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Abstract

Dimensionality reduction is a data transformation technique widely used in various fields of genomics research. The application of
dimensionality reduction to genotype data is known to capture genetic similarity between individuals, and is used for visualization of
genetic variation, identification of population structure as well as ancestry mapping. Among frequently used methods are principal compo-
nent analysis, which is a linear transform that often misses more fine-scale structures, and neighbor-graph based methods which focus on
local relationships rather than large-scale patterns. Deep learning models are a type of nonlinear machine learning method in which the
features used in data transformation are decided by the model in a data-driven manner, rather than by the researcher, and have been
shown to present a promising alternative to traditional statistical methods for various applications in omics research. In this study, we pro-
pose a deep learning model based on a convolutional autoencoder architecture for dimensionality reduction of genotype data. Using a
highly diverse cohort of human samples, we demonstrate that the model can identify population clusters and provide richer visual informa-
tion in comparison to principal component analysis, while preserving global geometry to a higher extent than t-SNE and UMAP, yielding
results that are comparable to an alternative deep learning approach based on variational autoencoders. We also discuss the use of the
methodology for more general characterization of genotype data, showing that it preserves spatial properties in the form of decay of link-
age disequilibrium with distance along the genome and demonstrating its use as a genetic clustering method, comparing results to the
ADMIXTURE software frequently used in population genetic studies.
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Introduction
The increasing availability of large amounts of data has led to a
rise in the use of machine learning (ML) methods in several fields
of omics research. For many applications dealing with complex
and heterogeneous information, the data-driven approach has
become a promising alternative or complement to more tradi-
tional model-based methods (Libbrecht and Noble 2015; Schrider
and Kern 2018; Xu and Jackson 2019).

Deep learning (DL) is an active subdiscipline of ML that has
had a large impact in several fields, including image analysis and
speech recognition (LeCun et al. 2015). DL methods comprise
models that compute a nonlinear function of their input data us-
ing a layered structure that learns abstract feature representa-
tions in a hierarchical manner, and can be used for supervised
learning tasks such as prediction and also in unsupervised set-
tings for pattern recognition and data characterization problems
(Goodfellow et al. 2016). A key aspect of DL is that the features
used in data transformation are learned by the model as opposed
to being defined by the researcher, resulting in a higher level of
flexibility than alternative ML algorithms such as support vector
machines (Zou et al. 2019).

Advances have been made in developing DL techniques for
various types of omics data (Eraslan et al. 2019a). The current

state-of-the-art for predicting effects of genetic variants on splic-

ing is a DL model (Cheng et al. 2019). The DeepBind model

(Alipanahi et al. 2015) outperformed several previous non-DL

approaches for predicting sequence specificities of DNA-binding

proteins. For the task of variant calling of single-nucleotide poly-

morphisms (SNPs) and small indels, the DeepVariant model of

Poplin et al. (2018) was shown to give improved results over exist-

ing tools (Nawy 2018).
DL has also been applied to unsupervised problems, including

imputation of metabolite and SNP data (Scholz et al. 2005; Sun

and Kardia 2008; Chen and Shi 2019), de-noising of

ChIPsequencing data (Koh et al. 2017) and outlier detection of

RNA sequencing gene expression data (Brechtmann et al. 2018).

In the field of single-cell RNA-sequencing, DL methods have been

used for imputation, de-noising as well as dimensionality reduc-

tion (Ding et al. 2018; Talwar et al. 2018; Eraslan et al. 2019b).
Dimensionality reduction is a data transformation technique

that is commonly applied to SNP data in the fields of population

and quantitative genetics. Applications include visualization of

genetic variation, detection of population structure and correct-

ing for stratification in genome-wide association studies (GWAS)

(Patterson et al. 2006; Price et al. 2006). One of the most widely

used methods for performing dimensionality reduction is
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principal component analysis (PCA), in which a linear transfor-
mation is made onto uncorrelated dimensions that maximize the
variance of the projected data (Pearson 1901). It has been shown
that the lower-dimensional representation resulting from PCA
can capture patterns in genetic variation, e.g. by reconstructing
geographical relationships from genotype data (Novembre et al.
2008).

Although PCA is an efficient and reliable method, there are
limitations associated with it. First, it can be sensitive to attrib-
utes of sequence data such as the presence of rare alleles and
SNPs that are correlated due to linkage disequilibrium (LD),
which can cause groupings of samples that reflect such phenom-
ena rather than genome-wide population structure (Tian et al.
2008; Ma and Shi 2020). To avoid such spurious effects, a strin-
gent filtering procedure to remove low-frequency variation and
SNPs in high LD is usually required prior to performing PCA, al-
though methods to handle LD by e.g. shrinkage methods have
been proposed (Zou et al. 2010). Further limitations of PCA are re-
lated to the inability to capture nonlinear patterns in the data, as
discussed in e.g. Alanis-Lobato et al. (2015), where the nonlinear
method of noncentred Minimum Curvilinear Embedding (ncMCE)
is proposed and shown to detect population structure in cases
where PCA fails.

A family of nonlinear methods that has seen increased use on
SNP data is neighbor graph-based models, including t-distributed
stochastic neighbor embedding (t-SNE) and Uniform Manifold
Approximation and Projection (UMAP) (van der Maaten and
Hinton 2008; McInnes et al. 2020). These methods consider neigh-
boring samples around each data point and try to find a lower-
dimensional representation that preserves the distances between
the points in the neighborhood. Both t-SNE and UMAP have been
shown to be able to capture more fine-scale population structure
than e.g. PCA, but the focus on preserving local topology results
in a projection in which distances between larger clusters are
more difficult to interpret (Gaspar and Breen 2019; Diaz-
Papkovich et al. 2021).

More recently, DL methods for dimensionality reduction of
SNP data have also been introduced. In Yelmen et al. (2021), the
focus is on generating artificial genotypes, but one type of model
considered, restricted Boltzmann machines (RBMs), projects the
data to a reduced-dimensionality space which is compared to
that of PCA. A DL approach based on variational autoencoders,
popvae, is presented in Battey et al. (2021), where they show that
their model can capture subtle features of population structure,
while preserving global geometry to a higher degree than both
t-SNE and UMAP.

In this study, we present a DL framework denoted Genotype
Convolutional Autoencoder (GCAE) for nonlinear dimensionality
reduction of SNP data based on convolutional autoencoders. The
main differentiating feature between GCAE and the other DL
methods mentioned is that our model makes use of convolu-
tional layers, which take into account the sequential nature of
genotype data. We describe adaptations to network architecture
implemented to capture local as well as global patterns in se-
quence data, and compare dimensionality reduction perfor-
mance to that of popvae, PCA, t-SNE, and UMAP on a highly
diverse cohort of human samples. We also demonstrate the
broader applicability of the framework for general characteriza-
tion of SNP data by showing that minor modifications in network
structure can produce a model for solving the genetic clustering
problem, and compare results to a model-based method com-
monly used in population genetic studies.

Materials and methods
Model architecture and training strategy
The proposed model for dimensionality reduction of SNP data is
a convolutional autoencoder. Autoencoders are a class of DL
models that transform data to a lower-dimensional latent repre-
sentation from which it is subsequently reconstructed (Kramer
1991; Hinton and Salakhutdinov 2006). The idea is to learn fea-
tures, or variables derived from the original data, that capture
the important characteristics of the data. The structure of the
model is shown in Fig. 1. It comprises four types of layers that
transform the input in a sequential manner: convolutional, pool-
ing, fully-connected and upsampling layers.

Convolutional layers consist of a number of weight matrices,
or kernels, of a specified size. These are used to compute a sliding
dot product of the input. Each kernel is convolved over the input
sequence along its spatial dimension with a given stride, or step
size. In our models we use one-dimensional convolutional layers
with a stride of size one. The depth of the layer output is thus de-
termined by the number of kernels, and the spatial dimension of
the data is unchanged. The pooling layers perform downsam-
pling by applying a max filter over sliding windows of the data,
separately for each depth dimension, reducing the size of the spa-
tial dimension and leaving the depth unchanged.

The encoder alternates convolutional and pooling layers to in-
crease the depth and reduce the spatial dimension of the data.
The center of the model consists of a series of fully-connected
layers in which the latent representation, or encoding, is defined.
In contrast to convolutional layers, fully-connected layers con-
tain weights between all pairs of variables in the input and out-
put. The decoder roughly mirrors the structure of the encoder,
with upsampling performed by means of nearest-neighbor inter-
polation to increase the spatial dimension of the data.

Residual connections, shown as black dashed lines in Fig. 1,
are used to stabilize the training process. These add the output
from one layer to later parts of the network, skipping over layers
in between, and have been shown to facilitate the optimization of
deep networks for different applications (He et al. 2015).

Convolutional layers allow the model to capture local patterns
and make use of the sequential nature of genetic data, allowing it
to incorporate essential features such as LD at various length
scales.

In order to facilitate the learning of global patterns in the in-
put data, the model has two additional sets of variables. Each of
these sets contains one variable per marker that is updated dur-
ing the optimization process, allowing the model to capture
marker-specific behavior. The two sets of marker-specific varia-
bles, illustrated in Fig. 1 in red and green, are both inserted into
the model by concatenation to layers in the decoder. One set of
variables is also concatenated to the model input at every stage
of the training process.

The activation function exponential linear unit (elu) is applied
to convolutional layers, after which batch normalization is per-
formed. The fully-connected layers also have elu applied to
them, except the outermost ones which have linear activation.
The final convolution is performed with a kernel size of 1, with
linear activation and no batch-normalization. In order to regular-
ize the network and avoid overfitting, dropout is used on the
weights of the fully-connected layers, except those surrounding
the latent representation, and Gaussian noise is added to the la-
tent representation during training.

Input data is represented as an ðnsamples � nmarkersÞ matrix of
diploid genotypes, normalized to the range ½0; 1� by mapping
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0! 0:0; 1! 0:5; 2! 1:0. When calculating the loss function, tar-

get genotypes are represented using one-hot encoding with 3

classes ½pð0Þ; pð1Þ; pð2Þ� with pðgÞ ¼ 1:0 for the true genotype, and

pðgÞ ¼ 0:0 for the others. Model output oij of sample i at site j has

the sigmoid function applied to it, after which it is interpreted as

the allele frequency at the site. This scalar is transformed to the

format of the targets using the formula for genotype frequencies

f(g) obtained from the principle of Hardy-Weinberg equilibrium in

Equation (1).

½f ð0Þ ¼ ð1� oijÞ2; f ð1Þ ¼ 2ð1� oijÞoij; f ð2Þ ¼ o2
ij� (1)

The network is trained to reduce the categorical cross-entropy

error (E) between target (y) and reconstructed ðŷÞ genotypes, with

an added L2 penalty on the values of the latent representation (e)

for regularization. See Equation (2), where a is the regularization

factor hyperparameter. Network optimization is performed by

means of the ADAM algorithm (Kingma and Ba 2014), with a fur-

ther exponential decay of the learning rate applied.

Eðy; ŷÞ ¼
X3

i

yi logðŷiÞ þ a
Xd

j

e2
j (2)

Additional regularization of the training process is performed

by means of data augmentation. For every sample in the training

process, a fraction of genotypes is randomly set to missing in the

input data, represented by the value –1.0. A dimension represent-

ing missing and nonmissing genotypes, with the values 0 and 1,

respectively, is added to the input data, depicted in light blue in

Fig. 1. The fraction of missingness for each training batch is ran-

domly selected from a pre-defined range. Noise was also added to

the input data by introducing incorrect genotypes. With probabil-

ity 0.2, missing genotypes of a batch were set to random genotype

values, drawn from a uniform distribution.
The data were randomly split into training and validation sets

consisting of 80% and 20% of samples, stratified by population.

The training set was used for network optimization, with the ter-

mination criterion that the validation loss had not decreased for

300 epochs.
Different model architecture settings and hyperparameters

were evaluated, and the best-performing setups were chosen by

means of a hierarchical search procedure. We refer to

Supplementary File 1 for details about the evaluated options, in-

cluding the final model architecture settings and hyperparameter

values used for obtaining the presented results.

Human Origins data set
The data set used to evaluate dimensionality reduction and ge-

netic clustering performance was derived from the fully public

present-day individuals of the Affymetrix Human Origins SNP ar-

ray analyzed in Lazaridis et al. (2016). This data set is designed for

population genetic studies and represents worldwide genetic var-

iation, containing 2,068 samples from 166 populations. These

were categorized into 8 superpopulations, displayed in Fig. 2

which also serves as a legend for Figs. 3, 5, and 6.
The data were filtered to exclude sex chromosomes and non-

informative sites, and one sample (NA13619) was removed due to

relation to another (HGDP01382). In order to obtain a single data

set for fair comparison between methods, the genotypes were

further filtered according to the procedure that is common to

perform prior to applying PCA on SNP data. A minor allele fre-

quency (MAF) threshold of 1% was enforced, and LD pruning was

Fig. 1. Architecture of the GCAE model used for dimensionality reduction. The encoder transforms data to a lower-dimensional latent representation
through a series of convolutional, pooling and fully-connected layers. The decoder reconstructs the input genotypes. The input consists of three layers:
genotype data (gray), a binary mask representing missing data (blue), and a marker-specific trainable variable per SNP (red). The red dashed line
indicates where this marker-specific variable is concatenated to a layer in the decoder. Another marker-specific trainable variable, shown in green, is
also concatenated to the second-last layer in the decoder. Black dashed lines indicate residual connections, where the output of a layer is added to that
of another layer later in the network. The numbers below the layers indicate the number of kernels for convolutional layers, down- or upsampling
factor for pooling and upsampling layers, and number of units for fully-connected layers. The displayed numbers are those of the final model used to
obtain the presented results for dimensionality reduction to two dimensions. For other numbers of dimensions, the only modification made was to
change the number of units in the latent representation from 2 to 4, 6, 8, or 10. For the genetic clustering application, the number of units in the latent
representation was k¼5.
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performed by removing one of each pair of SNPs in windows of
1.0 centimorgan that had an allelic R2 value greater than 0.2.

As the comparison of robustness of different methods to miss-
ing data was beyond the scope of this study, missing genotypes
were set to the most frequent value per SNP so as to avoid their
influence over dimensionality reduction results. The final data
set consisted of 2,067 individuals typed at 160,858 biallelic sites.

Evaluation of dimensionality reduction
performance
Comparison of performance between GCAE, popvae, PCA, t-SNE,
and UMAP was performed by means of evaluating the ability of
the dimensionality reduction to capture population structure. A
k-Nearest Neighbors (k-NN) classification model was defined
based on the projected data by assigning a population label to

each sample based on the most frequent label among its k near-
est neighbors.

The evaluation was performed using 2, 4, 6, 8, and 10 latent
dimensions. For UMAP, t-SNE, popvae and GCAE, hyperpara-
meter tuning was done for each number of latent dimensions,
selecting the configuration that yielded the highest F1 score for a
3-NN classification model. See Supplementary File 1 for details.
The model with the selected hyperparameters was then used to
calculate F1 scores for classification models using 3 and 20 neigh-
bors. The different numbers of neighbors were used to obtain
metrics that capture different aspects of performance, e.g. tight-
ness and degree of overlap of the populations clusters.

Further, in order to evaluate the ability of the models to cap-
ture global patterns in the data, the models were also evaluated
on their ability to classify samples according to membership to
the larger continental groups. This was done by calculating the
F1 scores using the superpopulations, rather than populations, as
labels (see Fig. 2).

Classification performance was measured by the F1 score, de-
fined per class label c as the harmonic mean of the precision and
recall: F1c ¼ 2�precision�recall

precision�recall . The total F1 score for a model was de-
fined as the average F1 score, weighted by the number of samples
per class.

PCA was performed using the same normalization method as
in the software SMARTPCA (Patterson et al. 2006), i.e. by subtrac-
tion of the mean and division with an estimate of the standard
deviation of the population allele frequency per SNP. For t-SNE
and UMAP, the data was standardized by removing the mean and
scaling to unit variance.

The entire data set was used for performance evaluation. This
is standard practice for using PCA, t-SNE and UMAP, particularly
the latter two as they are nonparametric models. For neural net-
works, a test set of previously unseen samples is usually used for
performance evaluation. In this case, we motivate the use of the
entire data set by the nature of the research question itself and
the fact that the performance metrics are based on the popula-
tion labels which are unseen by the network and therefore not
used in the model optimization.

Extension to genetic clustering
The problem of genetic clustering refers to the characterization
of individual genomes by proportional assignment to a set of
clusters, or genetic components. These may be used in the analy-
sis of population structure and in identifying patterns of genetic
variation between populations.

The DL model for genetic clustering was developed by making
minor changes to the autoencoder architecture used for dimen-
sionality reduction described above. The number of units in the
encoding layer was changed from 2 to k, the number of clusters.
In order to obtain a proportional assignment, softmax normaliza-
tion was further applied to the encoding to obtain a vector of k
values that sum to 1.0. The loss function was the same as for the
dimensionality reduction application, shown in Equation (2).
Supplementary File 1 contains more information about the
network architecture settings and training options used for the
genetic clustering model.

We consider the widely used software ADMIXTURE (Alexander
et al. 2009) as a comparison method for the genetic clustering ap-
plication, and present results in a similar manner using bar
graphs displaying the proportional assignment of clusters for
each sample. For both GCAE and ADMIXTURE, the Human
Origins data set described above was used.

Fig. 2. Populations and superpopulations of the Human Origins panel of
genotype data. The coloring serves as a legend for Fig. 3 and the
numbering for Figs. 5 and 6.
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Fig. 3. Dimensionality reduction results for GCAE a), popvae b), PCA c), t-SNE d) and UMAP e) on the Human Origins data set. In order to get a more
direct correspondence to the cardinal geographical directions, the D1/PC1 axis has been inverted for GCAE and PCA, and for popvae, the D2 dimension
is displayed on the y-axis, also inverted. Legend shows superpopulation colors, full legend with all populations in Fig. 1.
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Analysis of output genotypes
In order to further analyze the representation learned by the
model, we compared different characteristics of the output geno-
types to those of the true ones. First, we studied the distributions
of allele frequencies by comparison of the respective site fre-
quency spectra. Second, we compared the spatial structure in the
two data sets by studying the pattern of LD decay along the chro-
mosome.

For this analysis, we considered a different data set consisting
of a single chromosome typed at a denser set of SNPs. As in
Battey et al. (2021), we used chromosome 22 from the 1000
Genomes phase 3 data (Auton et al. 2015), but restricted to bial-
lelic SNPs in the region 24,500,000–26,500,000 bp, resulting in
61,104 sites.

Network optimization was performed using all 2,504 samples,
randomly split into training and validation sets consisting of 80%
and 20% of samples, stratified by population. The same training
procedure as for the dimensionality reduction model was used,
as well as a similar 2-D model architecture, with the difference
that a larger kernel size was used for the convolutional layers.
See Supplementary File 1 for details on the model and hyperpara-
meters evaluated. Model evaluation was done based on the high-
est number of nonfixed sites retained for use in the LD
calculation. For these experiments, we also used weighting of the
loss function to handle the skewed distribution of genotypes, by
means of a class-balanced loss based on the effective number of
samples (Cui et al. 2019) with b ¼ 0:95.

LD analysis was performed on the output genotypes of the
trained GCAE model, on a subset of samples and SNPs. Similar to
the LD analysis performed in Battey et al. (2021), we considered
samples from the YRI population only, and SNPs in the interval
25,000,000–26,000,000 bp. We further applied an MAF threshold
of 1% and restricted the genotypes to only include those passing
all filters in the “strict” accessibility mask provided by the 1000
Genomes Project.

The R2 measure of LD was calculated for the output genotypes
and compared to that of the true genotypes. As R2 is not defined
for pairs of loci where one or more allele frequencies are equal to
zero, sites for which only 1 allele was present in the output geno-
types were excluded from the analysis, in order to consider the
same set of sites in the true and output genotypes.

Implementation
GCAE is implemented in Python 3 using Tensorflow 2 (Abadi et al.
2015) and is available at https://github.com/kausmees/GenoCAE
as a command-line program. The programs plink 1.9 (Chang et al.
2015; Purcell and Chang 2020) and bcftools 1.14 (Danecek et al.
2021) were used for filtering of genotype data. All other prepro-
cessing of data, as well as performance evaluation and visualiza-
tion, was implemented in Python. The library scikit-learn 1.0
(Pedregosa et al. 2011) was used for calculating the F1 score met-
ric, with scikit-allel 1.3.5 (Miles et al. 2021) being used for LD
analysis.

The popvae implementation from https://github.com/kr-
colab/popvae, accessed December 2021, was used with options –
patience 300 –max_epochs 5000 –train_prop 0.8. PCA and t-SNE
were performed using the Python libraries scikit-learn and
MulticoreTSNE 0.1 (Ulyanov 2016), respectively. The reference
results for genetic clustering were obtained using the software
ADMIXTURE 1.3.0 using the em method.

CPU computations were performed on the resources of
Uppsala Multidisciplinary Center for Advanced Computational

Science (UPPMAX) on a cluster of compute servers equipped with
128 GB memory, each comprising two 8-core Xeon E5-2660 pro-
cessors. GPU computations were run on National Supercomputer
Centre (NSC) at Linköping University, on an NVIDIA SuperPOD
with DGX-A100 nodes equipped with 8 NVIDIA A100 Tensor Core
GPUs with 40 GB on-board HBM2 VRAM, 2 AMD Epyc 7742 CPUs,
1 TB RAM.

Results
Figure 3 shows dimensionality reduction results using GCAE,
popvae, PCA, t-SNE, and UMAP on the Human Origins data set.
On a global scale, GCAE, popvae, and PCA result in similar pat-
terns. The methods are able to capture global geometry to a high
degree, with a visible clustering according to superpopulation.
They also display a consistent pattern with the Sub-Saharan
African superpopulation separating distinctly, a gradient from
the Middle East and Europe to South/Central and North Asia onto
East Asia that roughly reflects the geography of Eurasia, and a
separate Oceanian cluster.

A difference is that while PCA essentially clusters all non-
African populations on one dimension, the visualizations of the
DL methods are more spread out, with a north-south gradient in
addition to the east–west relationships mainly captured by PCA.
This is visible within superpopulations as well as between them,
e.g. by the appearance of the Americas as a distinct cluster and a
clearer differentiation of North Asia from and Central/South and
East Asia. Populations of the Far East Siberia like Itelmen, Koryak,
Chukchi, and Eskimo, for example, appear set apart along the
y-axis, which is also the dimension that mainly distinguishes the
American samples. Within the African superpopulation, samples
from the north and east of the continent tend to be in closer prox-
imity to the Middle Eastern cluster, and differentiated from the
cluster of west-African populations. The Mbuti and Biaka groups
of the Congo Basin area also separate distinctly, which is not evi-
dent in the PCA results. A similar observation holds for the San
populations Khomani and Ju Hoan. In these visualizations, pop-
vae also tends to have tighter clustering of populations, in con-
trast to the GCAE plot which is more spread out. Overall, GCAE
and popvae result in similar patterns in the projection, an obser-
vation that we found to be largely consistent for different model
architectures and hyperparameters.

The neighbor graph-based methods, in contrast, do not dis-
play the same global pattern as discussed above. While t-SNE
also shows clustering according to superpopulation, it is a differ-
ent pattern with Sub-Saharan Africa in the middle, South/
Central Asian populations more spread out, and some Asian pop-
ulations in tight formations at large distances from the main
cluster. UMAP shows even more populations appearing in tight
and highly separated clusters, with the rest forming a distinct
shape on a curved line. While more difficult to interpret, some
degree of clustering according to superpopulation is also visible.
Overall, both t-SNE and UMAP result in visualizations with less
correspondence to global geographical patterns, but a compara-
tively high degree of clustering of individual populations.

It is important to note that PCA used as a dimensionality re-
duction method differs from the other methods considered in
that there is a choice of which principal components to use. In
this part of the evaluation, the focus is on the visual information
in the two-dimensional projection, for which it is common to use
the first two principal components only. We refrain from discus-
sing other combinations of principal components here, but note
that there may be different structures visible when selecting
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others. For a more complete assessment, we refer to the results

of the classification performance below, which indicate the abil-

ity of the models to capture population structure when consider-

ing multiple dimensions.
Figure 4 shows the F1 scores of 3-NN and 20-NN classification

models based on the dimensionality reduction of GCAE, popvae,

PCA, t-SNE, and UMAP for 2–10 dimensions. Top and bottom pan-

els show scores for the population and superpopulation classifi-

cation models, respectively.
For the population classification model, UMAP results in the

highest F1 scores, which is consistent with the tight clustering of

individual populations in Fig. 3. t-SNE tends to give relatively

high classification performance for lower dimensions, and does

not show much improvement in score with increased dimension-

ality, a trend that is also visible for UMAP. For PCA, scores in-

crease quite consistently with dimensionality. For lower number

of dimensions, popvae scores are higher than those of GCAE, and

both models show a planning out or decrease in performance for

higher dimensionality. A possible explanation for this is that reg-

ularizing the latent space becomes more difficult with increased

size, and further exploration of hyperparameters and regulariza-

tion methods might be needed to utilize the space to a larger ex-

tent.
For the superpopulation classification model, the relative per-

formance of PCA and the DL methods to the other models

increases. This indicates that the neighbor graph-based methods

have less ability to capture global structures, and is particularly

evident in the 20-NN model for which they have significantly

lower scores. The DL methods show similar trends overall, with

popvae having higher scores than GCAE, indicating a high degree

of focus on maintaining global patterns in the latent space. PCA

again shows quite consistent performance gains for increased di-

mensionality, indicating that the additional PCs do add structure

that is useful for the classification model.
It is worth noting that our optimization criteria for hyperpara-

meters clearly favors local performance. Both t-SNE and UMAP

are models for which hyperparameters control the balance be-

tween attention given to local and global aspects of the data, and

the effects of the optimization criteria are visible in the lower

scores on the metrics that measure global performance. The
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hyperparameter selection process here does not necessarily re-
flect that of a user interested in using t-SNE or UMAP for visuali-
zation purposes, where a more subjective evaluation would most
likely be used. To give a more comprehensive view, we evaluate
the visualization and clustering results of other hyperparameter

combinations for UMAP in Supplemental File 1. For GCAE and
popvae, in contrast, the results suggest that there is less of a
trade-off between local and global performance, indicating sys-
tematic differences between how the latent space is defined for
DL and neighbor graph-based methods.

Fig. 5. Genetic clustering results with k¼ 5 clusters using ADMIXTURE. Each bar represents a sample from the Human Origins data set, with colors
indicating the proportional assignment into k clusters for that sample. Samples are ordered by population and superpopulation, with numbering
according to the legend in Fig. 1.
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Figures 5 and 6 show the genetic clustering results on the
Human Origins data set with five clusters using ADMIXTURE and
GCAE, with the order of the clusters adjusted to be analogous for
comparison. Both models result in distinct American, Oceanian
and African clusters, with the latter also showing a very similar

pattern of the blue component. The ADMIXTURE results further
show the East Asian and European superpopulations as largely
distinct clusters, whereas GCAE reveals these as composite.

For European populations, the most prominent components in
the GCAE clustering are blue, which is mainly present in the

Fig. 6. Genetic clustering results with k¼ 5 clusters using GCAE. Each bar represents a sample from the Human Origins data set, with colors indicating
the proportional assignment into k clusters for that sample. Samples are ordered by population and superpopulation, with numbering according to the
legend in Fig. 1.
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Middle East for both methods, and red. A possible interpretation
is that the red cluster signifies the genetic component of herders
that migrated to Europe from the Pontic-Caspian steppe around
4.5 kyr ago (Haak et al. 2015; Nielsen et al. 2017). This would be
consistent with a presence in most European populations, with
the exception of Sardinians (Lazaridis et al. 2014), as well as in
South Asia, with particular prominence in e.g. the Kalash
(Lamnidis et al. 2018; Pathak et al. 2018). This component also
appears in East Asian populations, which also include American
and Oceanian ancestry.

Results for the comparison of output data from GCAE to the
corresponding true genotypes are shown in Fig. 7. The left plot
shows that the GCAE-generated genotypes follow the true distri-
bution of allele frequencies in the population. A tendency to un-
derestimate the presence of the derived allele for low-frequency
sites, particularly for values below 0.1 in the true data, is however
visible, indicating that rare variation is more difficult for GCAE to
capture. Another trend visible in the middle of the frequency
spectrum is that output genotypes tend to have a higher presence
of the derived allele where the true frequency is below 0.5 and a
corresponding underestimation of the derived allele where it is in
majority in the true data. This is likely an effect of the balancing
performed on the loss function to handle uneven classes, and
may be mitigated by finer tuning of the b parameter.

The right plot shows that output genotypes do show a pattern
of decay of LD with distance along the chromosome that reflects
that of the true data, with very similar correlation values for the
lowest SNP distances. Although the correlation between sites
tends to be higher in the GCAE-generated data for longer distan-
ces, with a less smooth decay curve, the results suggest that
GCAE is able to define the coding into the latent space in a way
that takes local spatial structure into account.

Discussion
One approach to evaluation of dimensionality reduction involves
assessing the correspondence between transformed data and its
geographical sampling location. Quantitative studies have shown
that geographical effects in the form of migration and the impact
of physical distance on gene flow play a role in creating popula-
tion structure (Wang et al. 2012). For PCA, striking similarities to
geography have mainly been reported from limited geographical

areas such as Europe (Lao et al. 2008; Novembre et al. 2008), with
world-wide cohorts generally resulting in a less resolved V-shape
similar to that shown in Fig. 3b (Jakobsson et al. 2008; Biswas et al.
2009). As previously mentioned, t-SNE and UMAP tend to focus
on local relationships, although Diaz-Papkovich et al. (2021) dis-
cusses that for UMAP, careful filtering of the data can cause geo-
graphical features to be highlighted more, but again, mainly
when applied to relatively homogeneous data sets. The Human
Origins data set considered here represents worldwide genetic
variation, and the visualization results show that DL can be used
to develop methods that display robustness to this high degree of
diversity, yielding representations that reflect global geographical
patterns.

The interpretation of dimensionality reduction results, partic-
ularly the inference of the underlying processes behind observed
structure, is however not always straightforward. The clustering
of samples in reduced-dimensional space can reflect characteris-
tics at various scales in the data, ranging from the presence of a
particular variant to continental ancestry. In Novembre and
Stephens (2008) and François et al. (2010), for example, the effects
of past migration and expansion events on PCA is discussed, and
how the assumptions of linearity and orthogonality of the model
can result in counter-intuitive patterns in PC-space. The effects
of attributes of the data such as LD and so-called “informative
missingness,” due to e.g. different sequencing panels or the
higher uncertainty associated with heterozygote calls, on dimen-
sionality reduction are also extensively discussed in Patterson
et al. (2006).

The F1 score of a classification model based on the dimension-
ality reduction is not a simple metric for which the method with
the highest score is the most correct. Nonetheless, the results in-
dicate relevant, systematic differences between the models. With
respect to the performance metric considered, PCA is able to
make efficient use of increasing number of dimensions in the la-
tent space to a higher extent than the other models considered,
although as previously discussed, the performance of DL meth-
ods may be improved by more extensive exploration of model
architectures and hyperparameter space. Further, the four non-
linear methods tend to reveal more fine-scale patterns and yield
a more resolved representation than PCA, at least for lower num-
ber of dimensions. A key difference, however, is that the DL
methods take a more global approach that preserves the
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meaning of distances between clusters to a larger extent than the
neighbor graph-based methods.

Other DL methods that generate genotypes have shown vary-
ing capabilities to preserve spatial properties in terms of decay of
LD with distance along the chromosome. In Battey et al. (2021),
popvae failed to reproduce LD decay, while both the generative
adversarial network (GAN) and RBM models of Yelmen et al.
(2021) captured LD patterns well, with correlation at larger dis-
tances in particular preserved to a higher extent than for GCAE.
An important methodological difference between GCAE and
these other models, and also PCA, t-SNE, and UMAP, is that they
do not take the sequential nature of genotype data into account.
Rather, they treat every SNP as an independent variable, whereas
convolution treats relationships between nearby sites differently
than any arbitrary pair of variants. We show that convolutional
architectures can be used to capture local spatial patterns, and
believe that additional convolutional and max-pooling layers can
improve LD accuracy over longer distances.

Our results demonstrate that the use of convolution is feasible
for genotype data in spite of its fundamental differences to
images, which such networks are typically applied to. Genotype
data is position-dependent, with a unique meaning to every di-
mension. Pixels in images, in contrast, typically represent infor-
mation that is translation invariant. Our experiments indicated
that the incorporation of positional information in the form of
marker-specific variables that the model can optimize during the
training process improved performance. We therefore suggest
this as a means of allowing the model to represent some of the
global information that is lost with convolution. An additional,
more explicit, method to include sequential information would
be to include e.g. genetic distance or position as part of the input
data, as done in Chan et al. (2018); Adrion et al. (2020), which we
leave for future work. The design of DL methods for genotype
data is not as mature a field as for e.g. image or single-cell RNA-
sequencing data, and our exploration of this particular type of
network architecture will hopefully contribute to the base of
knowledge and experience for this application.

We also note that in order to obtain a fair comparison, we
have performed filtering of the SNP set in terms of MAF and LD
according to standard protocols for PCA even though these steps
are not necessarily required for GCAE, in which such patterns
can be learned during the training process. The GCAE architec-
ture also includes a representation of missing genotypes, unlike
the other models. In practice, missing data is often handled by ei-
ther imputation with the empirical mean and/or filtering to re-
move sites with high missingness. In this sense, GCAE can
present a more robust alternative that is more suitable for low-
coverage samples such as ancient DNA, requiring less filtering
and allowing more of the data to be retained for analysis.

Many commonly used methods for genetic clustering such as
TreeMix (Pickrell and Pritchard 2012), ADMIXTUREGRAPH
(Leppälä et al. 2017) and GLOBETROTTER (Hellenthal et al. 2014)
are, unlike the dimensionality reduction methods discussed,
model-based. STRUCTURE (Pritchard et al. 2000), for example,
represents LD and includes explicit modeling of admixture blocks
and the transitions between them. The model assumes the exis-
tence of a set of differentiated ancestral populations, and that
the sample is a result of relatively recent mixing of these.
ADMIXTURE, which we use as a reference method in this work, is
based on the same underlying statistical model.

GCAE, in contrast, constitutes a more flexible and data-driven
approach, which may be an advantage in scenarios where the
data does not conform to explicit modeling assumptions. Our

results demonstrate that GCAE is able to capture very similar
population structure as that found by ADMIXTURE, while also
identifying additional characteristics for some populations that
are consistent with existing findings in the literature.

As previously discussed regarding dimensionality reduction,
interpretation and evaluation of genetic clustering is not straight-
forward. The correctness of an assignment is not well-defined,
and different underlying processes can give rise to similar ob-
served patterns (Lawson et al. 2018). Evaluation of results requires
additional information, such as putting them into the context of
methods based on different underlying models, and the analysis
of metrics like F and D statistics.

A purely data-driven black-box approach such as DL can be
difficult to interpret. The features used in the data transforma-
tion are unknown and therefore cannot be used for validation of
whether certain modeling assumptions hold for the data in ques-
tion. On the other hand, the alternative methodology of GCAE
allows it to capture additional aspects of the data, and therefore
provide a useful complement to the toolset used for exploratory
data analysis in population genetics.

Another characteristic of convolutional layers is that they re-
quire less trainable variables than a corresponding fully-
connected layer, leading to reduced computational requirements
for training. Depending on overall network architecture and
training strategy, this may allow for the design of models that are
more feasible to train on large data sets.

When running GCAE on CPUs, using 11 cores on UPPMAX,
training of the dimensionality reduction models took between
26.9 and 99.8 h. Using the GPU on NSC, times ranged between 1.5
and 5.9 h. The genetic clustering model took 46.6 h on CPU, and
the model trained on 1000 Genomes data for which output geno-
types were analyzed took 45 min on GPU. For popvae, runtimes
ranged between 1.3 and 2.4 h on the same GPU setup. PCA took
11 min, and t-SNE and UMAP ranged between 20 min and 4 h on
the CPU setup on UPPMAX.

The computational requirements of DL methods are thus
greater than that of the other models, although the use of GPUs
can improve performance significantly. As the purpose of this
study is to evaluate the applicability of convolutional autoen-
coders to the chosen problems, optimization of computational ef-
ficiency is considered out of scope and left for future work.

Our results demonstrate that GCAE can learn features that
characterize genotype data in a meaningful way. The minor
model changes required to change the application from dimen-
sionality reduction to genetic clustering further demonstrate the
flexibility of the method, and future efforts will involve investi-
gating the application of GCAE to other problems. A simple alter-
native application would be imputation of missing genotypes. As
the training procedure is based on reconstructing the input, and
since we already include a representation of missing data, this
would mainly involve finding a suitable number of units to use in
the latent layer. The model can also be used for generation of ar-
tificial genotypes by entering data into the decoder that does not
correspond to the encoding of an empirical sample. This can be
done e.g. by perturbing the encoding of actual individuals or
selecting values from a specific part of latent space. If the space
is regular enough, one could use the clustering it has defined to
simulate samples from a particular population or some other
characteristic property learned by the model, e.g. ancient data.
We are also currently exploring the use of GCAE in the context of
quantitative genetics by incorporating phenotypic information
into the model.
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