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Abstract
The quality of life of children with epilepsy is a function of seizures and
associated cognitive and behavioral comorbidities. Current treatments are not
successful at stopping seizures in approximately 30% of patients despite the
introduction of multiple new antiepileptic drugs over the last decade. In
addition, modification of seizures has only a modest impact on the
comorbidities. Therefore, novel approaches to identify therapeutic targets that
improve seizures and comorbidities are urgently required. The potential of
network science as applied to genetic, local neural network, and global brain
data is reviewed. Several examples of possible new therapeutic approaches
defined using novel network tools are highlighted. Further study to translate the
findings into clinical practice is now required.
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Introduction
Children with epilepsy have seizures that are frequently associated 
with cognitive and behavioral impairments1. In combination, these 
factors negatively impact quality of life2 and greatly diminish the 
ability of children with epilepsy to develop into successful adults. 
It is therefore critical that treatments aimed at modifying adverse 
outcomes are developed. Current therapies are largely targeted 
toward seizures and include antiepileptic drugs and dietary and 
surgical therapies. Although these therapies are effective in the 
treatment of seizures, approximately 30% of patients continue 
to have seizures despite maximal therapy3. Specific therapies for 
behavioral difficulties include stimulants4,5, antipsychotics6,7, and 
antidepressants6,7. Therapies for learning impairments are largely 
educational. In all of these cases, the therapy targets symptoms 
without modifying the brain disorder responsible for the seizures 
and the associated morbidities. In order to develop new therapies, 
it is important that mechanisms of the underlying brain disorders 
are understood so that therapies can be targeted towards modifying 
those abnormalities and thereby improve outcomes.

The mechanisms underpinning adverse outcomes can be studied at 
a variety of levels including the level of genes, receptors, cell sig-
naling pathways, and networks. Network science is providing new 
ways of understanding disease mechanisms and could lead to novel 
therapies targeted directly at modifying network abnormalities 
underlying seizures and comorbidities, irrespective of the genetic 
or cell signaling abnormalities8 (Figure 1). This review will explore 
the potential of network science to contribute to the identification of 
novel therapeutic targets.

Understanding disease mechanisms at network 
levels
Disease mechanisms in the context of epilepsy can be concep-
tualized in at least two ways. The first is encapsulated in the 
epileptic encephalopathy hypothesis, which states that epileptic 
activity causes cognitive and behavioral impairments over and 
above those expected for the underlying etiology9. In this circum-
stance, it can be argued that epileptic activity itself modifies neural 
networks in a way that no longer supports normal cognitive and 
behavioral function. The therapeutic implication is that treatment 
of seizures and interictal discharges will positively modify adverse 
outcomes. Despite many years of trying to improve cognitive and 
behavioral outcomes by targeting seizures, the positive impacts are 
rather modest1,10,11. A common suggestion is that the treatment of 
seizures prevents any further decline in abilities. If correct, this 
suggests that alternative approaches to improving outcomes are 
required.

The second concept places etiology in the forefront. In this view, 
patients with epilepsy all have an underlying etiology (even if it 
is unrecognized) and this is directly responsible for the neural 
network disruptions that lead to the symptoms of seizures and 
adverse cognitive and behavioral outcomes. It remains possi-
ble that seizures also make a contribution to the modification of 
networks, although it is difficult to clearly identify the magni-
tude of the contribution12,13. However, if etiology is the major 
contributor, then treatment of seizures is unlikely to have major 
positive impact, as observed in clinical practice. If seizures and 

cognitive/behavioral impairments are primarily a function of  
etiology, then disease-modifying therapies would be expected to 
improve all of the symptoms. Although this is an area receiving 
increasing attention, no such therapies are yet available in clinical 
practice.

The application of network science to these issues is gaining  
popularity8. Network science is a mixture of graph theory, dynami-
cal systems theory, and ideas from statistical mechanics8. These 
tools can be applied to genetic, electrophysiological, and magnetic 
resonance data. The appropriate application of network science  
to epilepsy requires an interdisciplinary approach involving cli-
nicians, translational neuroscientists, computer scientists, and  
mathematicians. Examples of novel insights that are arising from 
these interdisciplinary collaborations are discussed below.

Gene regulation networks
Genetic approaches have made significant contributions to the 
understanding of neurological disorders associated with seizures14–17. 
The hope is that gene replacement therapy may restore function, 
as in an animal model of Rett syndrome18. This approach relates 
to single gene disorders, and the list of genes associated with 
epilepsies is rapidly growing17,19. Although it may be possible to 
replace the identified genes, many abnormalities are extremely 
rare, raising an important concern about the practical use of such 

Figure 1. Cartoon representing healthy and diseased networks. 
Each node in the network could represent a gene, transcriptional 
module, single neuron, or brain region. The lines between the nodes 
represent relevant interactions between the nodes. Conceptually, 
the structure of the network is different in disease states compared 
to controls. In this example, the diseased network is over-connected 
(e.g. hypersynchrony in an epileptic brain). Targeting the network 
directly using drugs, brain stimulation, cell therapy, or transcranial 
magnetic stimulation approaches could modify the diseased 
network in order to allow more normal function. It remains unknown 
whether restoration of networks to normal (left network post-therapy) 
or modification to a network with similar phenotype to normal (right 
network post-therapy) is required. Understanding of these system-
level mechanisms could lead to new treatments or optimization of 
currently used clinical tools, such as deep brain stimulation.
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approaches. An alternative approach is to use systems genetics to 
characterize the genetic regulation of pathophysiological pathways.  
This approach has previously been used to explore the patho-
physiology of type 1 diabetes20, autism21,22, febrile convulsions23–25, 
and the latter’s association with mesial temporal lobe epilepsy24. 
An example of how systems genetics could identify a therapeutic 
target in epilepsy comes from a study of temporal lobe epilepsy26. 
Johnson et al. evaluated gene expression networks in post-surgical 
hippocampal tissue from patients with temporal lobe epilepsy. They 
identified a specialized, highly expressed transcriptional module 
encoding proconvulsive cytokine and Toll-like receptor signaling 
genes. Sestrin 3 positively regulates this module in macrophages, 
microglia, and neurons. This finding is also present in pilocarpine-
exposed mice, which demonstrated pilocarpine-induced status 
epilepticus with subsequent temporal lobe epilepsy, giving fur-
ther credibility to the clinical finding. Importantly, knockdown of 
Sestrin 3 in zebrafish attenuates chemically induced behavioral 
seizures. Therefore, it is possible that modulation of Sestrin 3 could 
modulate seizures in humans. It is unlikely that this target would 
have been identified without the mathematical approaches inher-
ent in systems genetics. This study used tissue from epilepsy sur-
gery, was carried out in adults, and targeted an etiology common 
in adults. However, the pathophysiological processes leading to 
mesial temporal sclerosis (MTS) frequently occur during develop-
ment. Children with epilepsies frequently have malformations of 
cortical development, and similar approaches could be applied to 
this surgical tissue and have potential to identify other novel thera-
peutic targets. Modification of genetic signaling can be achieved 
with small interfering RNA (siRNA) and microRNA (miRNA) 
approaches. Identification of specific genes or regulatory gene 
networks could provide critical targets for these approaches that 
are already being tested in the clinical domain27. These approaches 
can also be applied to epigenetic data and could provide important 
insights in that domain as well.

Local neural networks
Another level at which network approaches may identify therapeu-
tic targets is at the level of local neuronal networks. This requires 
the identification of system-level mechanisms at the level of 
changes in neural circuitry that directly impair the ability of that 
circuit to support cognitive behavior. Information processing in a 
neural system is a function of the rate of firing of neurons (rate  
coding)28–32, the precise timing of action potential firing with respect 
to oscillatory activity (temporal coding)33,34, and joint activation of 
ensembles of neurons (population coding)35–38. It is known that each 
of these components of information processing can be abnormal in 
a variety of animal models of epilepsies. Rate coding as described 
by hippocampal place cells is disrupted following early life seizures 
and in the context of MTS39–42. The spatial fidelity of these cells 
is reduced and this is consistent with the abnormalities in spatial 
cognition identified in these models41,43–45. Temporal and population 
coding have also been evaluated in models of MTS and found to be 
abnormal36,39. For example, excessive synchrony of CA1 pyramidal  
cell firing predicts poor performance in a spatial alternation task, 
suggesting that the organization of neuronal firing within a neural 
population is important for behavior36. It remains uncertain whether 
this excessive synchrony is important for seizure generation, but 
modulation of this synchrony could both reduce seizures and 
improve cognition.

Many of the epilepsy models described above have associated 
structural abnormalities. Remarkably, cognitive outcomes can be 
improved with environmental enrichment and overtraining strat-
egies, even in the context of the structural brain abnormalities46, 
suggesting that structure-function relationships are not fixed. This 
could be exploited for therapeutic advantage if the network-level 
changes associated with these improvements could be identified. 
This remains an area of active research. However, some system-
level interventions have been shown to improve outcomes in  
epilepsy. In humans, stimulation devices are known to reduce sei-
zures and there is some evidence that stimulation of the entorhinal 
cortex can improve cognition47. A detailed understanding of how 
networks need to be modified to improve outcomes would allow 
optimization of these tools. Electrical stimulation has the potential 
downside of activating all cell types, which may limit the possi-
bility of more subtly altering neuronal interactions. In the future, 
optogenetic stimulation may allow more precise modulation of neu-
ral network behavior by activating only certain cell types.

Interneurons are critical for the organization of pyramidal cells48 
and therefore may represent a cell target in epilepsy. Implanta-
tion of interneuron precursors into animal models of MTS reduces 
seizures49–51 and, at least in some experiments, improves cognitive 
outcomes49. In addition, optogenetic stimulation of interneurons 
using a closed loop system also reduces seizures52. The system-
level mechanisms underlying the improvements have not yet been 
explored in these models, but such studies could ultimately provide 
essential information for optimizing parameters and maximizing 
outcomes.

Although stimulation approaches are the most obvious applica-
tion of the sort of system-level information described above, drug 
interventions may also be possible. For example, adrenocorti-
cotropic hormone (ACTH) administration to rodents exposed to 
early life seizures improves attentional outcomes despite having 
no effect on the seizures53. This suggests that ACTH is modulat-
ing information processing in a way that is currently unknown but 
deserves future study. The implication for the treatment of patients 
is that medications that do not influence seizures but improve 
cognitive outcomes may be beneficial. Therefore, outcome meas-
ures for clinical trials may need to include cognitive outcomes, 
such as in the UKISS trial of infantile spasms54, and may even have 
to be designed to have cognition as the main outcome measure. 
Another speculative drug approach is the use of Designer Receptors 
Exclusively Activated by Designer Drugs (DREADDS)52. This 
approach may also allow targeting of certain cell types within a 
network in order to modify the population activity of that network.

Global networks
The study of global networks within the context of epilepsy has 
used magnetic resonance, electroencephalography, and magnetoen-
cephalography approaches. Although there is a wealth of data on 
the phenomenology of connectivity (see for example 55–59), there 
are far less data on how this information can be used for therapeu-
tic purposes. However, an understanding of distributed networks 
could identify regions of the brain that are critical for seizure gen-
eration or for any relevant cognitive function, even if that area of 
the brain is not the obviously abnormal piece of tissue. An excellent 
example of this is from a study of patients with periventricular 
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nodular heterotopia associated with seizures60. Functional MRI 
was used to identify aberrant functional connectivity between the 
heterotopia and normal-looking cortex. Abnormal connectivity was 
identified between the heterotopia and areas of the cortex that were 
not consistent across patients. Transcranial magnetic stimulation 
(TMS) was used to show that the connected cortical areas were 
hyperexcitable, suggesting that the authors had identified an epi-
leptogenic network. This raises the possibility that TMS targeted at 
the cortical site identified using network approaches could reduce 
seizures in patients with deep-seated epileptogenic foci.

Another potential use of network approaches is in epilepsy sur-
gery. Despite state-of-the-art selection methods, investigations for 
identifying the epileptogenic focus, and excellent surgical tech-
nique, many patients with epilepsy fail to become seizure free. In 
these patients, it is possible that the epileptogenic networks have 
not been adequately disrupted by surgery and therefore a more 
detailed understanding of the network could lead to tailored resec-
tions based on that information. A variety of network measures have 
been used to describe the distributed abnormal networks in patients 
with focal epilepsy, particularly those with MTS55,61–63. Patients who  
subsequently failed to become seizure free often had different 
network changes to those patients who did become seizure free. 

The next challenge is to establish how that information can be 
used to maximize surgical outcomes.

Conclusion
The goal of this article was not to provide an exhaustive review 
of network science as applied to epilepsy but rather to provide 
examples of how these methods have enormous potential to con-
tribute to the treatment of patients with epilepsy. The overriding 
concept is that an understanding of networks from genetic, local 
neural, and global brain data can identify new therapeutic targets for 
both seizures and associated comorbidities. Modification of these 
targets can be with drugs, stimulation devices, surgical approaches, 
and TMS, ultimately maximizing the quality of life of patients with 
epilepsy.
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