loci.

Nat. Commun. 7, 12092. https://doi.org/10.1038/ncomms12092.

68. Zhao, Q., Wirka, R., Nguyen, T., Nagao, M., Cheng, P., Miller, C.L., Kim,

J.B., Pjanic, M., and Quertermous, T. (2019). TCF21 and AP-1 interact

through epigenetic modifications to regulate coronary artery disease

gene expression. Genome Med. 11, 23. https://doi.org/10.1186/s13073-

019-0635-9.

69. Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C., Stylianou,

I.M., Koseki, M., Pirruccello, J.P., Ripatti, S., Chasman, D.I., Willer, C.J.,

et al. (2010). Biological, clinical and population relevance of 95 loci for

blood lipids. Nature 466, 707–713. https://doi.org/10.1038/nature09270.

70. Huang, L.O., Rauch, A., Mazzaferro, E., Preuss, M., Carobbio, S., Bayrak,

C.S., Chami, N., Wang, Z., Schick, U.M., Yang, N., et al. (2021). Genome-

wide discovery of genetic loci that uncouple excess adiposity from its co-

morbidities. Nat. Metab. 3, 228–243. https://doi.org/10.1038/s42255-021-

00346-2.

71. Teslovich, T.M., Kim, D.S., Yin, X., Stancáková, A., Jackson, A.U.,
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

HepG2 enhancers, RIE enhancers,

positive and negative activity regions

Zenodo https://zenodo.org/records/14502340

Experimental models: Cell lines

HepG2 (K3K27ac, H3K4me1, H3K27me3 and

DNase)

Roadmap project https://egg2.wustl.edu/roadmap/data/byFileType/

peaks/consolidated/narrowPeak/

TFs ChIP-seq experiments in HepG2 ENCODE project https://hgdownload.soe.ucsc.edu/goldenPath/

hg19/encodeDCC/

Reporter assay QTLs (raQTLs) in HepG2 Database: GSE128325 https://www.nature.com/articles/s41588-019-

0455-2

STARR-seq data in HepG2 ENCODE project

ENCSR135NXN

https://genomebiology.biomedcentral.com/

articles/10.1186/s13059-020-02194-x

Sharpr-MPRA data in HepG2 Database: GSE71279 https://www.nature.com/articles/nbt.3678

H3K27ac ChIP-seq peaks in rhesus liver tissues ArrayExpress accession

number E-MTAB-2633

https://www.sciencedirect.com/science/article/

pii/S0092867415000070

Gene expression profile for developmental and

adulthood stages in the human liver

ArrayExpress accession

number E-MTAB-6814

https://www.nature.com/articles/s41586-019-

1338-5

Files of HepG2 enhancers, RIE enhancers, PAR

and NAR identified in this study are deposited

in Zenodo

Zenodo https://zenodo.org/records/14502340

Software and algorithms

TREDNet deep learning model https://www.pnas.org/doi/

10.1073/pnas.2206612120

https://zenodo.org/records/8161621

FIMO https://meme-suite.org/meme/

doc/fimo.html

MEME Suite
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Not applicable to this study. This work is a computational study, and all experimental data used for analysis are retrieved from pre-

vious publications which are publicly available.

METHOD DETAILS

TREDNet DL model and calculation of delta score
The study utilized TREDNet, a DLmodel developed by our research group for accurate prediction of enhancer regions andmutational

effects in base-pair resolution.25 TREDNet is a multi-phase DL framework composed of three consecutive convolutional neural net-

works (CNNs). These CNNs serve different purposes: the first CNN predicts epigenomic signals across the genome, the second pre-

dicts enhancers, and the third predicts activity regions. The enhancer prediction score generated by TREDNet serves as ameasure of

the regulatory activity of the target DNA sequence.

To evaluate the effects of point mutations on enhancer activity, we performed in-silico saturatedmutagenesis of enhancer regions.

For each 400-base pair enhancer region, we calculated a delta score for each nucleotide position in comparison to the GRCh37/hg19

reference sequence. This calculation involved iteratively mutating each nucleotide to all possible alternatives while keeping the re-

maining 399 nucleotides the same as the reference sequence. The delta score was computed using the formula:

X
ðe reference � e alternateÞ

.
3 (Equation 1)

Where:

‘‘e’’ represents the probability that the 400-base pair sequence is an enhancer.

‘‘reference’’ indicates the GRCh37 reference nucleotide.
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‘‘alternate’’ indicates a non-reference nucleotide.

The delta score, calculated for each nucleotide position within the 400-base pair enhancer region, provides insights into the effects

ofmutations at specific bases on the overall enhancer probability of the region. A positive delta score indicates that a reference nucle-

otide at that position has an activating effect on the enhancer, while a negative delta score suggests a repressive effect of the refer-

ence nucleotide on the enhancer.

Detection of positive and negative activity regions (PARs and NARs)
For HepG2 enhancers, we employed two separate DL models (part of the TREDNet model’s third phase) to predict positive activity

regions (PARs) and negative activity regions (NARs). The PAR classifier assigned a label of 1 (positive) to nucleotides within en-

hancers that overlapped with a ChIP-seq TFBS and 0 (control) otherwise. We excluded certain regions from the control set, specif-

ically: (i) regions between any two TFBSswithin an enhancer, (ii) regions within 10bp of a TFBS, (iii) regions within 20bp of an enhancer

boundary, and (iv) regions in enhancers less than 50bp in length. We utilized TFBSs identified in ChIP-seq peaks from 86 HepG2 TFs

using FIMO.29

To predict TFBS locations within enhancer sequences, we derived features from delta score predictions across various window

sizes. For each nucleotide, we examined the delta profiles of windows ranging from 10bp to 1bp in length that overlaps the target

nucleotide. For windows longer than 7bp, we defined a core region as the central 6bp. For each nucleotide, we calculated the

following delta profiles metrics across all window sizes: (i) the average delta score of nucleotides within the window, (ii) the maximum

delta score within the window, (iii) the fraction of nucleotides with a positive delta score within the window, and (iv) the fraction of

nucleotides with a positive delta score within the core region.

The same procedure was repeated for NAR models. We then identified regions with a minimum of 5 consecutive predicted acti-

vating (positive delta) and repressive (negative delta) nucleotides (false positive rate < 0.01) as PARs and NARs, respectively. For a

more detailed model description, please refer to the TREDNet paper.25

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests
The Statistical tests used in this study include the binomial test, the Wilcoxon rank-sum test and the permutation test, with

* p-value < 0.05, ** p-value < 0.001, *** p-value < 10-6. Also indicated in figure legends.

Datasets used and definition of enhancers
Genome-wide ChIP-seq datasets for histone marks, DNase I-hypersensitive sites (DHSs), and TFBSs were obtained from the Ency-

clopedia of DNA Elements (ENCODE) project.76 To comprehend the regulatory impact of active regions in enhancers, we retrieved

the liver-specific raQTL dataset.28 This dataset captures genetic variants associated with the activity of putative regulatory elements

in HepG2 cells. Additionally, we acquired the activity scores of HepG2 segments from STARR-seq experiments conducted as part of

this study.40 These scores provide valuable insights into the functional activity of enhancer regions in the HepG2 cell line. Promoters,

which represent regions crucial for gene transcription initiation, were defined as sequences spanning 1,500 bp upstream and 500 bp

downstream from the transcription start site (TSS) of UCSC-annotated ’known genes’.77

Enhancers in HepG2 were rigorously defined based on a set of criteria. Specifically, HepG2 enhancers were designated as 400

base pair (bp) segments, with their centers aligned to the centers of DHS regions. These DHS regions were further required to exhibit

overlapping signals in both H3K27ac and H3K4me1 histone marks, indicating their active enhancer status. Any segments found to

overlap with promoter regions or exonic sequences were excluded from the enhancer set, ensuring that only distal regulatory ele-

ments were considered. Silencers in HepG2 were defined similarly as the DHS regions overlapping H3K27me3 but not H3K27ac

marks.

TFBS enrichment
To calculate the enrichment of TF ChIP-seq peaks in enhancers containing PAR and NAR, we compute the fold value. This value is

determined as dividing the density of ChIP-seq peaks for a specific TFwithin enhancers by the density of the same TF in a control set.

The control set comprises one-fold DHS (DNase I hypersensitivity) regions randomly selected from non-liver tissues, each truncated

to a length of 400 bp from the center position.

For the enrichment of computationally predicted TFBSs in PAR and NAR within HepG2 enhancers, we employ the FIMO tool with

position weight matrices (PWMs) sourced from a combined database, including PWMs from ENCODE76 and JASPAR.78 We only

included the predicted TFBSs of which the center positions situated inside the PARs or NARs. The fold enrichment value is computed

following the same procedure as previously described.

Gene expression and the number of PARs and NARs in enhancers
The gene expression profile, spanning multiple developmental and adulthood stages in the liver, is sourced from this study.46 For

each enhancer, we collect the expression levels of their flanking genes. To calculate the correlation between the number of PARs

and NARs and their associated gene expression, we consider only genes uniquely associated with either the ‘‘PAR only’’ or ‘‘NAR
e2 iScience 28, 111658, January 17, 2025
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only’’ subsets, excluding genes shared by both subsets. The Gene expression profile for HepG2 is approximated bymerging the pro-

files from ‘‘teenager’’ to ‘‘senior’’ stages and used for analysis in Figures 2E and 2F. RNA-Seq data from HepG2 is download from

Roadmap project (https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.RPKM.pc.gz).

Activating and repressive activity for PAR and NAR
The activating and repressive bins in the HepG2 cell line are obtained from the Sharpr-MPRA paper.12 For enhancers enriched in

NARs, we calculate both the number of Sharpr identified activating and repressive nucleotides located within NARs. The fold value

is then determined by dividing the number of overlapped repressive nucleotides by the number of overlapped activating nucleotides

for each subset of enhancers. A similar procedure is applied to PAR enriched enhancers.

Direction of selection
TheDirection of Selection (DoS) test, a refinement of theMcDonald-Kreitman test,79 is employed to assess the direction and extent of

deviation from neutral selection. In this context, we utilize fourfold degenerate sites with mutations as the reference to gauge selec-

tion on mutations within enhancers containing PARs and NARs:

DoS = Dn

� ðDn+DsÞ -- Pn

� ðPn+PsÞ (Equation 2)

Where:

‘‘n’’ represents ‘‘nonsynonymous’’ sites, denoting mutations within enhancers containing exclusively PARs or exclusively NARs.

‘‘s’’ signifies ‘‘synonymous’’ sites, referring to the mutated fourfold degenerate sites.

‘‘D’’ stands for ‘‘diverged’’ sites, which are mutations (or substitutions) fixed in human populations.

‘‘P’’ denotes ‘‘polymorphic’’ sites, where both the ancestral allele and the mutations are retained in human populations.

Evolutionary gain of NARs in human enhancers
To identify orthologous sequences in rhesus macaques, we employed the pairwise sequence alignment dataset downloaded from

UCSC genome browser to map active regions in human HepG2 enhancers to the rhesus genome. We only retained orthologous se-

quences that overlap with H3K27ac ChIP-seq peaks in rhesus liver tissues.80

To provide the justification of applying human HepG2 enhancer model to rhesus liver enhancers, we performed the cross-species

prediction using DL. The HepG2 model distinguished rhesus liver enhancers from background DHS regions with a lower but reason-

able accuracy (auROC=0.82) compared with human HepG2 enhancers (auROC=0.91) and it can hardly distinguish between human

HepG2 and rhesus liver enhancers (auROC=0.64), which suggests the high similarity between the two sets of enhancers. To exclude

the potential influence of diverged flanking context of the enhancers between human and rhesus, we embedded the rhesus orthol-

ogous sequences into the human context sequences by replacing only one of their counterpart PAR or NAR sequences at a time and

keep the rest human context sequences unchanged, to form a group of mixed enhancer sequences with only one PAR or NAR

sequence replaced. In-silico mutagenesis was then conducted on these mixed regions to generate delta scores and annotate

PARs and NARs using the human HepG2 TREDNet model.

We calculated p-values by randomly shuffling labels for four categories—from PAR, NAR, neutral, and identical in rhesus—across

either NAR or PAR regions, performing this permutation 1000 times. For each permutation, we computed the fraction of regions clas-

sified as ‘NAR from neutral’ by dividing the number of correctly labeled ‘NAR from neutral’ regions by the total number of original ‘NAR

from neutral’ regions. The results indicate that the most significant conversions occur from identical and neutral sequences to PAR/

NAR (p < 0.003). Conversions within the same type of regions (NAR from NAR, p = 0.08; PAR from PAR, p = 0.12) are evident but not

statistically significant. Conversions between different types of regions are not significant, likely due to low occurrence (p = 0.37).
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