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Review Article

Neurocognitive Changes in Sickle Cell  
Disease: A Comprehensive Review

Tarun Sahu1 , Babita Pande1 , Meenakshi Sinha1, Ramanjan Sinha1 
and Henu Kumar Verma2

Abstract

Background: Sickle cell disease (SCD) is a type of hemoglobinopathy characterized by abnormal hemoglobin molecules, 
which includes numerous acute and chronic complications. Ischemic stroke, silent cerebral infarction, headache, and 
neurocognitive impairment are the most common neurological complications associated with SCD. 
Summary: Acute anemia because of SCD can cause cognitive impairments because of cerebral hypoxia. Cognitive 
abnormalities in SCD manifest in various aspects such as working memory, verbal learning, executive functions, and attention. 
These neurocognitive impairments have been associated with poor functional results, such as transitioning from juvenile to 
adult care, adherence to medications, and unemployment.
Key message: In this review, we focus on neurocognitive aspects of SCD patients based on different imaging techniques, 
psychological batteries, associated neuromarkers, and interventions for managing of cognitive deficiencies.
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Introduction

Sickle cell disease (SCD) is a category of disease affecting 
hemoglobin molecule. Hemoglobin in SCD is called sickled 
hemoglobin or HbS, abnormal hemoglobin, because of which 
the shape of red blood cells (RBCs) becomes crescent or 
sickle-shaped. These sickled-shaped RBCs get stuck in the 
capillaries which leads to episodes of acute pain because 
vaso-occlusion gradually leads to organ damage over time. It 
is one of the world's most typical severe monogenic diseases, 
most prevalent in wide regions of sub-Saharan Africa, the 
Mediterranean Basin, the Middle East, and India.1,2 SCD is 
characterized by single nucleotide substitution in the gene 
encoding hemoglobin subunit beta. Substitution of adenine to 
thymine results in the replacement of glutamic acid to valine. 
This mutation leads to the polymerization of hemoglobin 
molecules inside the RBCs, which leads to the crescent shape 
of RBCs. Patients with SCD have limited oxygen-carrying 
capacity because of low hemoglobin levels, which can be 
exacerbated by acute medical conditions like acute chest 
syndrome or vaso-occlusive crisis. RBCs in SCD patients are 
more sticky than normal RBCs, which can cause occlusion in 

blood vessels. Increased blood viscosity, related to HbS, may 
further restrict blood flow via constricted blood vessels or in 
normal brain capillaries.3–7

Neurological complications such as ischemic stroke, silent 
cerebral infarction (SCI), headache, and cognitive dysfunction 
are also very common in SCD. Cognitive abnormalities in 
SCD manifest in various aspects such as working memory, 
verbal learning, visuomotor function, inadequacies in general 
intellectual functioning, executive functions, language, and 
attention.8,9 Initially, overt stroke was regarded as the 
predominant cause of cognitive impairment in SCD. But 
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latest evidence has shown that overt stroke and SCI are 
usually linked with cognitive decline. Recent data also 
revealed that neurocognitive abnormalities could occur in 
children with SCD even if there is no indication of a stroke on 
magnetic resonance imaging (MRI).10,11

In this review, we attempt to demystify all the vital areas 
of the brain responsible for cognitive processing and discuss 
them in light of alterations reported in SCD. We have included 
the majority of the imaging studies, associated neuromarkers/
biomarkers, and their correlation with various aspects of 
cognition. Later, we also discussed enhancing the cognitive 
abilities of individuals with SCD through pharmacological 
and nonpharmacological interventions.

Neural Substrates of SCD Induced Hypoxic 
Brain Injury

Neuroimaging Studies

Neuroimaging studies are different imaging techniques that 
directly or indirectly examine the brain’s anatomy and 
functioning. It is a relatively recent field of study within 
medicine, neurology, and psychology. Out of the two 
broadly classified categories of neuroimaging techniques, 
positron emission tomography (PET), near-infrared 
spectroscopy (NIRS), transcranial Doppler (TCD) 
ultrasonography and functional magnetic resonance imaging 
(fMRI), etc. assesses the alteration in blood flow in relation 
to brain activity, while electroencephalography (EEG) based 
techniques work with the principle of measuring the 
electrical activity of the brain. Table 1 provides an outline of 
imaging studies done on SCD patients.

Transcranial Doppler (TCD) Ultrasonography

TCD ultrasonography has recently gained popularity in medical 
science as a noninvasive, low-cost, secure, and accessible 
method of assessing cerebrovascular function. It allows for 
consistent and bidirectional monitoring of cerebral 

hemodynamics, and pulsatility across the significant cerebral 
vasculature (central, frontal, posterior, and basilary arteries). It 
is also free of movement artifact and demonstrates high test-
retest reproducibility. The distal internal cerebral artery (ICA) 
and the adjacent sections of the middle cerebral artery (MCA) 
and anterior cerebral artery (ACA) are involved in SCD.12,13 
Studies on infants with sickle cell anemia reported higher 
cerebral blood flow velocities (systolic and mean) in the basilar 
artery (BA), MCA, and ICA, which was linked to a medium to 
a high probability of neurodevelopmental delays.14 Analysis 
revealed that children and adolescents with SCD with aberrant 
systolic velocities (maximum velocity more than 200 cm/s in 
the MCA and ICA) performed worse cognitively than those 
with SCD who had usual systolic velocities (maximum velocity 
170–200 cm/s).15–17 Kral et al. also discovered a link between 
cerebral hemodynamics and cognition in SCD patients. 
Children with SCD with higher and mid-range systolic 
velocities performed better in verbal recall tasks than those 
with SCD with normal TCD velocities.18 Krejza et al. used the 
Kaufman Brief Intelligence Test (K-BIT-IQ) and TCD to assess 
cerebral hemodynamics and pulsatility indexes (PI) in the 
middle cerebral arteries (MCA). Lower PI in the right MCA 
was linked to a lower K-BIT-IQ component and language 
scores in 46 SCD children. Furthermore, they discovered that 
interhemispheric disparities in PIs were much more 
significantly connected to neuropsychological ability, while 
flow velocities were unrelated to the K-BIT-IQ score.19 
According to Strouse et al., cognitive function and cerebral 
blood flow (CBF) have a significant inverse association.20 
Whereas, Onofri et al. and Aygun et al. found no association 
between mean velocities and cognitive performance.21,22 A 
recent Nigerian study suggests that SCD children with high 
TCD velocity are at risk for deficiencies in executive planning, 
specifically males with higher TCD velocity are at a higher risk 
for complications in auditory working memory.23 Apart from 
the above studies, adult SCD patients have lower TCD 
velocities than pediatric SCD patients.24,25

MRI/fMRI/MRA Studies

MRI may produce crisp, high-resolution images of the brain’s 
anatomical structure and identify abnormalities or lesions in 
the brain. To increase picture contrast, a dye or tracer, like 
gadolinium, may be injected into a vein in the arm. However, 
the use of gadolinium contrast agents is gradually reduced, 
primarily for SCD patients with renal disease, which can 
impair gadolinium clearance from the body. Variations in the 
intensity of the nuclear magnetic resonance signal retrieved 
from different sites in the brain can improve the quality of 
images. After the scanner's pulse sequence, the relaxation 
periods, T1, T2, and fluid-attenuated inversion recovery 
(FLAIR), are assessed and selected to look at exact tissue 
inside the brain. Magnetic resonance angiography (MRA), on 
the other hand, gives crucial information on the state of the 
microvasculature and has largely supplanted intra-arterial Figure 1. Mechanisms Behind Neurocognitive Decline in SCD.
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catheter angiography as a precise and noninvasive method of 
identifying cerebral artery abnormalities.26,27

The relationship between MRI results and cognitive 
functioning was assessed by Kugler et al.,28 and found that 
50% of patients demonstrated progressive MRI abnormalities 
and had bad scores in one or more cognitive functioning 
domains. Armstrong et al.29 and Gold et al.30 found central 
nervous system (CNS) abnormalities on MRI in children with 
SCD having a clinical history of cerebrovascular accident 
(CVA). These SCD children had smaller frontal lobe infarcts 
and were considerably weakened on measures of intellect, 
memory, and frontal lobe function compared with standard 
MRI scans of sibling controls.31,30 Previously, quantitative 
MRI investigations in SCD children with cerebral infarction 
discovered a substantial link between the level of visible 
tissue injury and cognitive impairments. Schatz et al. 
discovered differences in left vs. right hemisphere damage in 
children with SCD stroke by conducting tests that assess 
particular visual-spatial skills. Further, T2-weighted MRI 
scan was done to assess midsagittal corpus callosum (CC) 
size and its relationship with cognitive functioning. Posterior 
CC size decreased among SCD children, but no association 
could be found with cognitive functioning because of less 
sample size.31,34,35 Other studies also show that intracranial 
volume is smaller in SCD patients and has significantly more 
lacunae, mainly in the frontal lobe, parietal lobe, and basal 
ganglia. Lacunae are supposed to be caused by the obstruction 
of a penetrating branch of one of the main cerebral arteries. 
They are defined as a small cystic infarct in the cerebrum and 
brainstem’s deeper (noncortical) regions. The authors 
discovered an apparent association between lacunae and IQ, 
but after controlling for age, this link became 
nonsignificant.36,37 Individuals with SCD also had thinner 
frontal lobe cortex and smaller basal ganglia and thalamus 
sizes compared to healthy controls. The authors stated that 
cognitive impairment might be exacerbated by the reduced 
volume of the basal ganglia and aberrations in the thalamus.38

In addition, resting-state fMRI analysis in SCD patients 
reported lower functional integration in the sensory-motor, 
auditory, salient, and subcortical networks when compared to 
controls, and a more significant proportion of white matter 
oxygen extraction was linked to reduced connectivity in these 
networks. These findings propose that increased oxygen 
extraction and impaired functional connectivity may serve as 
neuroimaging biomarkers for cognitive deficiency in 
SCD.39,40 According to Novelli et al.,41 cerebral vascular 
anomalies have also been associated with cognitive decline in 
SCD patients. Patients with SCD had considerably lower 
long venule density and higher short venule density than 
controls, which is inversely associated with cognitive ability. 
Whole-brain examination of the amplitude of low-frequency 
fluctuations (ALFF) in resting-state fMRI revealed lower 
ALFF in the frontal lobe, cerebellum, and medial superior 
frontal gyrus, as well as existence of white matter 
hyperintensities which were related to decreased frontal and 

medial superior frontal gyri activity in SCD subjects. Reduced 
ALFF in the frontal lobe was associated with lower verbal 
fluency and cognitive control.42 Zou et al.43 employed blood 
oxygenation level-dependent (BOLD) and cerebral blood 
flow (CBF)-based fMRI to examine primary visual cortex 
reaction to visual stimulus in children with SCD and 
discovered that BOLD responses were decreased. Nocturnal 
hemoglobin oxygen desaturation and sleep fragmentation can 
also contribute to cognitive dysfunction in SCD patients.44 A 
study by Andreotti et al. proposes a link between cytokine 
levels and decision-making function in SCD children, 
implying that inflammatory processes may have a role in 
cognitive outcomes in these children. They examined verbal 
and nonverbal abilities, mental flexibility, inhibition, and 
verbal fluency, in relation to plasma levels of different 
cytokines like IL-4, 5, 8, and 13 and found that there were 
substantial negative correlations between cytokine levels and 
various measures of executive function skills.45

PET Scan Studies

MRI provides a high-resolution anatomical description, 
whereas Positron emission tomography (PET) is the only 
imaging technique that can display tissue function and 
structure by utilizing a metabolically active tracer molecule 
labeled with a positron-emitting isotope. Although there is 
very scarce literature on PET and cognition in SCD, some 
data shows anomalies in glucose metabolism and 
microvascular blood circulation, notably in the frontal lobes. 
Further study requires a correlation between PET 
abnormalities and progressive neurologic dysfunction.46,47

Single-photon emission computed tomography (SPECT) 
study by Al-Kandari et al. revealed a perfusion deficiency 
mainly in the frontal lobe of SCD patients, either alone or in 
collaboration with the temporal and parietal lobes. The results 
suggest that SPECT was beneficial in the detection of brain 
perfusion deficiency in persons with SCD and that such 
primary identification may be potentially valuable in the 
future follow-up of such patients because cerebral perfusion 
deficiency is expected to develop silent infarction and overt 
stroke, that ultimately declines cognitive abilities.48

EEG-ERP Studies

EEG is another brain imaging technique that primarily detects 
the currents which occur during synaptic excitations of 
several pyramidal neurons in the cerebral cortex and measures 
scalp electrical activity generated by brain regions. EEG is 
sensitive to various states, including stress, attentiveness, 
resting state, hypnosis, and sleep. Because the EEG technique 
is noninvasive and painless, it is commonly used to investigate 
the brain physiology of cognitive functions such as 
perceptions, memory, attention, language, and emotions in 
healthy individuals and infants. Another variant of EEG, i.e., 
ERPs, are extremely tiny voltages produced in brain areas in 
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response to certain events or stimuli. EEG changes are time-
locked to particular stimuli such as sensory, motor, or 
cognitive events. It offers a noninvasive and secure method 
for studying the psychophysiological aspects of brain 
function.49,50 EEG is widely used in the early diagnosis and 
management of neurological and cognitive involvement of 
SCD. Early case reports by L. Neidengard and E. Niedermeyer 
revealed a large amount of slow-wave activity in SCD 
patients. The degree of slowing in the EEG was much more 
significant than one would have expected from the clinical 
state.51 Resting-state EEG frequency analysis in SCD children 
showed a higher amount of slow-wave activity in occipital-
parietal and temporal-frontal brain areas. Although the 
authors failed to suggest a strong reason behind that, it may 
be because of a lack of oxygen-carrying capacity or 
obstruction in blood flow in brain regions.52 Studies by Case 
et al. revealed strong evidence of EEG changes in pain 
processing regions in SCD. In comparison to controls, SCD 
patients showed higher theta and lowered beta power. Source 
localization demonstrated that locations with higher theta 
band activity were associated with pain processing. On EEG-
fMRI data, spontaneous power and microstate analyses were 
also done. Independent component analysis revealed that 
patients had no activity in the default mode network (DMN) 
and executive control network (ECN) as compared to the 
control group.53–55 EEG power measures are also associated 
with cognitive functions like global cognition, memory, 
language, and executive functioning. These EEG power 
measures might prove helpful in prospective studies to predict 
longitudinal cognitive decline.56 Downes et al. recorded 
auditory ERP in SCD children and compared it with age-
matched controls. They observed more positive amplitudes 
by 100 ms in attended stimuli in healthy children but not in 
SCD children, indicating their attention deficits.57 Correct 
response negativity (CRN) and error-related negativity (ERN) 
were reduced in SCD patients with unilateral and bilateral 
frontal white matter injuries. Further, it was also observed 
that SCD patients show executive function deficits.58 Patients 
with SCD were found to have deteriorated cognitive abilities; 
cognitive responses to an auditory stimulus are delayed in 
SCD patients. The precuneus, which is interconnected to 
various cortical and subcortical areas of the brain and is 
involved in episodic memory, visual-spatial abilities, motor 
activity, coordination strategies, self-perception, executive 
and working memory, was not activated in SCD patients 
when compared to controls during stimulus presentation.59

Neuromarkers and Biochemical Basis

Biomarkers are measurable biological characteristics that are 
an indicator of normal biological processes. Anemia is a 
major factor in the pathophysiology of SCD and might be a 
source of cognitive impairment. Hemoglobin deficiency is a 
sign of inadequate brain oxygenation, which might explain 
poor cognitive performance. A wide variety of studies have 

tried to associate neurocognition with markers of anemia, like 
hemoglobin or hematocrit.9,14,20,36,60,61 Ruffieux et al. disclosed 
a significant association between low hemoglobin F (HbF) 
levels with lower executive functioning.16 According to 
Boehme et al., inflammatory markers such as IL-22 were 
associated with neurocognitive dysfunction alone. In contrast, 
cytokine levels such as CXCL8, CXCL1, IFNg, TNFa, sFasL, 
IL18, IL22, sICAM1, and VEGFA were associated with 
abnormal TCD (or stroke) plus neurocognitive dysfunction.62 
Cytokine levels were found to be inversely related to each of 
the conditions mentioned in all cases. Although hydroxyurea 
therapy is expected to improve neurocognition, studies have 
found no negative correlation between hydroxyurea 
administration and neurocognition.63,64 Glial fibrillary acidic 
protein (GFAP) is a brain-specific intermediate filament 
protein expressed in glial cells (astrocytes) and is a known 
biomarker of acute stroke and head trauma in adults. Savage 
et al. reported a negative correlation between GFAP levels 
and IQ in children with SCD.65

Impact of SCD Induced Hypoxia on 
Neurocognition

Neural Substrates of Cognition

Neurocognition is the ability to relate and decipher the 
information, which encompasses various cognitive 
domains, e.g., working memory, speed of processing, 
attention, and/or executive functions.66 Various brain areas 
function in coordination for better cognitive outcomes.67,68 
Worsening of working memory has been reported to be 
associated with derangement in cortical and subcortical 
structures at the distal distributions of the anterior and 
middle cerebral artery, which disturbs oxygen delivery to 
deep white matter, basal ganglia, middle and superior 
frontal gyrus, and dorsal parietal regions.46,69,70 Besides, 
faster performers have efficient interactions between brain 
regions and increased neuronal activity in the prefrontal 
cortex (PFC) compared to slow performers for any 
executive function.71 Performance relating to general 
intelligence has been observed to be dependent upon the 
parieto-frontal structurally intact axonal fibers, which help 
in fast information processing.72 Thus, these facts delineate 
the dynamic interactions between various neural substrates 
for efficient cognitive outcomes.

SCD and Neurocognition: Cause and Effect 
Relationship

SCD is characterized by chronic and acute anemia, low 
baseline Hb (≤10 g/dL), hypoxia, and intracranial stenosis.73 
Various studies showed that SCI is the primary risk factor 
for neurocognition deficits in SCD patients, including 
children, adolescents, and adults, compared to patients 
without SCI.74,75 There is increased cerebral blood flow,  
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Table 1. Outline of Imaging Studies Done on SCD Patients.

S. No. Type of 
Imaging 
studies

Sample Size Age Imaging Protocol Measure(s) of Cognitive 
Function

Findings Reference

1. TCD 28 Infants
(3, 9, and 12 

months)

Resting TCD BINS Increased SV and MV were 
associated with a higher risk of 
neurodevelopmental delay at 9 

months of age

14

2. TCD 60 Children
(mean age 121 

months)

Resting TCD IQ-WASI;
academic achievement-

WJ-R;
visual sustained
attention-CPT-II;

working memory-CMS

Children with abnormal TCD (velocity 
>200 cm/s) had lower verbal IQs 

than children with conditional TCD 
(velocities between 170 cm/s and 200 
cm/s), who further performed worse 
than children with normal TCD on 

measures of executive function.

15

3. TCD 96 6 to 24 years Resting TCD Motor Skills-PPT;
memory-CVLT; executive 

functions;
attention-CPT

37.5% of SCD patients had mild-
to-severe cognitive deficits with a 

significant association between severe 
anemia, history of cerebrovascular 

accidents vs. lower executive 
functioning

16

4. TCD, MRI 173
(TCD=143, 
MRI=144)

5 to 15 years Resting TCD,
MRI-noncontrast;

3-D MRA

WISC-III,
WIPPSI-R

Lower IQ scores with abnormal 
TCD (velocity >200 cm/s) and MRI 

(increased signal on T2 weighted pulse 
sequences)

(21% had abnormal
MRI, 8.4% had abnormal TCD)

17

5 TCD, MRI, 
MRA

27 6 years 0 
months to
16 years 11 

months

MRI-without 
contrast and 

FLAIR,
3-D MRA

TCD-Resting

IQ-WASI;
academic achievement-

WJ-R;
attention-CPT-II;

working memory-CMS;
executive functioning-

BRIEF

Abnormal TCD (velocity >200 cm/s) 
and MRI (increased signal on FLAIR 
and T2 weighted pulse sequences) 

patients
had lower cognitive performance;
with the association between low 
hemoglobin and neurocognitive 

impairment

18

6 TCD 46 47-166 
months

Blood flow 
velocities and PI 

in MCA

KBIT Lower PI in the right MCA was 
associated with lower K-BIT-IQ

19

7 TCD, CASL-
MRI

24 6 to 12 years TCD-resting
MRI-1.7 Tesla, 
FLAIR CASL

IQ-WASI Inverse relationship between 
performance IQ and CBF

20

8 TCD 88 4 years TCD-Resting BPS-II No association between TCD
measures and cognitive performance

21

9 TCD 35 4 to 16 years TCD-Resting
ICA MRI-1.5 
Tesla, Axial 

FLAIR

WISC III—for 6 to 16 
years age;

WPPSI-for four to six 
years age

No significant differences in the 
altered TAMM velocities and cognitive 

performance

22

10 TCD 83 5 to 12 years Resting TCD-
MCA

Reasoning-RSPM;
problem solving-TOL;

IQ-WISC-IV

Risk for deficits in executive planning, 
with boys at increased risk for 

auditory working memory deficit

23

11 MRI, rCBF 16 11 to 29 years MRI-1.5 Tesla;
rCBF-xenon 133 

inhalation
method

Neuropsychological 
battery for memory, 
attention, executive 

function, motor speed, 
language, visuospatial 
abilities, and abstract 

reasoning

Cognitive abnormalities in SCD, even 
in the absence of MRI abnormalities 

or clinical stroke.

24

12 MRI 135 6 to 12 years MRI-1.5 Tesla, 
T2-weighted

Global intellectual 
functioning and 

specific academic and 
neuropsychological 

functions

Poor cognitive performance with 
silent infarcts on MRI

29

13 MRI 65 7 to 17 years MRI-without 
contrast

WISC-III, WJ-R, PPT, BTP Poor cognitive performance with CVA 30

(Table 1 continued)
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S. No. Type of 
Imaging 
studies

Sample Size Age Imaging Protocol Measure(s) of Cognitive 
Function

Findings Reference

14 MRI 41 5.9 to 16.7 
years

MRI-1.5 Tesla, 
T2-weighted

IQ-WISC-Ill, WPPSI-R;
frontal lobe/executive 

function-WCST

Significantly impairment in measures 
of intelligence, memory, and frontal-
lobe function in SCD patients with 

stroke

31

15 MRI 28 7 to 21 years MRI-1.5 Tesla, 
T1-, T2-weighted,

and proton-
density

Neuropsychological 
battery of tests for four 
major domains of ability: 
attention/executive skills, 
spatial skills, language and 

memory

Volume of cerebral infarction was 
associated with spatial and language 

performance

32

16 MRI 27 12 years MRI-1.5 Tesla, 
T2-weighted

WASI Large tissue loss associated with 
lower Wechsler Full-Scale IQ in SCD 
children with silent cerebral infarcts

33

17 MRI 25 12 years MRI-1.5 Tesla, 
T2-weighted

Visual-spatial ability-DAS,
JOLO test; language 

ability- PPVT–R;
cognitive ability-revised 

(WJ–R)

Injury of right-hemisphere associated 
with deficiency in global processing 

and spatial judgments while left-
hemisphere injury resulted in 

relatively intact local versus global 
processing and categorical versus 

coordinate judgments; Bilateral injury 
caused relative deficits in global-level 

processing and spatial judgments.

34

18 MRI 28 12 years MRI-1.5 Tesla, 
T2-weighted

IQ-WISC-III; SOPT Decreased corpus callosum size 
in SCD children associated with 

cognitive decline

35

19 MRI 149 19 to 55 years MRI-1.5 Tesla, 
T1-, T2-weighted

IQ-WAIS-III PIQ Poor cognitive performance 
associated with anemia and age

36

20 MRI 120 Adult (age not 
mentioned)

MRI-1.5 Tesla, 
T1-weighted

WASI-III Reduced volume of the basal ganglia 
and thalamus significantly associated 

with lower performance IQ and lower 
perceptual organization and working 

memory scores

38

21 TCD; MRI, 
MRA, fMRI

40 8 years Resting TCD
MRI-1.5 Tesla, T1-
weighted, FLAIR, 

fMRI-resting 
state

IQ-WISC-III, WPSSI SCD Patients with low neurocognitive 
scores presented higher brain 

connectivity in DMN

39

22 MRI 7 (Age not 
mentioned)

MRI-7 Tesla, T1, 
T2-weighted 3d 

orientation

HVLT-R Lower density of long venules and 
greater density of short venules which 

was inversely related to cognitive 
performance and hemoglobin

40

23 MRI/fMRI, 
ALFF

20 12.4–34.4 MRI-3D T1,T2-
weighted; fMRI-
Resting state

WASI-II, WISC-IV, WAIS-
IV, D-KEFS, CVLT, BASC 2

Decreased ALFF in the frontal lobe 
was correlated with decreased verbal 

fluency and cognitive flexibility.

41

24 fMRI 23 12 years MRI-1.5 Tesla, 
T1, T2-weighted, 

FLAIR;
BOLD response

WASI BOLD responses were diminished in 
SCD children

42

25 MRI, Poly-
somnography

10 - MRI-1.5 Tesla, 
T2-weighted

Executive function-D-
KEFS, BRIEF; intelligence-

WASI

Decreased oxygen saturation and/
or increased sleep arousals are 

associated with reduced cognitive 
performance

43

26 MRI,
PET

6 10 to 29 years MRI-1.5 Tesla, T2-
weighted; PET-
Approx. 5-10

Global intellectual 
functioning and 

specific academic and 
neuropsychological 

functions

PET showed a corresponding 
metabolic abnormality with cognitive 

dysfunction in all patients

47

27 fMRI, EEG 15 18 to 24 years MRI-3D T1,T2-
weighted; fMRI-
Resting state, 

BOLD EEG- 64 
channel

– Reduced activity of DMN and 
increased activity in pain processing 

regions during rest in SCD

53

(Table 1 continued)

(Table 1 continued)
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S. No. Type of 
Imaging 
studies

Sample Size Age Imaging Protocol Measure(s) of Cognitive 
Function

Findings Reference

28 EEG-ERP 12 5 years Auditory-ERP 
paradigm

IQ-WPPSI-III Diminished and variable ERP 
responses for executive skills

associated with lower performance 
intellectual quotient.

57

29 MRI,
EEG-ERP

11 11 to 23 years MRI-1.5 Tesla, 
T1, T2-weighted, 

FLAIR;
ERP-visual

TEA-adults/children; 
WCST; SOPT

CRN and ERN diminished in SCD 
patients; with a deficit in cognitive 

performance

58

30 EEG-ERP, 
LORETA

12 11 years Visual ERP 
paradigm for P3 

wave

ERP Delayed cognitive evoked potentials 
and altered cortical sources of P3 in 

SCD

59

31 MRI 49 4 to 19 years MRI-1.5 Tesla, T1, 
T2-weighted,

WISC-R, WISC-III Focal brain injury and diffuse brain 
injury were associated with cognitive 

impairment

60

Abbreviations: Cognitive Tests: BINS, Bayley Infant Neurodevelopmental Screener; WASI, Wechsler Abbreviated Scales of Intelligence; WJ-R, Woodcock 
Johnson psychoeducational battery revised; WAIS-III, Wechsler Adult Intelligence Scale-III; WISC-II/WISC-III, Wechsler Intelligence Scale for Children; 
WPPSI-III/WPPSI-R, Wechsler Preschool and Primary Scale of Intelligence; BRIEF, behavior rating inventory of executive functioning; BPS-II, Brigance 
preschool screen-II; CVLT, California verbal learning; CMS, Children's Memory Scale; CPT-II, Conners's Continuous Performance Test-II; PPT, Purdue 
Pegboard Test; KBIT, Kaufman Brief Intelligence Test; RSPM, Raven’s Standard Progressive Matrices; TOL, Tower of London–Drexel University; BTP, 
Benton Tactile Perception Test; DAS, Differential Abilities Scales; JOLO, Benton’s Judgment of Line Orientation test; PPVT-R, Peabody Picture Vocabulary 
Test-Revised (PPVT–R); SOPT, Self-Ordered Pointing Test; HVLT-R, Hopkins Verbal Learning Test–Revised; D-KEFS, Delis-Kaplan Executive Function 
System; BASC 2, Behavior Assessment System for Children, Second Edition; TEA-ch, test of everyday attention for children; TEA-ad, test of everyday 
attention for adults; TCD, transcranial Doppler; MRA, magnetic resonance angiography; PI, pulsatility indexes; PMCA, proximal middle cerebral artery; 
PACA, proximal anterior cerebral artery; DICA, distal internal carotid artery; ICA, internal carotid arteries; rCBF, regional cerebral blood flow; CVA, 
cerebrovascular accident.

(Table 1 continued)

and decreased cerebrovascular reserve because of low 
baseline Hb, hypoxia caused by fever, and seizure, which 
leads to SCI, whose severity is increased by comorbidities 
like hypertension, diabetes, hyperlipidemia, and renal 
disease.76,77 The prevalence of SCI has been documented ≥ 
20% of SCD children that showed an increasing trend with 
age.75,78,79 The other risk factors for SCI are male gender, 
high SBP, and previous seizures.74

SCIs are more in brain areas with low cerebral blood flow, 
hindering the proper oxygen supply in these patients. Reduced 
oxygen delivery was observed in white matter (WM), 
specifically in regions of high risk for silent strokes.80 The 
cerebral blood flow was found to be inversely related to 
cerebral infarcts density obtained through the Silent Infarct 
Transfusion (SIT) Trial Infarct density map of 286 SCD 
children.81 It was reported that in around 90% of children, the 
cerebral infarct density was more in the deep white matter of 
the frontal and parietal lobes with lower cerebral blood flow.81

Pegelow et al.,82 documented in SCD patients of 6 to 19 
years that stroke occurred more frequently in the frontal lobe 
than the parietal lobe, followed by subcortical nuclei and 
temporal lobe, and a few lesions in the occipital lobe or 
cerebellum. In children with SCD, the frontal cortex has been 
observed to be affected with or without the manifestation of 
tissue injury.31,83–85 The frontoparietal regions and the 
associated internal carotid artery, the middle and anterior 
cerebral arteries are injured by a stroke in SCD.78 Focal brain 
injuries such as clinical stroke and silent stroke result in small 

lesions in the brain that cause structural and volumetric 
changes in patients as reported through MRI in SCD.73,86

The occurrence/density of silent cerebral infarcts has been 
associated with cognitive impairment in SCD. The hemoglobin 
oxygen saturation levels87 and hematocrit60 are identified as 
biological factors linked to cognitive functions in children with 
SCD. Increased cerebral blood flow and oxygen extraction 
fraction have been positively associated with lower executive 
functions and increased silent cerebral infarcts in individuals 
with SCD.88 It has been examined that SCI-generated lesions in 
subcortical areas alter the functional memory status via 
deteriorating processing speed.89 Figure 1 depicts the 
mechanisms behind neurocognitive decline in SCD.

Cognitive Domains and Associated Neural 
Substrates in SCD

Executive Functions

Existing reports on the cognitive attributes and their neural 
bases showed that executive function is the most explored 
cognitive domain in relation to SCD. This domain is 
predominantly affected as a consequence of disease.

Working memory, a widely studied executive function, is 
associated with the temporary storage and processing of 
information. The working memory performance is mediated 
by two attributes, viz. central executive function and 
processing speed.69 Thus, better central executive functions 
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reflect better working memory as observed through prompt 
addition related problem-solving capacity.90 The Theta 
oscillations in prefrontal, parietal, temporal, and occipital 
cortical regions of the brain during the audiovisual working 
memory task show that multiple brain regions are associated 
with working memory.91

DeBaun et al.74 reviewed that SCI in sickle cell patients is 
associated with worse cognitive performances in domains 
like executive functions (selective attention, card sorting, 
working memory), processing speed, visual-motor speed and 
coordination, vocabulary, visual memory, abstract reasoning 
and verbal comprehension. A reduced performance was also 
noted in an array of executive functions like nonverbal 
reasoning and visual-spatial skills, working memory, and 
processing speed in nonsymptomatic SCD adult 
patients.18,36–38,92 Lower intelligence quotient (IQ) level in 
SCD patients and deterioration in cognitive functions like 
memory, language, learning, attention, retrieval, and overall 
executive functioning visible through WAIS-III verbal IQ 
(VIQ), performance IQ (PIQ), and full-scale IQ (FSIQ) index 
in older patients has been linked to anemia.36 Children with 
SCD showed low IQ and dysfunctions in executive tasks such 
as visuospatial working memory, sustained attention, and 
planning capacity.93,94 The adolescent SCD patient also 
showed neurocognitive problems such as poor performance 
in verbal IQ scores, mathematical problem-solving capacity, 
and deteriorated visual-motor functions.95 Children with 
infarcts in the frontal cortex showed reduced working memory 
span compared to SCD children without infarcts.96 The 
visual-spatial skills, processing speed, and working memory 
have also been linked with the structural changes in the brain, 
including reduced volume in the basal ganglia and thalamus 
in SCD adults compared to non-SCD.38

The cognitive impairment occurred more in individuals 
with damaged white matter.97,98 Thus, SCI damages the 
white matter and causes a reduction in global white matter 
volume in both the right and left cerebral hemispheres, 
specifically in the regions where anterior and middle 
cerebral artery distributed along with the corpus callosum, 
right brainstem, and right cerebellum as documented in 
adolescent and adult SCD patients compared to control. 
They also discovered that white matter injuries in the frontal, 
parietal, and temporal lobes were associated with low 
hemoglobin levels, platelet volume, chronic microvascular 
insufficiency, and hypoxia.99 Steen et al.100 found slow 
volumetric growth of brain gray matter in children compared 
to controls, affecting neurocognitive development. In 
individuals with SCD, there is increased cerebral blood 
flow; however, diminished blood supply is one of  
the prime causes of white matter loss101–103. The decreasing 
oxygen saturation has also been related to abnormal  
white matter in the corpus callosum in SCD, confirming that 
acute and chronic hypoxia negatively impact the 
neurocognition capacity.104 The severity of chronic anemia 
has been considered one of the most vital factors of 

hypoxic-ischemia-related damage or loss of white matter in 
SCD patients. The severity of anemia is the strongest 
predictor of whole-brain white matter volume loss.74,99

Craft et al.32 have alleged that lesion location is more 
related to attention and executive function problems than 
lesion volume. The overall IQ level of children with larger 
lesion volume showed more deterioration than children with 
less lesion volume.84 Further, children with left cortical 
infarct also reported impaired IQ on a full scale, verbal and 
performance scale (FSIQ, VIQ, and PIQ), while children with 
right cortical infarct were poor in FSIQ and PIQ only. The 
SCD children with clinical or silent infarct were more prone 
to make errors on a cancellation task.105 A meta-analysis 
study showed that SCD patients with a history of stroke have 
more cognitive deficits than those without infarcts, and SCD 
patients mainly have a problem with verbal reasoning, 
perceptual reasoning, and executive function.95

Recently, tract-specific analysis and white matter tract 
studies revealed the microscopic injury in white matter 
associated with the deterioration in processing speed and 
response inhibition executive functions in SCD patients.106 
Chai et al.106 found white matter damage in “genu of the 
corpus callosum, corticospinal tract, inferior frontal-
occipital fasciculus, right inferior longitudinal fasciculus, 
superior longitudinal fasciculus, and left uncinate 
fasciculus.” Corpus callosum has been suggested to be 
essential for processing speed, working memory and 
executive functions related to cognitive skills.106 Reduced 
fractional anisotropy (FA) values and an increase in apparent 
diffusion coefficient values in the corpus callosum and 
corticospinal tracts also indicate structural changes in these 
regions in SCD patients, resulting in neurocognition 
performance deterioration.107 In SCD patients, SPO2 was 
found to correlate with cerebral blood flow velocity in the 
right and left middle cerebral arteries, which was found to 
be negatively associated with IQ; thus, chronic anemia, low 
hematocrit, and hypoxia cause chronic cerebral ischemia 
and, ultimately, impaired neurocognitive functions.60,108,109 
Diffuse brain injury and focal brain injuries such as lacunar 
infarction, encephalomalacia, or leukoencephalopathy have 
been shown to cause neurocognitive dysfunction in verbal 
intelligence quotient and verbal comprehension.60

Memory

Memory seems to alter to a lesser degree in SCD patients.31,110 
Cohen et al.111 examined that children diagnosed with left 
cortical infarct reported auditory-verbal memory and visual-
spatial memory deficits; however, patients diagnosed with 
right cortical infarct were deficits only in visual-spatial 
memory.111 Children having anterior lobe infarcts also showed 
poor performance on both short- and long-delayed free recall 
tasks compared to children without cortical infarcts,96 though 
children with diffuse infarcts or their siblings without SCD 
showed similar cognitive performance.32,112
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Visuomotor Functioning

SCD children have impaired visuomotor functioning 
compared to control, while with increasing age, visuomotor 
functioning improved. Visuomotor functioning-related 
cognitive abilities have been more susceptible to alteration 
because of disease compared to auditory-verbal skills in 
children with SCD.93 Schatz et al.110 reported that 30% of 
children with silent infarcts and 33% without infarcts 
displayed deficits in visuomotor functions compared to 
siblings without SCD.110

Language

Children having clinical infarcts as detected in MRI 
committed more errors while doing the rapid naming test 
compared to children without MRI abnormalities for clinical 
infarcts.105 It has been suggested that language problems in 
SCD children are linked to the degree and lateralization of 
neurological injuries.94

Methodological Constraints of the Reports

Methodological variations relate to subject selections of 
varied ages and are not gender matched. Siblings with similar 
family or developing environments are preferred as controls, 
since family environment, education, and economic status 
have an impact on cognitive development trajectories and 
functions. Ethnicity also influences cognitive functions. Most 
of the studies are conducted in the USA, a developed country 
with better education, health facilities, and economic 
standard; however, similar parallel studies in other countries 
also revealed other socio-economic factors impacting the 
cognitive functions in SCD children.9

Interventions and Future Perspectives

The SIT Trial has been considered an effective blood 
transfusion therapy to prevent recurrent silent cerebral 

infarcts in participants with SCA. SIT Trial with brain MRIs 
in 169 children of the 5 to 14 years age group showed 
progressive brain volume changes in SCD children and no 
change in brain volume in children without SCD.113 Regular 
monthly blood transfusion therapy has been suggested as a 
promising intervention to maintain the optimal transcranial 
Doppler (TCD) velocities for cerebral blood flow in addition 
to hydroxyurea administration, specifically at an early age to 
prevent the risk of SCI and stroke.76 However, hydroxyurea, 
the approved therapy to prevent a secondary stroke and treat 
anemia in SCD,114 may increase SCI-related complications.115 
Hematopoietic (blood-forming) stem cell transplantation 
(HSCT) has been purported to reduce the deformed RBC in 
children <16 years of age; and is the only known treatment 
for SCD that reduces or eliminates the sickling of RBC.115 
Stem cell therapy could also suggest an effective way to 
alleviate the consequence of disease that enhances the 
cognitive status of SCD individuals.116

Educational interventions such as training and a friendly 
and homely environment from childhood improve the 
cognitive-developmental trajectory. Cognitive-behavioral 
therapy can be used to improve any cognitive function by 
managing pain in childhood and preventing further cognitive 
decline in secondary cognitive processing, such as the central 
executive function, which is the component that primarily 
affects working memory in SCD children.69,117 Thus, 
facilitating central executive function could improve working 
memory status in SCD children. Slow and deep breathing 
techniques, meditation, and yoga practices are also helpful, 
acceptable, and feasible nonpharmacological interventions in 
enhancing cognitive abilities and pain management in patients 
with SCD.118,119 Figure 2 outlines the investigations done 
during different events of cerebral injury in SCD and various 
interventions for their management.

Summary

Various neurological complications, i.e., ischemic stroke, 
SCI, headache, and cognitive dysfunction, are commonly 
seen in SCD, which can be evaluated by different techniques 
like PET scan, NIRS, TCD, MRI, and EEG. SCD patients 
have multifaceted hemodynamic dysregulations, i.e., 
abnormal systolic velocities in the MCA and ICA in TCD, 
MRI abnormalities such as cerebrovascular accident, frontal-
lobe infarcts, decreased CC size, and smaller intracranial 
volume with cognitive impairment. PET scan reveals 
anomalies in glucose metabolism and microvascular blood 
circulation in frontal lobes. Whereas, EEG-ERP studies 
show higher slow-wave activities and lesser positive 
amplitudes for auditory stimuli suggestive of cognitive 
decline in these patients. Further, SCD patients exhibit worse 
cognitive performances in domains like executive functions, 
processing speed, visual-motor speed and coordination, 
vocabulary, visual memory, abstract reasoning, and verbal 
comprehension. Inadequate brain oxygenation because of 

Figure 2. Different Events of Cerebral Injury, Their Investigations, 
and Interventions in SCD.
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hemoglobin deficiency is believed to be linked to poor 
cognitive performance in these patients.

The primary risk factor for neurocognition deficits in SCD 
patients is SCI which causes a reduction in global white 
matter volume both in the right and left cerebral hemispheres, 
specifically in the regions of the distribution of anterior and 
middle cerebral artery, along with other areas such as corpus 
callosum, right brainstem, and right cerebellum. Also, low 
hemoglobin levels, platelet volume, chronic microvascular 
insufficiency, and hypoxia cause white matter injuries in the 
frontal, parietal, and temporal lobes. Besides, cerebral 
hemodynamic insufficiency (oxygen demand exceeds supply) 
and reduced oxygen saturation in SCD patients are other 
reasons for white matter loss. In addition, decreased size of 
the corpus callosum with damage of white matter in the genu 
of the corpus callosum, corticospinal tract, inferior frontal-
occipital fasciculus, right inferior longitudinal fasciculus, 
superior longitudinal fasciculus, and left uncinate fasciculus 
are other causes for cognitive abnormalities in SCD patients.

The only known treatments for SCD are regular blood 
transfusion, hydroxyurea therapy, and hematopoietic stem 
cell transplantation that reduces or eliminates the sickling of 
RBC. Besides, nonpharmacological interventions, i.e., 
educational interventions, cognitive-behavioral therapy, slow 
and deep breathing techniques, meditation, and yoga 
practices, might also prove useful in pain management and 
enhancing cognitive abilities in SCD patients.

Conclusion

In conclusion, this review provides evidence that patients 
with SCD are at increased risk of neurocognitive 
abnormalities across multiple domains throughout their 
lifespan. These neurocognitive impairments are related to 
the degree of anemia, suggesting that decreased oxygen 
transport to the brain is a pathogenetic cause. The 
neurocognitive deficiencies may explain why these patients 
have such high rates of intellectual disability. The current 
findings highlight the significance of regular cognitive 
examinations, pharmacological and nonpharmacological 
interventions, and potential neurocognitive rehabilitation 
programs for persons with SCD.
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