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Abstract

The heart relies on complex mechanisms that provide adequate myocardial oxygen supply 
in order to maintain its contractile function. At the cellular level, oxygen undergoes one 
electron reduction to superoxide through the action of different types of oxidases (e.g. 
xanthine oxidases, uncoupled nitric oxide synthases, NADPH oxidases or NOX). Locally 
generated oxygen-derived reactive species (ROS) are involved in various signaling pathways 
including cardiac adaptation to different types of physiological and pathophysiological 
stresses (e.g. hypoxia or overload). The specific effects of ROS and their regulation by 
oxidases are dependent on the amount of ROS generated and their specific subcellular 
localization. The NOX family of NADPH oxidases is a main source of ROS in the heart. Seven 
distinct Nox isoforms (NOX1–NOX5 and DUOX1 and 2) have been identified, of which NOX1, 
2, 4 and 5 have been characterized in the cardiovascular system. For the purposes of this 
review, we will focus on the effects of NADPH oxidase 4 (NOX4) in the heart.

NOX4 variants, activity and localization

NOX4 is a dual heme-containing transmembrane 
oxidoreductase that spans the membrane six times. NOX4 
exists as a heterodimer bound to a p22phox subunit, which 
is necessary for its activity (1). In contrast to other NOX 
isoforms, NOX4 does not require any cytosolic regulatory 
subunit for its activity and is constitutively active with its 
regulation being a direct consequence of its abundance and 
intracellular localization (Table 1 for activity, regulation 
and expression of the main NOXs in the cardiovascular 
system). Under physiological conditions, NOX4 was first 
identified and has its highest levels of expression in kidney 
proximal tubular cells (2), but is also expressed in many 
other cell types, including cardiomyocytes, endothelial 
and smooth muscle cells, osteoclasts, epithelial cells and 
hemopoietic stem cells; albeit at lower levels. Interestingly, 
NOX4 is encoded by a gene which contains 34 introns 
and is transcribed into 16 spliced variants, of which at 

least four generate proteins (NOX4B–E) (3). In particular, 
NOX4D is the only variant that has been found to be 
functionally active in terms of ROS generation, despite 
lacking putative transmembrane regions as it retains the 
NADPH- and FAD-binding domains required for electron 
transfer activity. Hence, NOX4D can modulate redox-
sensitive transcriptional regulation downstream of ERK1/2 
phosphorylation and induces nuclear DNA damage (4). 
However, further studies are required to delineate the 
pathophysiological effects of these NOX4 variants. Adding 
to NOX4 variation, using the standard human NOX4 
gene sequence for comparison, there have been more 
than 2300 SNP sites found in the genomic DNA region 
of NOX4, and 45 SNPs in the gene-coding region. These 
SNPs may affect gene replication, transcription and even 
NOX4 function that may determine the progress and/or  
development of disease. For instance, polymorphism of  
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rs1836882 in the NOX4 gene modulates associations 
between dietary caloric intake and ROS levels in peripheral 
blood mononuclear cells (5). In the cardiovascular system, 
the NOX4 rs11018628 polymorphism has been associated 
with a decreased risk and better short-term recovery of 
ischemic stroke (6). More studies are needed to better 
understand connections between polymorphisms of 
NOX4 in different populations and disease-related  
NOX4 variants.

In the cardiovascular system, several conditions, such 
as pressure overload, hypoxia and inflammation lead 
to increased NOX4 expression, significantly impacting 
cellular function. Adding to its distinct characteristics 
over other NOXs, NOX4 primarily produces hydrogen 
peroxide rather than superoxide due to the presence of an 
E-loop in its structure that promotes the rapid dismutation 
of superoxide before it leaves the enzyme (7). In addition 
to the type of ROS generated by NOX4, its subcellular 
localization also influences various NOX4 functions, 
including enzyme activity and the activation of distinct 
downstream signaling pathways (8, 9). However, the exact 
location of NOX4 remains largely debated, with reports 
positioning the enzyme in the endoplasmic reticulum, 
mitochondria, plasma membrane and nucleus (10, 11). 
The reasons for these disparities may reflect the cell-specific 
differences in the functions of NOX4 in the different  
cell types studied, the fact that NOX4 localization might 
be transitory based on its interactions with certain  
targets (12) and/or the quality of research tools and 
approaches employed.

NOX4 in the stressed heart

The role of NOX4 in the heart has been characterized in 
various cardiac disease models with the use of systemic 

and/or cardiomyocyte-specific NOX4 overexpression or 
deletion animal models. A summary of the literature is 
included in Table  2. Several studies report a protective 
role of NOX4 in models of cardiac hypertrophy and 
against cardiac remodeling under conditions of stress. 
The functional benefits of increased NOX4 levels in the 
pressure-overloaded heart were first identified by Zhang 
et al. when they employed loss- and gain-of-function NOX4 
mouse models and reported that, following abdominal 
aortic banding in mice, NOX4 exerts its protective effects 
through a mechanism involving paracrine enhancement 
of capillary density (13). Contrasting observations were 
reported by the Sadoshima laboratory when they reported 
the detrimental effects of NOX4 in the overloaded heart due 
to increased mitochondrial ROS production and damage 
(14). While these differences may be attributed to the type 
and severity of overload studied and means via which 
NOX4 levels were manipulated, the protective effects of 
NOX4 have been since corroborated in cardiomyocyte- 
and endothelial-specific NOX4-null mice, where trans-
aortic constriction was associated with more severe 
cardiac function and remodeling in the NOX4-deficient 
mice (15). Further adding to the protective roles of NOX4 
in cardiomyocytes under stress, studies have described the 
reliance of NOX4 on the antioxidant transcription factor 
nuclear factor erythroid 2-related factor 2 (NRF2) (16, 17), 
as well as the NOX4-derived ROS production in the ER 
and subsequent activation of autophagy, which ensures 
cell survival during energy deprivation (18).

Whereas the protective role of NOX4 in the chronically 
overloaded heart is well established, contrasting results 
have been reported on the role of NOX4 in ischemia/
reperfusion (IR) injury. Braunersreuther et  al. have 
reported that NOX4 deletion does not influence 
myocardial reperfusion injury while demonstrating 
the activation of cardioprotective pathways following 

Table 1 The main NOXs in the cardiovascular system.

Activity
Regulatory subunits/
requirement for p22phox Regulation by Cell expression

NOX1 Inducible NOXO1, NOXA1, Rac/yes Post-translational 
modification of regulatory 
subunits

Vascular smooth muscle, 
endothelial cells

NOX2 Inducible P47phox, p67phox, p40phox, Rac/yes Post-translational 
modification of regulatory 
subunits

Cardiomyocytes, endothelial cells, 
fibroblasts, vascular smooth 
muscle cells, inflammatory cells

NOX4 Constitutively active None/yes Poldip2 and 
transcriptional regulation

Cardiomyocytes, endothelial cells, 
fibroblasts, vascular smooth 
muscle cells

NOX5 Low constitutive activity None/no Ca2+ Vascular smooth muscle and 
endothelial cells (absent in 
rodents)
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ablation of NOX1 and NOX2 (19). In another study, 
Matsusima et al. demonstrated a decrease in myocardial 
damage following IR in cardiac-specific NOX4-deficient 
mice, which was associated with reduced ROS production 
and an attenuation of the infarct size, suggesting that 
NOX4 actually mediates IR injury (20). However, 
myocardial injury was exacerbated in the NOK2-/NOX4-
deficient mice, suggesting that a certain amount of ROS 
produced by either NOX2 or NOX4 is necessary for 
protection against IR injury. Moreover, a study by Santos 
et al. shows extensive data on a NOX4-regulated pathway 
involving inactivation of the protein phosphatase 1 (PP1) 
and sustained eIF2α phosphorylation, which regulates 
the transcription factor ATF4 and enhances cell survival 
in heart IR injury. This novel redox signaling pathway 
involves an interaction between NOX4, growth arrest 
and DNA damage-inducible 34 (GADD34) to inactivate 
the protein phosphatase 1 (PP1) metal center and sustain 
eIF2α phosphorylation, eventually protecting the heart 
under stress (21). Further studies are required to delineate 
some of these discrepancies on the exact role of NOX4 
during IR injury in the heart.

NOX4 and the vasculature

A summary of the literature describing the role of NOX4 
in vascular disease models is included in Table  3. Most 
pathologies of the vasculature start with endothelial 
dysfunction (ED) increasing the likelihood of developing 
hypertension (22, 23). NOX4 has been demonstrated to be 
an important vasodilator and can act as an endothelium-
derived hyperpolarizing factor (24, 25). H2O2 has been 
shown to increase endothelial NOS expression and 
activity (26), enhancing NO production (27). A role for 
NOX4 in hypertension is contentious and has not yet 
been conclusively determined (28, 29). Endothelial cell 
(EC)-specific overexpression of NOX4 enhanced agonist-
mediated vasodilatation resulting in a decrease in basal 
blood pressure (BP) (30). This effect was mediated through 
the vasodilatory actions of H2O2 and not by increased 
NO bioavailability (31). In agreement, Paravicini et  al. 
(32) showed that NOX4 expression in basilar arteries was 
associated with enhanced vasodilatation in response to 
H2O2-mediated activation of BK(Ca) channels. Conversely, 
a number of studies have reported no change in BP (33, 
34, 35, 36). Such is the recent study by Bouabout et  al. 
(37), which demonstrated no change in BP at baseline in 
NOX4-deficient mice, but a protection in Ang-II mediated 
arterial and pulse pressure increases. Taken together,  Ta

bl
e 

2 
N

O
X4

 in
 c

ar
di

ac
 d

is
ea

se
 m

od
el

s.

N
O

X
4 

m
od

ifi
ca

ti
on

 (c
ar

di
ac

 d
is

ea
se

 m
od

el
s)

D
is

ea
se

 m
od

el
Re

po
rt

ed
 o

ut
co

m
e

Re
fe

re
nc

e

Ca
rd

io
m

yo
cy

te
-s

pe
ci

fic
 o

ve
re

xp
re

ss
io

n
Pr

es
su

re
 o

ve
rl

oa
d

Re
du

ce
d 

fib
ro

si
s 

an
d 

le
ve

ls
 o

f h
yp

er
tr

op
hy

(1
3)

G
lo

ba
l d

el
et

io
n

Pr
es

su
re

 o
ve

rl
oa

d
Co

nt
ra

ct
ile

 d
ys

fu
nc

tio
n,

 s
ev

er
e 

di
la

ta
tio

n,
 

in
cr

ea
se

d 
le

ve
ls

 o
f h

yp
er

tr
op

hy
(1

3)

Ca
rd

io
m

yo
cy

te
-s

pe
ci

fic
 d

el
et

io
n

Pr
es

su
re

 o
ve

rl
oa

d
Re

du
ce

d 
le

ve
ls

 o
f h

yp
er

tr
op

hy
, fi

br
os

is
 a

nd
 

ce
ll 

de
at

h
(1

4)

Ca
rd

io
m

yo
cy

te
-s

pe
ci

fic
 d

el
et

io
n

Pr
es

su
re

 o
ve

rl
oa

d
In

cr
ea

se
d 

le
ve

ls
 o

f h
yp

er
tr

op
hy

 a
nd

 
fib

ro
si

s,
 d

im
in

is
he

d 
an

gi
og

en
es

is
, 

co
nt

ra
ct

ile
 d

ys
fu

nc
tio

n

(1
5)

En
do

th
el

ia
l-s

pe
ci

fic
 d

el
et

io
n

Pr
es

su
re

 o
ve

rl
oa

d
In

cr
ea

se
d 

le
ve

ls
 o

f h
yp

er
tr

op
hy

 a
nd

 
fib

ro
si

s,
 c

on
tr

ac
til

e 
dy

sf
un

ct
io

n
(1

5)

Ca
rd

io
m

yo
cy

te
-s

pe
ci

fic
 o

ve
re

xp
re

ss
io

n
Pr

es
su

re
 o

ve
rl

oa
d

Re
pr

og
ra

m
m

in
g 

of
 c

ar
di

ac
 m

et
ab

ol
is

m
 to

 
fu

lly
 m

ai
nt

ai
n 

en
er

ge
tic

 s
ta

tu
s

(6
3)

G
lo

ba
l d

el
et

io
n

Is
ch

em
ia

/r
ep

er
fu

si
on

N
o 

N
O

X4
-d

ep
en

de
nt

 e
ff

ec
ts

(1
9)

G
lo

ba
l d

el
et

io
n

Is
ch

em
ia

/r
ep

er
fu

si
on

Se
ve

re
 c

ar
di

ac
 le

si
on

s
(2

1)
Ca

rd
io

m
yo

cy
te

-s
pe

ci
fic

 o
ve

re
xp

re
ss

io
n

Pe
rm

an
en

t l
ef

t a
nt

er
io

r 
de

sc
en

di
ng

 
lig

at
io

n
Im

pr
ov

ed
 c

on
tr

ac
til

e 
fu

nc
tio

n,
 r

ed
uc

ed
 

ca
rd

ia
c 

re
m

od
el

in
g

(6
4)

Ca
rd

io
m

yo
cy

te
-s

pe
ci

fic
 d

el
et

io
n

Is
ch

em
ia

/r
ep

er
fu

si
on

D
ec

re
as

ed
 m

yo
ca

rd
ia

l d
am

ag
e,

 r
ed

uc
ed

 
RO

S 
pr

od
uc

tio
n,

 a
tt

en
ua

tio
n 

of
 in

fa
rc

t 
si

ze

(2
0)

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/VB-19-0014

https://vb.bioscientifica.com © 2019 The authors
 Published by Bioscientifica Ltd

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/VB-19-0014
https://vb.bioscientifica.com


S P Gray et al. NOX4 in the cardiovascular 
system

H621:1

https://vb.bioscientifica.com © 2019 The authors
 Published by Bioscientifica Ltd

these findings suggest that while NOX4 has been 
demonstrated to be involved in the regulation of 
hypertension, its effects could be cell and disease specific.

Atherosclerosis development involves multiple cell 
types, which all express NOX4 at basal levels and as 
such it is expected that NOX4 plays a role; albeit several 
studies have suggested both an athero-protective (30, 38, 
39, 40) and a deleterious role (41, 42, 43, 44, 45). The 
induction of growth factors and cytokines in the vessel 
have been shown to be regulated by NOX4 (40, 46, 
47) and that NOX4 has been implicated in neointima 
formation after vascular injury. Specifically, knockdown 
of NOX4 in Zucker rats reduced SERCA oxidation and 
inhibited the development of the neointima in carotid 
injury (14). Moreover, oxidized LDL stimulates NOX4 
expression in macrophages, a process that leads to 
necrotic core formation within lesions (48). Furthermore, 
NOX4 has been linked to smooth muscle cell (SMC) 
migration and proliferation, which are essential steps 
in the development of atherosclerosis (42, 49). Xu et al. 
(43) reported that NOX4 expression was increased in 
aged atherosclerotic plaques, specifically in the SMC of 
unstable plaques, through an increase in SMC senescence 
and apoptosis (43), an important step in the development 
of unstable lesions. It has also been demonstrated that 
in the setting of diabetes, NOX4 deletion results in a 
dedifferentiation of the SMC and increased proliferation 
(49). Additionally, STZ-diabetic NOX4-/ApoE-deficient 
mice have no change in atherosclerosis development after 
10 weeks (34); however, after 20 weeks of diabetes, there 
was a significant elevation in atherosclerotic development 
through increased SMC proliferation (35). Furthermore, 
EC-specific overexpression of the human NOX4 
dominant negative P437H mutant led to an acceleration 
in atherosclerosis development and a cell-specific decline 
in NOX4 expression in the EC vs SMC of STZ-diabetic  
mouse vessels (50). These findings indicate that NOX4 
in the setting of atherosclerosis appears to work in a  

time-/cell-/disease-specific manner and that overall NOX4 
appears to play an athero-protective role.

Transient or sustained ischemia can lead to infarcts 
and stroke within the cerebral vasculature. Similar to the 
reports in the pressure-overloaded heart, NOX4 has been 
linked to the pathophysiology of stroke, since its expression 
and activity is increased as a consequence of hypoxia (51, 
52). NOX4 is upregulated in the cortical neurons within 
24 h of middle cerebral artery occlusion (51). Transient 
upregulation of NOX4 in the cortex is also observed after 
endothelin-induced stroke (53). In an extensive study 
conducted by Kleinschnitz et  al. (39), NOX4-deficient 
mice had less oxidative stress, less blood–brain barrier 
leakage and less neuronal apoptosis after either transient 
occlusion of the middle cerebral artery or after permanent 
stroke induced by cortical photothrombosis. Importantly, 
post-stroke treatment with the putative NOX inhibitor 
VAS2870 improved recovery, suggesting that NOX4 may 
be a viable therapeutic target in the setting of stroke (39). 
This notion has gained further support in a recent study, 
which identified an increase in infarct size after middle 
cerebral artery occlusion in addition to a reduction in 
endothelial-derived eNOS when NOX4 oxidase was 
overexpressed in EC (54). The contrasting findings in the 
setting of stroke compared to the setting of atherosclerosis 
highlight that NOX4 can play both a detrimental and 
protective role in disease development and that this may 
largely depend on the specific nature of the vessel, that 
being macrovascular or microvascular. This highlights the 
need for further research into the role of NOX4 in other 
vascular beds, before using blanket NOX4 inhibitors to 
modulate disease development.

NOX4-mediated regulation of transcription 
factors in the heart

Several studies have reported the ability of NOX4 to 
regulate distinct signaling pathways and cellular functions 

Table 3 NOX4 in vascular disease models.

NOX4 modification 
(vascular disease models)

 
Disease model

 
Reported outcome

 
Reference

Overexpression Endothelial Dysfunction Enhanced agonist-mediated relaxation
eNOS-dependent acceleration in neovascularization in 

hind limb ischemia

(30, 38)

Global deletion Hypertension No change in BP at baseline but a protection in Ang-II 
mediated pressure increases

(37)

Global deletion Endothelial dysfunction Reduced contractile dysfunction (14)
Global deletion Atherosclerosis Accelerated development in diabetic model (34, 35)
Global deletion Ischemia/reperfusion and Stroke Reduction in ROS and less blood–brain barrier leakage (39)
Global deletion Atherosclerosis Reduced development of the neointima (14)

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/VB-19-0014

https://vb.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/VB-19-0014


S P Gray et al. NOX4 in the cardiovascular 
system

H631:1

(e.g., proliferation (55), apoptosis (56), angiogenesis (13) 
and more) based on its levels of expression, intracellular 
localization and the cell type studied. For instance, among 
others NOX4 has been shown to activate the kinases p38, 
JNK, ERK1/2 and Akt in both stimulated and naïve cells 
(57, 58, 59). In the cardiovascular system, NOX4 has been 
shown to convey several of its actions via interaction 
with different transcription factors such as NRF2, HIF1a 
and ATF4. NRF2 is a pleiotropic transcription factor 
primarily acting as a central regulator of an antioxidant 
cytoprotective gene program that can be activated in 
cardiomyocytes during acute neurohumoural stress or 
in the overloaded heart in vivo. Overexpression of NOX4 
in vivo has been shown to mediate the expression of 
antioxidant and detoxifying genes regulated by NRF2, as 
well as an NRF2-dependent elevation of glutathione and 
biosynthetic and recycling enzymes, suggesting a role 
for NOX4 in the regulation of glutathione redox in the 
heart (16). Furthermore, upregulation of NOX4 in the 
stressed heart in vivo specifically activates NRF2 and its 
downstream antioxidant signaling cascade, which serves 
to limit oxidative stress, mitochondrial DNA damage and 
cardiomyocyte death (17). As recently demonstrated, NRF2 
also contributes to the physiological role of NOX4 in the 
heart as an activator of NRF2 in order to support normal 
physical exercise (60). Specifically, the increased levels 
of NOX4 observed following acute exercise result in the 
concomitant activation of the NRF2 transcription factor 
and its antioxidant target genes for optimal increments in 
heart performance during exercise. The pairing between  

NOX4 and NRF2 triggers an adaptive response to maintain 
redox state and support mitochondrial and, hence, 
contractile function in the exercised heart.

The cardioprotective effects of NOX4 have also been 
attributed to regulation of the hypoxia-induced HIF1a. 
The transcription factor Hif1a and VEGF signaling mediate 
cardiac remodeling and hypertrophy and promote 
angiogenesis to protect the stressed heart (61, 62). Indeed, 
NOX4 is protective against cardiac decompensation 
during hemodynamic overload via the activation of HIF1a, 
possibly due to inhibition of prolyl hydroxylases (PHDs) 
and release of VEGF from cardiomyocytes and/or ECs (15). 
As a result of the actions of NOX4 myocardial capillary 
density is preserved in the pressure-overloaded heart.

Finally, studies have demonstrated the interplay 
between NOX4 and the ATF4 transcription factor in 
the diseased heart. Autophagy is an essential survival 
mechanism in the energy-deprived heart. Indeed, 
activated NOX4 and subsequent generation of ROS 
promote autophagy in response to energy stress (e.g., 
fasting) through activation of the PKR-like ER kinase 
(PERK) pathway by suppression of prolyl hydroxylase 
4 (PHD4) (18). Moreover, in the pressure-overloaded 
heart, hypertrophic remodeling includes a switch in the 
preferred energy substrate from fatty acids to glucose. 
The upregulation of NOX4 levels in the overloaded heart 
reprograms cardiac substrate metabolism in order to 
maintain cardiac energetics under conditions of stress. 
Nabeebaccus et al. recently reported a NOX4- and ATF4-
dependent upregulation of the hexosamine biosynthetic 

Figure 1
The pathophysiological and physiological effects of NOX4 under various conditions of cardiovascular stress. Summary of the key signaling events that 
have been identified to be regulated by NOX4 that are engaged downstream of various pathological (pressure overload; red, I/R injury; blue, 
atherosclerosis; purple, stroke; brown) or physiological (acute exercise; green) cardiovascular stresses.
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pathway, which enhances fatty acid utilization via 
the attachment of O-linked N-acetylglucosamine 
(O-GlcNAcylation) to the fatty acid transporter CD36 
(63). This is a novel identification of a NOX4-dependent 
coordinated reprogramming of cardiac fatty acid 
and glucose metabolism, demonstrating the optimal 
compartmentalization of glucose as an adaptive pathway 
in the hemodynamically overloaded heart.

Conclusion

The diverse outcomes of NOX4 activation in the 
cardiovascular system (Fig.  1) are one of the reasons 
why non-specific, antioxidant approaches have failed 
to demonstrate any positive outcomes in heart disease. 
The interplay between redox pools with detrimental 
and/or beneficial effects exemplifies the requirement 
for the identification of specific targets for therapeutic 
manipulation (i.e. activation of NOX4-regulated 
pathways). Better understanding of the ROS-regulated 
signaling pathways and data on humans will determine 
the potential for clinical translation.
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