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Abstract: The systematic bioanalytical characterization of the protein product of the DMD gene,
which is defective in the pediatric disorder Duchenne muscular dystrophy, led to the discovery of
the membrane cytoskeletal protein dystrophin. Its full-length muscle isoform Dp427-M is tightly
linked to a sarcolemma-associated complex consisting of dystroglycans, sarcoglyans, sarcospan,
dystrobrevins and syntrophins. Besides these core members of the dystrophin–glycoprotein com-
plex, the wider dystrophin-associated network includes key proteins belonging to the intracellular
cytoskeleton and microtubular assembly, the basal lamina and extracellular matrix, various plasma
membrane proteins and cytosolic components. Here, we review the central role of the dystrophin
complex as a master node in muscle fibers that integrates cytoskeletal organization and cellular
signaling at the muscle periphery, as well as providing sarcolemmal stabilization and contractile force
transmission to the extracellular region. The combination of optimized tissue extraction, subcellular
fractionation, advanced protein co-purification strategies, immunoprecipitation, liquid chromatogra-
phy and two-dimensional gel electrophoresis with modern mass spectrometry-based proteomics has
confirmed the composition of the core dystrophin complex at the sarcolemma membrane. Impor-
tantly, these biochemical and mass spectrometric surveys have identified additional members of the
wider dystrophin network including biglycan, cavin, synemin, desmoglein, tubulin, plakoglobin,
cytokeratin and a variety of signaling proteins and ion channels.
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1. Introduction

Following the identification of one of the largest genes in the human genome, the
DMD gene [1], and the initial characterization of its full-length protein product [2,3], it
became clear that dystrophin exists in a variety of isoforms ranging in molecular mass from
approximately 71 to 427 kDa [4]. Dystrophins are widely distributed in the body, including
voluntary striated muscles, the heart, the brain and various other organs systems [5]. Since
the large Dp427-M isoform was shown to be tightly associated with several glycoproteins
in skeletal muscle fibers [6–11], it was concluded that dystrophin probably functions as a
molecular anchoring system in the subsarcolemmal cytoskeleton [12,13]. Comprehensive
subcellular fractionation studies in combination with both immunoblotting and mass
spectrometry have established that dystrophin is highly enriched in the sarcolemma fraction
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from skeletal muscle [14,15]. Cell biological studies using immunofluorescence microscopy
and immunoelectron microscopy agree with these findings and have localized dystrophin
to the cytoplasmic site of the plasmalemma in skeletal muscle fibers [16,17]. Subsequent
biochemical and cell biological studies confirmed that the dystrophin–glycoprotein complex
provides a stabilizing linkage between the intracellular actin cytoskeleton and laminin-211
in the basal lamina of the extracellular matrix [11,18,19]. Modern mass spectrometry-based
proteomic approaches have confirmed the composition of the core complex that associates
with dystrophin and dystroglycans at the sarcolemma membrane [14,20–24].

The almost complete loss of dystrophin isoform Dp427-M and concomitant reduction
in dystrophin-associated proteins triggers the complex pathophysiology of Duchenne
muscular dystrophy [7,25], an X-linked and multifaceted disorder of early childhood
that primarily affects striated muscles [26], causing respiratory dysfunction, late-onset
cardiomyopathy and scoliosis. Functional disturbances of the nervous system [27] and
abnormal energy metabolism are also distinctive features of dystrophinopathy [28,29]. The
systematic usage of genetic animal models with dystrophic symptoms was instrumental
for the elucidation of the body-wide effects of dystrophin deficiency [30–33]. Skeletal
muscle abnormalities are characterized by a complex molecular and cellular pathogenesis,
encompassing complex changes in contractile fibers and their supporting connective tissue
and neuronal cells [34]. Cycles of degeneration and regeneration, impaired innervation
patterns, progressive necrosis, fatty tissue replacement, reactive myofibrosis and sterile
inflammation were established as secondary consequences of a primary defect in the
dystrophin gene [35–37].

In addition to the involvement of sarcolemmal abnormalities in highly progressive
Duchenne muscular dystrophy and more benign forms of Becker muscular dystrophy,
changes in the dystrophin complex are also involved in sarcoglycanopathies and alpha-
dystroglycanopathies. Sarcoglycanopathies represent subtypes of limb–girdle muscular
dystrophy that are caused by primary abnormalities in the dystrophin-associated sarco-
glycans and alpha-dystroglycanopathies are associated with the abnormal glycosylation
of alpha-dystroglycan [38]. Caveolinopathies are another group of disorders that affect
the plasma membrane via alterations in caveolae invaginations. Primary abnormalities in
caveolin-3 are associated with certain forms of muscular dystrophy and the altered expres-
sion of this protein is postulated to also play a pathophysiological role in dystrophinopa-
thy [39]. Importantly, new findings on the underlying mechanisms of dystrophic alterations
are crucial for the identification of robust and disease-specific biomarker molecules [40–43]
and the development of novel diagnostic approaches [44], as well as the design of innova-
tive therapies to restore the dystrophin complex and counteract secondary aspects involved
in progressive muscle wasting [45–49].

In this review, an overview of the core members of the dystrophin–glycoprotein
complex in normal skeletal muscle is provided, including dystroglycans, sarcoglyans,
sarcospan, dystrobrevins and syntrophins. This article then focuses on recent biochemi-
cal, proteomic and cell biological investigations aimed at the systematic identification of
indirectly associated proteins belonging to the wider dystrophin network. This includes
crucial members of the extracellular matrix such as biglycan, the surface desmoglein com-
plex, and members of the cytoskeletal network including vimentin, tubulin, desmin and
cytokeratin, as well as the cavin–caveolin complex, plakoglobin, ion channels and various
signaling proteins. These newer findings have modified the initial view of dystrophin being
a purely structural component that functions as a molecular anchor and shock absorber in
the membrane cytoskeleton. The Dp427-M isoform of skeletal muscle acts probably as a
crucial integrator at the fiber periphery and is, in conjunction with the integrin–laminin
axis, majorly involved in lateral force transmission. In addition, the dystrophin complex
has been implicated to provide a master node for cytoskeletal organization and cellular
signaling events, which are characterized by the linkage of dystrophin to ion channels,
the insulin signaling pathway, nitric oxide-based regulatory processes, kinase signaling
pathways and excitation–contraction coupling [36].
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2. The Core Dystrophin Complex in Skeletal Muscle

The full-length dystrophin isoform Dp427-M belongs to the class of giant muscle pro-
teins [50] and consists of several distinct molecular domains as illustrated in the upper panel
of Figure 1. This includes amino-terminal and central actin-binding domains, proline-rich
hinge regions, spectrin-like rod domains and crucial carboxy-terminal binding sites for inter-
actions with plasmalemmal and cytosolic components [51–54]. Dystrophin closely interacts
with the integral proteins beta-dystroglycan, alpha/beta/gamma/delta-sarcoglyan and
sarcospan of the sarcolemma, the extracellular receptor alpha-dystroglycan and laminin-
211, the cytosolic components alpha/beta-dystrobrevin and alpha/beta-syntrophin, and
the cortical actin cytoskeleton [9–13], as shown in the lower panel of Figure 1.
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Figure 1. Overview of the domain structure of dystrophin and the diverse interactions of the dystrophin–glycoprotein
complex in skeletal muscle tissues. The upper panel shows a diagrammatic presentation of the main molecular domains of
dystrophin isoform Dp427-M, including actin-binding sites at the N-terminus and central rod domain, proline-rich hinge
regions (H1 to H4), spectrin-like rod (SLR) domains 1–3, 4–19 and 20–24, a cysteine-rich domain with binding sites for
integral beta-dystroglycan (DG), the cysteine-rich domain (CR) and the C-terminus with binding sites for dystrobrevin (DYB)
and syntrophin (SYN). The lower panel shows a model of the spatial configuration of the dystrophin complexome in skeletal
muscle fibers. Shown is the dystrophin core complex consisting of the dystrophin isoform Dp427-M, dystroglycans (DG),
sarcoglycans (SG), sarcospan (SSPN), syntrophins (SYN) and dystrobrevins (DYB), as well as the wider dystrophin-associated
network that forms associations with the extracellular matrix, the sarcolemma, the cytoskeleton and the sarcomere.

Sedimentation analysis of the isolated dystrophin complex suggests a monomeric
structure with an apparent molecular mass of 1.2 MDa [55]. In Duchenne muscular dys-
trophy, alterations in the expression of members of the dystrophin network are closely
related to key pathophysiological features in dystrophin-deficient muscles, including
degeneration-regeneration cycles, progressive fiber degeneration, fibrosis and chronic
inflammation. Detailed reviews have been published on the composition of the core dys-
trophin complex [19,56–58], as well as the role of dystrophin and its associated glycoprotein
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complex in the multisystemic complications of dystrophinopathy and pathophysiological
crosstalk throughout the body [34–37,59]. Therefore, this article does not attempt to recapit-
ulate these biochemical and pathobiochemical issues in detail, but refers instead to specific
aspects that are crucial for our general understanding of the wider functional role of the
dystrophin complexome in normal skeletal muscle tissue.

2.1. The Dystrophin Node in Skeletal Muscle

A model of the spatial configuration of the core dystrophin complex and its association
with the extracellular matrix on the one hand and the intracellular cytoskeletal network
of contractile fibers on the other hand is presented in the lower panel of above Figure 1.
Specific aspects of dystrophin interaction patterns are discussed in detail in below sections.
The cell biological concept that the dystrophin–glycoprotein complex occupies a central
position at the fiber periphery is summarized in Figure 2. The diagram shows that the
dystrophin-associated surface complex forms an organizing node that is majorly involved
in (i) the provision of sarcolemmal membrane integrity via a stabilizing linkage between
the intracellular actin cytoskeleton and the extracellular matrix protein laminin [11,13],
(ii) the establishment of a molecular scaffold and anchoring system for ion channels and
enzymes to mediate cellular signaling processes [60,61] (iii) the organization of actin
filament attachment and its associated cytoskeletal network [62,63], and (iv) the mediation
of lateral force transmission from sarcomeric contraction to the endomysium and its
connected layers of the extracellular matrix [64,65].
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Figure 2. Outline of the main functions of the dystrophin node and its associated protein complex as
integrators of fiber stability, cellular signaling. cytoskeletal organization and lateral force transmission.
The upper panels summarize the main functions of the trans-sarcolemmal axis formed by the
intracellular actin cytoskeleton, the dystrophin–dystroglycan complex, the basal lamina component
laminin and the extracellular matrix. The lower panel illustrates the physiological concept of force
transmission in skeletal muscles, which can be divided into a laterally and a longitudinally acting
system. In conjunction with other costameric proteins, the dystrophin–glycoprotein complex (DGC)
is majorly involved in lateral force transmission to the extracellular matrix.

2.2. The Sarcolemmal Dystrophin Complex and Lateral Force Transmission

The peripheral structure of skeletal muscle fibers functions as an essential physical
barrier with its protective basal lamina. The underlying sarcolemma membrane provides
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the physiological structure for the efficient exchange of ions, metabolites and signaling
molecules within the contractile system [66]. The plasmalemma is connected to the ter-
minal cisternae region of the sarcoplasmic reticulum at the triad junctions via its invagi-
nations, the transverse tubules. This intricate membrane assembly and its associated
Ca2+-handling apparatus is involved in the fine regulation of excitation–contraction cou-
pling, muscle relaxation and ion homeostasis, and encounters enormous physical strain
during contraction–relaxation cycles [67]. The dystrophin-associated complex is implicated
to act as a biomolecular shock absorber by linking the basal lamina to the actin cytoskeleton
and thus preventing rupturing of this muscle membrane system [68–70].

At specialized costamere regions, which play both a mechanical and a signaling role,
the dystrophin complex forms in conjunction with the integrin–vinculin–talin axis a link
to the contractile sarcomere units [63,71]. This bridging structure is postulated to provide
an indirect means of lateral force transmission to the collagen-rich muscle exterior, in
addition to longitudinal forces that are transmitted directly from the contractile apparatus
through the cytosol to the myotendinous junction [72–74]. In skeletal muscle fibers, the
characteristic longitudinal pattern of A bands and I bands reflect the organization of
myosin-containing thick filaments and actin-containing thin filaments with their contractile
sarcomeric units, which are positioned between Z discs. Following the energy-dependent
crossbridge coupling between myosin heads and actin filaments, thin filaments slide
past thick filaments. The force generated by this sarcomeric shortening event is partially
transmitted by a lateral direct force between Z-disk structures and the M-line regions of
neighboring myofibrils. Costamere structures at the fiber periphery play a central role as
sensors of the relative mechanical load and support force transduction across the muscle
plasma membrane. Contractile force is then further transmitted to the complex layers of
the extracellular matrix, consisting of endomysium, perimysium and epimysium, towards
the tendon and bone structure [65,72,73]. The second type of force transmission mechanism
works by longitudinal means through internal muscle structures embedded in the cytosol.
Both lateral and longitudinal coupling mechanisms act in parallel and ultimately transmit
the force generated by the actomyosin apparatus in the sarcomere to the tendon and
anchoring structures such as bone, as diagrammatically summarized in the lower panel
of Figure 2. The dystrophin-associated dystroglycan subcomplex was shown to play a
critical role in the sarcomeric cytoskeleton by limiting contraction-induced injury to skeletal
muscle fibers [70].

The elucidation of the multifaceted functions of the dystrophin–glycoprotein com-
plex in maintaining membrane stability during excitation–contraction–relaxation cycles,
assisting lateral force transmission through costameres and providing a scaffold for an-
choring surface receptors and maintaining cellular signaling mechanisms was carried out
by multidisciplinary approaches. This included molecular genetics, biochemical purifica-
tion strategies, structural/biophysical analysis, mass spectrometric proteomics analysis,
bioinformatics, chemical crosslinking, cell biological characterization and comparative
biomedical studies. In below sections, information on the findings of these bioanalyses is
provided in relation to the individual members of the dystrophin–glycoprotein complex
and its wider network of skeletal muscle proteins.

2.3. Muscle Dystrophin Dp427-M and Its Associated Glycoprotein Complex

The large muscle isoform of dystrophin is a rod-shaped protein [3] with consider-
able homology to the actinin superfamily of actin crosslinking components, which also
includes utrophin and spectrin [75]. Both, dystrophin isoform Dp427-M of the sarcolemma
and its autosomal homologue, utrophin isoform Up395-M of the neuromuscular junction,
exhibit typical biochemical properties of cytoskeletal components, such as insolubility in
non-ionic detergent and efficient extraction by alkaline treatment [76,77]. Compared to the
main components of the contractile actomyosin apparatus and its regulatory sarcomeric
elements, dystrophin represents a relatively minor component of the skeletal muscle fiber
proteome. However, dystrophin isoform Dp427-M constitutes a considerable fraction of the
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subsarcolemmal cytoskeleton in contractile tissue [76]. This makes full-length dystrophin
an important structural and functional component of the sarcolemmal lattice and costamere
structures [71]. Besides being present in contractile fibers, dystrophin isoforms also exist in
many non-muscle cells [78]. The various dystrophins are encoded by the 79 exon-spanning
DMD gene, whereby seven different promoters drive the tissue-specific expression of the
full-length isoforms Dp427-B in brain, Dp427-M in muscle and Dp427-P in Purkinje cells [4],
as well as the shorter isoforms Dp260-R in retina [79], Dp140-B/K in brain and kidney [80],
Dp116-S in Schwann cells [81] and Dp71-G in the brain [82] and a variety of other tissues
including the spleen [83]. The promoter for Dp71 also produces the shortest known dys-
trophin isoform named Dp45, which is located in the central nervous system [84]. Of note,
the central nervous system displays one of the greatest varieties of dystrophin isoforms,
which are involved in synaptic modulation, neuronal excitability and signal integration.
Brain Dp427-B is present in neurons of the cerebral cortex and in cerebellar Purkinje cells,
Dp140-B is highly expressed during brain development and Dp71-G is located in both
neurons and glia cells in the dentate gyrus [82]. Cognitive impairments and emotional
disturbances in Duchenne patients are probably linked to altered dystrophin expression in
the central nervous system and this is reflected by structural brain abnormalities [85]. The
formation of dystrophin complexes and their involvement in dystrophinopathy-associated
brain defects has been reviewed by Waite et al. [86].

The composition of the dystrophin–glycoprotein complex has been extensively inves-
tigated using a combination of digitonin-based solubilization, wheat germ agglutinin
lectin chromatography, ion exchange chromatography and density gradient ultracen-
trifugation [7,14,55,87], as well as various chemical crosslinking and immunoprecipita-
tion approaches [8,21–23,88,89]. Differential detergent extraction procedures [90], two-
dimensional gel electrophoresis [10] or alkaline dissociation [87] can be used to isolate
individual dystrophin subcomplexes or separate the dystrophin-associated glycopro-
tein complex from homogeneous dystrophin molecules. Based on these analyses, the
core members of the dystrophin-associated complex can be divided into (i) cytosolic
components alpha/beta-dystrobrevin [91,92] and alpha/beta-syntrophin [93,94] that in-
teract with the cysteine-rich domain of dystrophin; (ii) integral glycoproteins, includ-
ing the alpha/beta/gamma/delta-sarcoglyan subcomplex [95–97], the highly hydropho-
bic protein sarcospan [98–100] and the main carboxy-terminal dystrophin-binding part-
ner beta-dystroglycan [101]; (iii) laminin-211 [102] and its extracellular receptor alpha-
dystroglycan [103], which is a proteolytic cleavage product of the pre-dystroglycan
molecule [104]; and (iv) the intracellular actin cytoskeleton that links to an amino-terminal
and a rod domain site of full-length dystrophin [51,55,105].

As reviewed by Tarakci and Berger [97], the sarcoglycan subcomplex is initially as-
sembled by the formation of a core between beta-sarcoglycan and delta-sarcoglycan, which
subsequently recruits the other two sarcoglycans. Through interactions with sarcospan and
additional dystrophin-associated proteins, the sarcoglycan complex secures the formation
and mechanical maintenance of the sarcolemmal dystrophin complex. Besides its integrat-
ing role in membrane stabilization, the sarcoglycan subcomplex can be chemically modified
during fiber contraction, which provides the transduction of information on relative con-
tractile force into cellular signaling [97]. Interestingly, both components of the dystroglycan
subcomplex are products of the same gene, DAG1, which encodes a pre-pro-protein version
of alpha/beta-dystroglycan that includes a signaling peptide and both subunits [101,106].
The precursor protein is extensively modified by N- and O-glycosylation and undergoes
proteolytic processing that generates the integral glycoprotein beta-dystroglycan and the
extracellular laminin-binding receptor alpha-dystroglycan [103]. Thus, the two dystro-
glycans form the backbone of the trans-sarcolemmal linkage between the basal lamina
component laminin-211 and the dystrophin-associated actin cytoskeleton in the subsar-
colemmal region of skeletal muscle [11,13]. The phosphorylation of beta-dystroglycan,
especially intracellular tyrosine residues [107], is a crucial step during interactions with
signaling proteins [108]. The phosphorylation of the cysteine-rich region in the carboxy-
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terminal domain of dystrophin also plays a key role in strengthening the interaction with
beta-dystroglycan [109]. Thus, post-translational modifications are important modulators
of dynamic associations within the dystrophin–dystroglycan axis.

3. Proteomic and Biochemical Characterization of the Dystrophin Network in
Skeletal Muscle

Over the last two decades, biochemical analyses and mass spectrometry-based pro-
teomics were instrumental to confirm the composition of the dystrophin–glycoprotein
complex. Based on these findings, proteomic approaches were extremely helpful for
the subsequent identification of novel binding proteins that belong to the wider dys-
trophin complexome.

3.1. Proteomics of the Dystrophin Complex from Skeletal Muscle

Following the discovery and initial biochemical and cell biological characterization of
dystrophin, a variety of large-scale screening analyses were carried out to identify proteins
that exhibit a close linkage to this membrane cytoskeletal component. Figure 3 illustrates
how proteomic surveys and the usage of advanced mass spectrometry has helped to refine
this search for novel dystrophin-binding partners and related proteins.
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Figure 3. Outline of the biochemical, proteomic and bioinformatic strategy to identify and characterize novel binding
proteins of the dystrophin complexome. Mass spectrometry-based proteomic studies have used various starting materials,
such as crude tissue extracts, subcellular fractions or purified protein complexes. Listed are the various bioanalytical
techniques that are routinely used for the efficient separation of dystrophin-associated protein populations and their
subsequent mass spectrometric and bioinformatic evaluation. To verify proteomic findings, often immuno-blotting,
biochemical assays and cell biological methods are used.

Biochemical and proteomic screening studies have corroborated the direct binding
partners of dystrophin, i.e., the integral glycoprotein beta-dystroglycan of the sarcolemma
and the cytosolic components dystrobrevin, syntrophin and cortical actin [20–24,110,111].
The other main components of the core dystrophin complex were also identified by pro-
teomics, including the sarcoglycans of the plasma membrane, the highly hydrophobic
protein sarcospan and laminin-211 of the basal lamina [21,23]. In addition, comprehensive
mass spectrometric studies identified further interaction patterns based on indirect associa-
tions with dystrophin isoform Dp427-M [21–24,89]. These new components of the wider
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dystrophin network include the extracellular matrix components collagen, fibronectin and
biglycan, the plasmalemma proteins integrin, cavin and caveolin, and the cytoskeletal pro-
teins cytokeratin, synemin, actinin, desmin, plectin, desmoglein, desmoplakin and tubulin.

When used in an optimized way, the chemical crosslinking technique can be utilized
for the stabilization of fragile protein complexes that would otherwise disintegrate during
elaborate subcellular fractionation and extensive biochemical isolation procedures. In
protein biochemistry, chemical crosslinking is defined as the intra- and/or inter-molecular
stabilization of protein molecules via covalent bonding. Since the chemical crosslinking
technique is capable of determining molecular changes in macromolecular oligomerization,
it is an ideal bioanalytical tool for studying dynamic protein interaction patterns. The
select joining of two or more protein species is achieved by the incubation of protein
mixtures with a large variety of crosslinking agents that differ in their molecular spacer
arm length, their solubility and chemical reactivity. Frequently used crosslinkers contain
reactive groups that are suitable for optimum interactions with functional groups in protein
molecules such as primary amines. For example, the crosslinker used in below Figure
4 is a homo-bifunctional, water-soluble, non-cleavable and amine-reactive agent that is
highly useful for joining proteins in complex assemblies under physiological conditions.
Following the addition of crosslinking agents, protein samples are usually incubated for
30 min at 25 ◦C for 30 min and then the reaction quenched by the addition of ammonium
acetate. A convenient way to analyze the occurrence of crosslinked protein complexes is the
determination of an altered electrophoretic mobility in one- or two-dimensional gels [89].
A crucial issue with this method is the potential occurrence of random crosslinking events.
However, this can be avoided by employing a low ratio of crosslinking agent to protein and
using proper conditions in relation to length of incubation time, efficient quenching of the
crosslinking reaction, temperature, buffering and pH-value [112]. Chemical crosslinking
has been established as an excellent method in proteomics for studying sensitive protein–
protein interactions [113]. Since a large collection of crosslinking molecules exist that
greatly vary in their specific spacer arm length, experiments with different agents can
be designed to determine spatial constraints within proteins. If a chemical crosslinker
with an extremely short spacer arm length is employed, this approach can even stabilize
protein interactions within biological membranes that exist in extremely close proximity
to another [114].

One of the earliest biochemical studies on the identification of dystrophin-associated
proteins used chemical crosslinking [8] and these findings were confirmed by combining
protein crosslinking with immunoblotting [88]. The combination of chemical crosslinking
and mass spectrometric analysis established that a subpopulation of the sarcolemmal
protein cavin-1 exists in a surface complex with beta-dystroglycan in skeletal muscle [89],
which has previously been demonstrated in cardiac fibers [21]. Cavins are adapter proteins
and mediate in conjunction with the structural caveolin proteins the formation and organi-
zation of small invaginations of the muscle plasma membrane, the bulb-like membrane
pits called caveolae [115]. These structures are involved in lipid storage, endocytosis,
cellular signaling and mechano-protection [116]. Freeze-fracture electron microscopy has
established that the number and structure of caveolae are changed in dystrophinopathy,
suggesting an important role of abnormal cavins in muscular dystrophy [39,117]. Of note,
the crucial repair protein myoferlin [118] is also closely associated with caveolin and intrin-
sically involved in the maintenance and structural integrity of the sarcolemmal membrane,
together with the Ca2+-dependent repair protein dysferlin [119].

Figure 4 outlines how a chemical crosslinking mass spectrometry (XL-MS) approach
can be employed to study novel protein–protein interaction patterns, which are indirectly
linked to dystrophin expression levels [112]. A variety of highly useful bioinformatic
programs are available for the visualization of potential protein–protein interactions [120],
as shown in the below images, which has been carried out with the STRING program [121].
In recent years, a variety of advances have occurred in XL-MS methodology, such as the
development of MS-cleavable crosslinkers and software programs (XlinkX; MeroX; StavroX)
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that enable the identification of peptides directly from mass spectrometric data, and thus
do not rely on gel electrophoresis or immunoblotting [113].

MUSCLE with Dp427 MUSCLE without Dp427

Gel shift analysis of
XL-stabilized proteins

Comparative
gel-shift

XL/MS analysis

Dp427

Silver-stained gel

Dp427

wild type mdx-4cv

XLCtrl XLCtrl

wt

250

150

100

kDa
Introduction of inter- and
intra-molecular cross-links

Chemical crosslinking of microsomes

In-gel trypsination of protein bands

Production of distinct peptide 
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Mass spectrometric analysis

wild type
MUSCLE
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MUSCLE

Changes in interaction proteomicsCrude tissue extracts

Differential centrifugation

Microsomal fraction

vs
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Figure 4. Gel shift-based chemical crosslinking mass spectrometry (XL-MS) analysis of skeletal muscle specimens. Shown is
the flow chart of a typical interaction proteomic and bioinformatic analysis using a combination of chemical crosslinking
with the 11.4 Å agent BS3 (bis [sulfosuccinimidyl] suberate), gel electrophoretic separation of crosslinked protein complexes,
mass spectrometric analysis for the identification of proteins with a crosslinker-induced shift in electrophoretic mobility and
the bioinformatic evaluation of potential protein–protein interactions. As previously described in detail [112], the various
experimental steps involved in this particular type of gel-shift XL-MS analysis include (i) the preparation of crude skeletal
muscle tissue extracts by homogenization, (ii) the enrichment of the microsomal membrane fraction using differential
centrifugation, (iii) the joining of proteins by incubation with a homo-bifunctional, water-soluble, non-cleavable and
amine-reactive crosslinking agent, (iv) the quenching of the crosslinking reaction, (v) extraction of crosslinked proteins and
gel electrophoretic separation, (vi) excision of crosslinked protein bands of high molecular mass, (vii) in-gel proteolysis
of proteins using trypsin, (viii) separation of peptides by liquid chromatography, (ix) mass spectrometric identification
of proteins, and (x) systems bioinformatic analysis of altered protein–protein interaction patterns. The position of the
analyzed high-molecular-mass protein bands, using comparative mass spectrometry, are highlighted by a red box and
are marked by an arrow. Protein interaction patterns were visualized with the bioinformatic STRING program [121].
The immunofluorescence microscopical images show transverse section of wild-type versus dystrophic mdx-4cv mouse
gastrocnemius muscle. The sarcolemmal localization of dystrophin was stained in red with an antibody to isoform Dp427-M
and nuclei were counterstained in blue with the fluorescent stain DAPI (4′,6-diamidino-2-phenylindole) that labels DNA
molecules [111].

Co-sedimentation analysis of the dystrophin complex in combination with mass
spectrometry identified a potential interaction with desmoglein [24]. The dystrophin–
glycoprotein complex was enriched by established methods using an advanced subcellular
membrane fractionation protocol [15] and detergent solubilization [6], followed by ion
exchange and lectin affinity chromatography [7] and a final density gradient ultracentrifuga-
tion step [87]. The dystrophin complex was then separated by gradient gel electrophoresis
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and protein bands digested by on-membrane trypsination [20]. The co-sedimented pro-
teins in the enriched dystrophin fraction were identified by peptide mass spectrometry.
Besides the confirmatory identification of dystrophin and its tightly associated glycopro-
teins by a large number of unique peptide sequences, cytokeratin and the two cytolinker
proteins desmoglein and desmoplakin [122] were shown to be present in the dystrophin
fraction [24]. This finding agrees with the cell biological concept of the dystrophin com-
plexome being involved in providing a structural lattice for linking individual components
of the cytoskeletal network in skeletal muscle fibers. This includes dystrophin interactions
with cytokeratin [123,124], synemin [125], plectin [126–128], as well as actinin, desmin and
tubulin [129]. Intermediate filaments that contain the cytokeratin isoform K19 were shown
to directly interact with the actin-binding region of Dp427-M [124].

Dystrophin was established to be directly involved in the organization and stabi-
lization of costameric microtubules [129]. These diverse interactions of dystrophin with
intermediate filaments and microtubules suggest that the Dp427-M isoform functions as
a cytolinker molecule that maintains close interactions between the sarcolemmal dystro-
glycan complex and the intracellular cytoskeleton in contractile fibers. In relation to other
cytosolic proteins, a close linkage of the dystrophin complex was shown with plakoglobin,
which in turn binds to the insulin receptor [130], and the neuronal isoform nNOS of nitric
oxide synthase [131]. Both proposed protein interactions provide key hubs for cellular
signaling mechanisms within contractile fibers, such as organization of caveolae and the
regulation of skeletal muscle size. Dystrophin-associated nitric oxide synthase, the enzyme
responsible for the production of the key signaling molecule nitric oxide, was shown to
play a regulatory role in costameres [132] and is involved in muscle fatigue, muscular
atrophy and certain forms of muscular dystrophy [36,133,134]. In skeletal muscle tissues,
nitric oxide levels are low under resting conditions and the production rate of this signaling
molecule is greatly enhanced during repetitive muscle contractions. Crucial regulatory
functions of nitric oxide in skeletal muscle include auto-regulation of blood flow, metabolic
and bioenergetic integration at the level of glucose homeostasis and mitochondrial respira-
tion, modulation of excitation–contraction coupling and contractile force generation, as
well as myocyte differentiation [135,136]. The influence of nitric oxide on skeletal muscle
function involves changes in redox-sensitive protein species, the activation of the sec-
ond messenger molecule cyclic guanosine monophosphate and interactions with reactive
oxygen species [135].

The localization and continued functioning of nNOS has a crucial regulatory impact
on arteriolar blood flow within skeletal muscles. This is clearly shown by the fact that
functional ischemia occurs in connection with reduced nitric oxide levels. Narrowing
of blood vessels results in oxygen deficiency which in turn renders muscle fibers more
susceptible to metabolic stress and cellular degeneration in muscular dystrophy [137–139].
Stabilization of nNOS enzyme at the sarcolemma depends on the structural and functional
integrity of the sarcoglycan subcomplex. The importance of nNOS-associated signaling
mechanisms is highlighted by the pathophysiological consequence of the lack of this
enzyme in sarcoglycanopathy, which results in a severely dystrophic phenotype [133,134].
Disturbed allosteric interactions between phosphofructokinase and nNOS were shown to
occur in dystrophin-deficient fibers [140], which may contribute to abnormal glycolytic
activity patterns in muscular dystrophy [141,142]. The above listed studies allowed to
draw the model of the spatial configuration of the dystrophin complex presented in the
lower panel of above Figure 1.

A clear linkage to the extracellular matrix via interactions between the dystrophin/
dystroglycan-containing sarcolemma and the basal lamina and its connections to layers
of different types of collagen is supported by the localization of fibronectin and biglycan
in close proximity to dystrophin and utrophin [24,143,144]. Both proteins are key extra-
cellular matrix proteins and are majorly involved in the stabilization of damaged muscle
fibers [24,145]. Biglycan appears to be critical for the expression levels of dystrobrevins,
syntrophins and sarcoglycans [146,147], which represent dystrophin-associated proteins
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of high abundance that are routinely identified in crude muscle extracts and purified
preparations of the dystrophin–glycoprotein complex [14,24,111,112,148]. In contrast, the
highly hydrophobic protein sarcospan of 25 kDa [149] is more difficult to characterize by
mass spectrometry. This component of the dystrophin complex is usually only recognized
by a small number of unique peptides [19]. Interestingly, studies on subcomplex formation
between sarcospan and sarcoglycans indicate a potential indirect linkage via these proteins
between the dystrophin complex and the integrin complex of the sarcolemma [150,151].

3.2. The Dystrophin Complex as a Cellular Signaling Node in Skeletal Muscle

Besides providing the above-described stabilizing linkage between the basal lamina
and the membrane cytoskeleton and thereby functioning as a molecular shock absorber,
the dystrophin complex also acts as a critical hub for cellular signaling at the muscle
plasma membrane [61]. The dystrophin complexome has been implicated to be involved
in the modulation of hypertrophy, major kinase signaling cascades, the organization of
caveolae structures, the regulation of skeletal muscle size, the mitogen-activated protein
kinase pathway, the regulation of ion homeostasis, cytoskeletal organization, G-protein
signaling and neuromuscular transmission in conjunction with its autosomal homologue
utrophin, as well as mechano-sensing and cytoskeletal remodeling in association with the
laminin-collagen bridge and the sarcolemmal integrin complex [36,61,152].

Following the characterization of dystrophin–dystroglycan interactions [153], it was
shown that adaptor proteins of signal transduction and cell communication, such as the
growth factor receptor-bound protein Grb2, are also associated with the dystrophin com-
plex [154]. This finding linked dystrophin with cellular signaling processes and was
followed by a large number of detailed studies into the physiological and cell biological
role of the dystrophin complex. The signaling and regulatory function of the dystrophin
complexome in skeletal muscle was shown to involve key physiological players of the mus-
cle plasmalemma, such as channels for potassium, sodium, calcium and water [60]. This
includes especially interactions between alpha-syntrophin and inward rectifier K+-channels
(Kir2.1 at the neuromuscular junction) [155], Na+-channels (Nav1.4 and Nav1.5) [93], non-
specific channels of the transient receptor potential cation channel family (TRPC1 and
TRPC4) [156], and the aquaporin water channel (AQ4) [157,158]. Imaging by confocal
microscopy techniques suggests furthermore co-localization of dystrophin and the voltage-
sensing dihydropyridine receptor L-type Ca2+-channel (Cav1.1) [159]. The dystrophin
complex appears to be intrinsically involved in the provision of a structural scaffold for the
positioning of important ion channels and transporters.

Kinase-coupled pathways were demonstrated to be coupled to syntrophins and
dystroglycans. This includes potential interactions between the non-receptor tyrosine
kinase Src and beta-dystroglycan [160,161], as well as binding of various syntrophins
to diacylglycerol kinase-zeta [162,163], microtubule-associated serine/threonine kinase
MAST205 [164], and a specific mitogen-activated protein kinase named stress-activated
protein kinase SAPK3 [165]. The proposed indirect linkage between the dystrophin com-
plex and integrin [166] would suggest that the dystrophin complexome is also partially
involved in mechano-sensing and the overall regulation of cytoskeletal remodeling via
the phosphatidylinositol 3-kinase-related kinase mTOR (mechanistic/mammalian target
of rapamycin) signaling cascade [167]. Other enzymes and regulatory factors involved
in dystrophin-linked signaling mechanisms were identified as the ankyrin repeat-rich
membrane spanning protein ARMS at the neuromuscular junction [168] and the nNOS
isoform of nitric oxide synthase, which is involved in Ca2+/calmodulin dependent NO
synthesis [36,140]. Myocilin, a modulator of muscle hypertrophy was shown to be linked
to alpha-syntrophin [169]. Interestingly, alpha-dystrobrevin was demonstrated to interact
with the cytoskeletal linker protein alpha-catulin, which acts as a scaffold structure for
G-protein signaling pathways, [170–172], and is also linked to liprin and the guanidine
nucleotide exchange factor Arhgef5 at the neuromuscular junction [173,174].
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Although this article focuses on the dystrophin isoform Dp427-M and its associated
components, it is important to briefly mention the crucial function of its autosomal ho-
mologue, the dystrophin-related protein utrophin of 395 kDa [175] and the overlapping
localization of both membrane cytoskeletal proteins at the neuromuscular junction [176].
In analogy to dystrophin, utrophin also exists in a variety of isoforms, including Up71, G-
utrophin, Up140, B-utrophin and A-utrophin. The domain structure of full-length utrophin
is very similar to Dp427, especially at the carboxy-terminus, and is characterized by a major
actin-binding site at the amino-terminus, a central spectrin-like rod domain and a carboxy-
terminal interaction site with beta-dystroglycan [177]. At the motor endplate region, a
very high density of utrophin isoform Up395-M exists at the post-synaptic membrane
besides dystrophin [176,178]. Utrophin forms a tight complex with proteins involved in the
regulation and maintenance of neurotransmission, such as agrin, the muscle-specific kinase
MuSK, perlecan, acetylcholinesterase and the nicotinic acetylcholine receptor [179,180].
Figure 5 provides an overview of the complexity of the dystrophin-associated signaling
processes and their potential interconnectivities.
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Figure 5. Overview of the function of the dystrophin complexome as a cellular signaling hub at the sarcolemma of skeletal
muscle fibers. Shown is the close neighborhood relationship between the dystrophin core complex and the integrin complex
within the plasma membrane, as well as the presence of the dystrophin and utrophin complex at the neuromuscular
junction. Key pathways and functional results that are potentially linked to dystrophin are marked in red and blue,
respectively. Abbreviations used: AChE, acetylcholinesterase; AChR, acetylcholine receptor; AKT, serine/threonine-specific
protein kinase B; AQ4, aquaporin water channel; AR, adrenergic receptor; Cav, voltage-sensing L-type Ca2+-channel;
DAG, diacylglycerol; DG, dystroglycan; Dp427, dystrophin protein of 427 kDa; DYB, dystrobrevin; ECM, extracellular
matrix; Grb2, growth factor receptor-bound protein 2; GSK, glycogen synthase kinase; ILK, integrin-linked kinase; Kir,
inward rectifier K+-channel; MAP, mitogen-activated protein; mTOR, mammalian/mechanistic target of rapamycin; MuSK,
muscle-specific kinase; Nav, Na+-channel; NMJ, neuromuscular junction; nNOS, neuronal isoform of nitric oxide synthase;
PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; SGK, serine/threonine-protein kinase; SYN, syntrophin; TRPC,
transient receptor potential cation channel.
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4. Conclusions

Since the discovery of dystrophin over 30 years ago, a large body of scientific evidence
has been gathered that strongly supports the idea that the full-length dystrophin isoform
Dp427-M forms the core of a supramolecular protein assembly at the sarcolemma. This
dystrophin complexome was shown to be intrinsically involved in linking the extracellular
matrix component laminin-211 to the actin membrane cytoskeleton. The main mem-
bers of the dystrophin-associated complex were identified as sarcolemmal proteins (beta-
dystroglycan, alpha-sarcoglycan, beta-sarcoglycan, gamma-sarcoglycan, delta-sarcoglycan
and sarcospan), extracellular proteins (alpha-dystroglycan and laminin-211) and cytoso-
lic proteins (alpha-syntrophin, beta-syntrophin, alpha-dystrobrevin, beta-dystrobrevin
and cortical actin). Closely interacting proteins with this dystrophin core complex are
biglycan and collagens via their coupling to laminin in the extracellular matrix, and vari-
ous cytoskeletal proteins through the intracellular network of intermediate filaments and
microtubules with the actin membrane cytoskeleton. In addition, a variety of enzymes,
ion channels and regulatory factors were found to exist in close proximity to dystrophin.
These findings favor the systems biological concept of an integrative function of the dys-
trophin node in skeletal muscle tissues [181]. Dystrophin and its closely associated protein
components appear to play a key role in cytoskeletal organization, the maintenance of
fiber stability during cellular stresses caused by repeated excitation–contraction–relaxation
cycles, the transmission of lateral force throughout the contracting muscle fiber system,
and the provision of a structural basis for complex cellular signaling mechanisms.
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