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ABSTRACT We report here the draft genome sequence of Pseudomonas sp. strain
1239, a bacterium that is potentially usable as a biostimulant for agriculture or in
depollution. Its genome encodes resistance to mercury, heavy metals, and several
antibiotics. It is potentially able to produce marinocine, a broad-spectrum antibiotic.

Pseudomonas spp. are aerobic rod-shaped and motile bacteria and ubiquitous
residents of various terrestrial and aquatic environments (1). Very few are oppor-

tunistic pathogens of plants and animals. While most species are commensals, some are
beneficial to plants (2–4) or usable in depollution (5, 6). Pseudomonas sp. strain 1239
was isolated from soil samples from the lower Loire Valley in western France and
initially identified by biochemical profiling and morphology as Pseudomonas fluore-
scens, whereas 16S rRNA gene sequencing showed 99% shared identity with Pseudomo-
nas putida.

DNA was extracted with a modified cetyltrimethylammonium bromide (CTAB) pro-
tocol (7) from a culture grown exponentially from a single colony in King B broth. A
sequencing library was built with the TruSeq Nano DNA library preparation kit (Illumina,
USA). Whole-genome sequencing (WGS) was performed using a MiniSeq high-output
kit, within one Illumina MiniSeq run at 2 � 151-bp paired-end read length, and resulted
in 309� genome coverage. The overall quality metrics of the reads were assessed with
FastQC version 0.11.5 (8). Genome assembly was computed with the SPAdes genome
assembler 3.10 (9), with a setting of “paired-end assembly, careful mode,” yielded 68
contigs (� 200 bp), was ordered with BioEdit version 7.0.5 (10), and was analyzed with
QUAST version 4.6.3 (11), with the setting of “QUAST: skip contigs shorter than 200 bp.”
The genome’s total length is 6,024,399 bp, with a GC content of 64.03% and an N50

value of 244,210 bp.
A blast analysis of the complete 16S rRNA gene showed that this strain shares 82%

identity with Pseudomonas alkylphenolica sp. nov. strain KL28 (12). Automated gene
annotation carried out by the Prokaryotic Genome Annotation Pipeline (PGAP) version
4.1 (13) identified 5,538 coding sequences and 89 RNA genes, while RAST version 2.0
(14), using the ClassicRAST annotation scheme, detected 5,376 coding sequences and
76 RNA genes. RAST found a partial prophage genome (24 genes) on contig 61.
PlasmidFinder version 1.3 (15) and plasmidSPAdes (16), both using default settings, did
not detect any plasmids. Five genes code for auxin synthesis. Siderophore sensing,
transport, and reception are encoded by 34 genes, while 26 other genes encode
siderophore synthesis and secretion, with 19 genes arranged in a pyoverdin gene
cluster. This strain also has two complete type II and VI secretion systems (T2SS and
T6SS, respectively) organized in operons. Two genes, lodA and lodB, might encode the
production of marinocine, a broad-spectrum antibiotic (17, 18). Degradation of aro-
matic compounds is suggested by 118 genes. Like Pseudomonas putida strain DRA525
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(19), the presence of a mercury ion reductase gene and some genes of the mercury
operon (merA, merP, merT, and merR) would ensure resistance to mercury. Similarly,
multiple copies of the genes arsB, arsC, arsH, arsR, and acr3 would provide resistance to
arsenic. A putative resistance to heavy metals is provided by 73 genes, including
multiple copies of the genes czcD, czcA, czcC, cusB or czsB, cusA, and czrR and genes
coding for heavy metal sensor histidine kinases. A complete MexE-MexF-OprN multi-
drug efflux system predicts tolerance to heavy metals and antibiotics. These charac-
teristics make this strain interesting for agriculture and soil depollution.

Data availability. This whole-genome shotgun project was deposited at DDBJ/
EMBL/GenBank under the accession number NFSA00000000. The version described in
this paper is the first version, NFSA01000000. The 68 contigs have been deposited
under the accession numbers NFSA01000001 to NFSA01000068. Raw sequencing data
sets have been registered in the NCBI Sequence Read Archive database (20) under the
accession number SRR5515064.
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