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Introduction
Herophilus of Alexandria (335–80 B.C.), a known Greek 
physician anatomist, described a small male organ located 
in front of the bladder, named “prohistani” which means 
“to stand in front of” (Bay and Bay, 2010; Sharma et al., 
2017). In 1,536, this organ was designated as “prostate” 
by the Italian anatomist Niccolò Massa (1489–1569), 
who first described the prostate and its exact location 
(Palmer, 1981). The prostate is the largest male accessory 
sex gland and is responsible for the production of 25%–
30% of slightly alkaline fluid which constitutes seminal 
fluid (Sharma et al., 2017). However, this gland is not 
exclusive to males, being present in women and other 
female mammals, such as Mongolian gerbils (Sanches 
et al., 2016; Biancardi et al., 2017).

The prostate may be affected by several disorders, 
such as prostatitis, prostatic hyperplasia, and cancer. 
Prostate cancer (PCa) is one of the most worldwide 
common cancer, affecting in 2020 approximately 1.4 
million men (Sung et al., 2021). 
In literature we can find several in vivo models to study 
PCa, allowing not only the study of basic aspects related 
to the disease but also its development, the process of 
metastasis, and the development of new therapeutic 
approaches (Bosland, 1999; Shirai et al., 2000; Roy-
Burman et al., 2004; Nascimento-Gonçalves et al., 
2018, 2019, 2020). 
The use of laboratory animals is widely used in 
preclinical studies, and it is assumed that the basic 
biological processes are sufficient to allow extrapolation 
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of results obtained in animal experimentation to human 
clinical practice. However, there is no perfect animal 
model that can mimic all stages of disease exactly as it 
does in humans. Choosing the appropriate animal model 
for research is critical to ensure the faithful translation 
of results to humans. Another important aspect is the 
experimental design which must be rigorous and allow 
reproducibility of the findings.
Actually, rats and mice are the most used laboratory 
animals in the PCa field due to their advantages, such 
as easy of handling and their physiological and genetic 
similarities to humans (Nascimento-Gonçalves et al., 
2019). However, rodents have some limitations as animal 
models for studying PCa, such as their anatomy, lifespan, 
and body weight, that may interfere with carcinogenesis 
(Fagundes and Taha, 2004; Cekanova and Rathore, 2014). 
The dog is an interesting animal model for PCa due to 
the anatomical, histopathological, and epidemiological 
similarities with human PCa (LeRoy and Northrup, 2009; 
Sun et al., 2017b). For example, dog PCa can develop 
spontaneously, metastasizes in bone, and lacks NKX3.1 
and androgen receptor (AR), just like men (LeRoy and 
Northrup, 2009; Fonseca-Alves et al., 2018; Laufer-
Amorim et al., 2019). On the other hand, there are 
constraints to the use of dogs in research similar to those 
carried out with rodents due to ethical issues, difficulties 
in maintaining these animals in the laboratory, and the 
long latency period (Pinho et al., 2012). 
To improve the translation of preclinical research findings 
into clinical practice, it is relevant to have a comparative 
understanding of prostate anatomy in humans and in the 
most used animals. Although there are several articles 
and book chapters about prostate anatomy of human 
(McMinn, 2003; Lee et al., 2011; Bhavsar and Verma, 

2014; Sharma et al., 2017; Standring, 2020), rodents 
(Jesik et al., 1982; Lee and Holland, 1987; Oliveira 
et al., 2016; Ginja et al., 2019), and dogs (Budras et al., 
2007; Smith, 2008; Evans and Miller, 2013; Sun et al., 
2017a), as far as authors know there is no single article 
or book chapter presenting a systematic and exhaustive 
comparison between them. Thus, our review aims to 
describe the macroscopic and microscopic anatomy of 
man, rat, and dog prostate, comparatively, emphasizing 
the most relevant features for clinical translation.
Macroscopic anatomy 
Anatomic structures
The prostate is an accessory gland of the male 
reproductive system that secretes a prostatic fluid 
which will constitute the seminal fluid, a component of 
semen (Jesik et al., 1982; Smith, 2008; Sharma et al., 
2017). During ejaculation, the prostate contracts and 
expels prostatic fluid into the urethra (Seeley et al., 
2004). The prostate secretion allows the neutralization 
of the acidity in testicular and vaginal secretions and is 
important in the process of transient coagulation of the 
sperm before this one is released (Seeley et al., 2004).
Anatomically, the rodent prostate is divided into four 
lobes (cranial, dorsal, lateral, and ventral), named 
concerning their relative position to the urinary bladder 
(Fig. 1) (Jesik et al., 1982; Lee and Holland, 1987; 
Ginja et al., 2019). In both rats and mice, the lobes can 
be distinguished by their histological characteristics 
and have different physiological functions, sharing a 
common clear and gelatinous appearance. Besides that, 
all lobes are surrounded by a delicate mesothelium-lined 
capsule and separated from each other by fibrous and 
adipose connective tissue (Jesik et al., 1982). Although 
remains a controversial issue, some authors consider 

Fig. 1. Schematic representation of macroscopic anatomy of the human (A), rat (B) and dog (C) prostate gland.
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the dorsal and lateral prostate (LP) lobes homologous 
to the human prostate (Shappell et al., 2004).
In contrast with the other species described in this 
review paper, the prostate is the only accessory gland 
present in the dog reproductive system (Smith, 2008; 
Evans and Miller, 2013). The dog prostate is a bilobed 
and ovoid-shaped structure that surrounds the neck of 
the urinary bladder and the proximal urethra (body and 
disseminated part of the prostate) (Fig. 1) (Smith, 2008; 
LeRoy and Northrup, 2009; Cunto et al., 2019). The 
size and weight of the prostate vary with the age, breed, 
and body weight of the dog (Evans and Miller, 2013). 
This organ can be considered a mobile organ since its 
anatomic localization is variable and depends on the 
age and the bladder distension (Evans and Miller, 2013; 
Cunto et al., 2019); however, the typical localization is 
the caudal abdomen or the pelvic cavity (Smith, 2008). 
Until approximately 2 months of age, the prostate is 
located within the abdominal cavity, from this age until 
the dog reaches sexual maturity, the prostate is located 
in the pelvic cavity (Evans and Miller, 2013; Fernando 
Leis-Filho and Fonseca-Alves, 2019). After sexual 
maturity, the prostate increases in size and extends 
cranially into the abdominal cavity (Evans and Miller, 
2013; Fernando Leis-Filho and Fonseca-Alves, 2019). 
The prostate is bounded ventrally by the symphysis 
pubis, ventral abdominal wall, and dorsally by the 
rectum (Smith, 2008; Evans and Miller, 2013). 
The human prostate is a single lobule structure with a 
conical shape about the size of a walnut (Bhavsar and 
Verma, 2014) (Fig. 1), located posterior to the symphysis 
pubis, anterior to the rectum, and inferior to the urinary 
bladder, surrounding the proximal urethra (Lee et al., 
2011; Sharma et al., 2017; Ittmann, 2018). A healthy 
adult prostate weighs around 10–20 g and is grey to 
reddish according to its activity (Mitterberger et al., 2010; 
Standring, 2020). It is composed of a base, an apex, anterior, 
posterior, and inferior-lateral surfaces (Lee et al., 2011; 
Bhavsar and Verma, 2014). The base is attached to the neck 
of the bladder, the apex is located on the superior surface 
of the urogenital diaphragm that makes contact between 
the medial surface of the levator ani muscles, the anterior 
surface is located behind the pubic arch (Sharma et al., 
2017) and the posterior surface is located on the anterior 
wall of the rectum, being the posterior surface triangle-
shaped and flat (Lee et al., 2011; Bhavsar and Verma, 2014). 
A thin layer of connective tissue, called “Denonvilliers 
fascia”, separates the prostate from the rectum, posteriorly 
(Sharma et al., 2017). The inferior-lateral surface makes 
the connection between the anterior surface and the rest of 
the levator ani fascia above the urogenital diaphragm (Lee 
et al., 2011; Bhavsar and Verma, 2014). 
Blood supply
Therefore, it is crucial to know the circulation 
pattern of the prostate in different animal models to 
better understand the vascularization and possible 
dissemination route of tumor cells, and the first 
metastasis’s location.

Prostate irrigation derives mainly from the iliac 
internal artery and its branches. In rats, the internal 
iliac artery supplies blood to the prostate through 
the cranial vesical artery, which will supply blood 
to the different prostate lobes (Jesik et al., 1982) 
(Fig. 2). Moreover, one of their branches, the caudal 
vesical artery supplies blood to the dorsal surface of 
the prostate and capsular tissue. The venous blood 
is returned by the caudal and cranial vesical veins 
to the internal iliac vein (Jesik et al., 1982). The 
dog prostatic artery, which arises from the internal 
pudendal artery (branch of the iliac internal artery), is 
the arterial supply of blood to the dog prostate (Fig. 2) 
(Budras et al., 2007; Smith, 2008; Evans and Miller, 
2013). The prostatic artery gives rise to the artery of 
the ducts deferens and to the caudal vesicular artery 
(Evans and Miller, 2013). This last artery sends 
branches to the ureter and urethra and goes toward 
the urinary bladder (Evans and Miller, 2013). The 
prostatic artery continues caudoventrally, and before 
ramifying on the surface of the prostate, gives rise to 
the small middle rectal artery (Fernando Leis-Filho 
and Fonseca-Alves, 2019). These branches penetrate 
the prostatic capsule through the dorsolateral surface 
and supply the glandular tissues (Smith, 2008). The 
venous blood is drained by the prostatic vein into the 
internal iliac vein through the internal pudendal vein. 
The human prostate receives arterial blood from 
branches internal iliac artery, mainly from the inferior 
vesical artery (through the prostatic artery) but also from 
internal pudendal and middle rectal arteries (McMinn, 
2003). Then, the blood is drained by the prostatic 
venous plexus located between the fibrous capsule of 
the prostate and the prostatic sheat and posteriorly drains 
into the internal iliac vein (Jacob, 2008; Cristini et al., 
2013; Chatterjee et al., 2019). Arteries, veins, and nerve 
trunks can be recognized in the posterolateral region of 
the prostate within loose connective and adipose tissue 
(Kiyoshima, 2004) (Fig. 2).
Lymphatic drainage
Researchers are working to create novel metastatic 
animal models, but they lack a good understanding of 
lymphatic anatomy, which is essential to comprehend 
cancer metastasis (Suami et al., 2011). The knowledge 
about lymphatic drainage is crucial for the detection of 
sites of lymph node metastases. The sentinel node is 
defined as the first lymph node receiving lymph from 
the prostate (and consequently prostate tumors), and 
possibly developing the first metastases (Egawa et al., 
2008). There are several differences and similarities 
between the lymphatic system of rat, dog, and human. 
The prostatic lymph vessels in rats drain into the medial 
iliac lymph nodes (Krinke, 2000). Compared to the 
body size difference between the human and the rat, 
there was little difference in the size of the lymphatic 
vessels between the two species (Wawroschek et al., 
2003; Suami et al., 2022;). In dogs, the prostate 
drainage is performed through the iliosacral lymph 
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center through sacral and medial iliac lymph nodes 
(Suzuki et al., 1992). 
Regarding the lymphatic system in man, the main and 
important set of lymphatics course along the prostatic 

and internal iliac vessels and drain into the internal and 
common iliac lymph nodes and also the apex of the 
prostate gland into the sacral lymph nodes (Swanson 
and Hubbard, 2013; Boscolo-Berto et al., 2020).
In the dog and in the man, different areas of the prostate 
have a variable drainage region, and the different 
lymphatic drainage of the periurethral and peripheral 
zone (PZ) is the only difference between the drainage 
of the human and canine prostate (Wawroschek et al., 
2003). Thus, the dog seems to be a good model to 
investigate prostatic lymphoscintigraphy.
Although still considered an experimental procedure 
for PCa, sentinel lymph node biopsy can be a better 
option for nodal staging, compared to extended 
pelvic lymph node dissection, especially given the 
heterogeneity of PCa and inconsistencies in definitions, 
types of tracer, descriptions of interventions, and 
detection methods (Mottet et al., 2021; Lannes et al., 
2022). In an attempt to refine this procedure and 
translate the results to clinics, animals’ models can 
be used. For example, Liss et al. (2014) used a canine 
model to investigate positron emission tomography/
computed tomography (PET/CT) preoperative 
imaging and intraoperative detection of a fluorescent-
labeled receptor-targeted radiopharmaceutical. 
These authors concluded that this model has optimal 
logistic properties to obtain preoperative PET/CT 
and subsequent real-time intraoperative confirmation 
during robotic-assisted prostate sentinel lymph node 
dissection (Liss et al., 2014). But there is a significant 
amount of interindividual variability in both canine 
and in human prostatic lymph drainage, which make 
it challenging to define the precise location of the 
sentinel lymph nodes (Wawroschek et al., 2001, 2003). 
Wawroschek et al. (2001, 2003) suggested that in dogs 
the prostate sentinel lymph nodes are comparable to 
those in humans (Wawroschek et al., 2003). Studies 
in men’s prostate suggested that sentinel lymph nodes 
are located in the obturator region, external iliac, 
junctional, internal iliac, distal internal iliac, proximal 
internal iliac, common iliac, and in presacral regions 
(Wit et al., 2017; Miki et al., 2018; Narayanan and 
Wilson, 2018).
Prostate microscopic anatomy 
In the rat, as already mentioned, the prostate is divided 
into four distinct lobes: the cranial, dorsal, lateral, and 
ventral prostate (VP) lobes. The cranial prostate lobe, 
also known as the coagulating gland, is a thin tubular 
structure attached to the seminal vesicles and follows 
its curvature (Hayashi et al., 1991; Suwa et al., 2001; 
Creasy et al., 2012). The acini are tightly packed and 
are surrounded by smooth muscle and connective tissue 
attached to the seminal vesicles (Suwa et al., 2001). 
The epithelium is cuboid to columnar with a degree of 
infoldings with possible cribriform patterns (Hayashi 
et al., 1991; Suwa et al., 2001; Creasy et al., 2012). 
Secretory cells have round centrally located nuclei and 

Fig. 2. Arterial supply (red) and venous drainage (blue) in 
human (A), rat (B) and dog (C) prostate gland. The figure 
was partly generated using Servier Medical Art, provided by 
Servier, licensed under a Creative Commons Attribution 3.0 
unported license.
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the cytoplasm is granular and eosinophilic (Creasy et al., 
2012). The stroma is composed of a connective tissue 
layer with a smooth muscle component (Suwa et al., 
2001). The dorsal prostate (DL) lobe has a butterfly 
shape and is located dorsally and bilaterally at the base 
of the seminal vesicles and behind the attachment of 
the cranial lobe (Hayashi et al., 1991). The epithelium 
is simple and columnar, and cells have centrally located 
nuclei and the secretions are eosinophilic (Suwa et al., 
2001). The acini are large, with few infolding of the 
epithelium, and are loosely distributed within the stroma 
(Suwa et al., 2001). Moreover, the acini are surrounded 
by stromal smooth muscle cells and fibrocytes (Creasy 
et al., 2012) (Fig. 3). The LP lobe is located around the 
urethra, centrally and bilaterally, and is lined by a simple 
cuboid or tall columnar epithelium with very little 
infolding (Lee and Holland, 1987; Hayashi et al., 1991; 
Creasy et al., 2012). The acini are large and loosely in 
the stroma and the secretory cells have small and basal 
nuclei and the secretions are granular eosinophilic (Lee 
and Holland, 1987; Hayashi et al., 1991; Suwa et al., 
2001; Creasy et al., 2012). Sometimes, the dorsal and 
lateral lobes are referred to as the dorsolateral lobe due 
to the difficulty of anatomic separation of these lobes 
and similar histological features (Lee and Holland, 
1987). The VP lobe wraps the urethra ventrally and 
is flanked by the two lobes that lay on both sides 
of the urethra (Hayashi et al., 1991). The acini are 
composed of simple and columnar epithelium and the 
epithelial cells have base located nuclei without distinct 
nucleoli (Jesik et al., 1982; Suwa et al., 2001; Creasy 
et al., 2012). The secretions in the acini are pale and 
slightly eosinophilic, and the stroma is thin (Lee and 
Holland, 1987; Creasy et al., 2012). The glands show 
little amount of infolding and are surrounded by a thin 
fibromuscular layer (Hayashi et al., 1991; Suwa et al., 
2001; Creasy et al., 2012).
Each rat prostate lobe is composed of glands (acini) and 
a series of branching ducts that drain into the urethra 
(Lee et al., 1990; Hayashi et al., 1991). The glands 
are surrounded by smooth muscle cells that when they 

contract expel the prostate secretions (Lee and Holland, 
1987). The stromal tissue of all lobes contains a mixture 
of elements that included extracellular material, small 
nerve endings, blood vessels, smooth muscle cells, 
fibroblasts, macrophages, and vascular endothelial cells 
(Jesik et al., 1982; Lee and Holland, 1987; Prins et al., 
1991). Epithelial and luminal and basal cells are found 
in rat prostate and have different features (Prins et al., 
1991). Luminal cells express ARs and have a stronger 
reaction in the ventral prostate than in the dorsal and 
lateral lobes. Basal cells are ARs and α- and γ-actin 
negative in all prostate lobes and are intrinsically 
enriched in gene sets that are usually associated with 
stem cells. Prostate progenitor and stem cells are 
thought to reside within the basal layer and basal cells 
can give rise to luminal cells that are continually lost 
through apoptosis (Hu et al., 2022). 
On the other hand, in dogs, the prostate is involved by a 
fibromuscular capsule and is divided into the right and 
left lobes by a prominent medial septum (Sun et al., 
2017a; Cunto et al., 2019), consisting of connective 
tissue and smooth muscle fibers (Cunto et al., 2019). 
Each lobe is further divided into lobules separated 
by thin capsular trabeculae (Smith, 2008; LeRoy and 
Northrup, 2009; Cunto et al., 2019). The lobules are 
organized into tubule-alveolar glands that are lined 
by tall columnar to cuboidal secretory epithelial cells 
(Fig. 3) (LeRoy and Northrup, 2009; Sun et al., 2017a). 
The secretions leave these glands through a small 
duct that empties into the urethra near deferent ducts 
around the seminal colliculus (Smith, 2008; Sun et al., 
2017a; Cunto et al., 2019). The luminal or secretory 
cells show abundant, granular, brightly eosinophilic 
cytoplasm when stained with hematoxylin and eosin 
(LeRoy and Northrup, 2009). Canine prostate-specific 
arginine esterase (CPSE), a serine protease similar to 
prostate-specific antigen (PSA), is the major secretory 
product of the dog prostate and is the most abundant 
protein in the dog’s prostate fluid (Cunto et al., 2019). 
CSPE can be used as a marker for prostate disorders 
(Alonge et al., 2018). Moreover, these cells are positive 

Fig. 3. Microscopic anatomy of the human prostate (A), dorsolateral prostate rat (B) and  
dog prostate (C).
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for cytokeratin 8 and 18, NKX3.1, PTEN, and AR 
(Fonseca-Alves et al., 2013, 2018; Fernando Leis-Filho 
and Fonseca-Alves, 2019). The basal epithelial cells 
are located in the basal cell layer in a discontinuous 
pattern (LeRoy and Northrup, 2009; Sun et al., 2017a). 
Basal cells display expression of cytokeratin 5, high 
molecular weight cytokeratin, p63, and low expression 
of AR (Fonseca-Alves et al., 2018; Fernando Leis-
Filho and Fonseca-Alves, 2019). The glandular tissue 
is supported by very thin septa of stroma composed 
of collagen fibers, fibroblasts, smooth muscle, and 
mononuclear inflammatory cells (Sun et al., 2017a). 
The basal layer also contains stem and progenitor cells 
(Bongiovanni et al., 2019; Nascente et al. 2022)  
In 1981, McNeal proposed a nomenclature to describe 
the structure of a human prostate, which is still used 
(McNeal, 1981). Therefore, the prostate contains 
distinct regions with different functions, and these are 
distinguished by their histological characteristics and 
anatomic pattern in PZ, central zone (CZ), transitional 
zone (TZ), and a periurethral gland or anterior 
fibromuscular stroma (AFMS) (McNeal, 1981; Selman, 
2011; Bhavsar and Verma, 2014). Also, they have 
different susceptibility to pathological disorders (Lee 
et al., 2011). The PZ represents approximately 70% 
of the prostate volume and is located between the base 
and the apex along the posterior surface, surrounding 
the distal urethra (Lee et al., 2011; Bhavsar and Verma, 
2014; Henry et al., 2018). The epithelium is simple, 
with small, rounded glands and composed of a single 
layer of columnar cells with basally located nuclei 
(Roy-Burman et al., 2004; Bhavsar and Verma, 2014). 
Moreover, PZ contains ductal and acinar elements with 
barely smooth muscle (Bhavsar and Verma, 2014). 
Most of the adenocarcinomas arise in PZ (Roy-Burman 
et al., 2004; Bhavsar and Verma, 2014; Sharma et al., 
2017; Henry et al., 2018). The CZ is a cone-shaped 
structure located at the base of the prostate, between 
the peripheral and transition zones (Bhavsar and 
Verma, 2014). Representing approximately 25% of 
prostate volume, the CZ surrounds the ejaculatory 
ducts and extends from the neck of the bladder to the 
verumontanum (Roy-Burman et al., 2004; Bhavsar and 
Verma, 2014). The verumontanum is a structure located 
on the floor of the posterior urethra which marks the 
point where the ejaculatory ducts enter the urethra 
(Fine and Reuter, 2012; Bhavsar and Verma, 2014). 
The ducts and acini are larger than other zones and the 
epithelium has intraluminal ridges and a cribriform 
pattern (Aaron et al., 2016). A thin and compact 
layer of smooth muscle involves the gland making 
the epithelium appear crowded and pseudostratified 
with large polygonal glands (Roy-Burman et al., 
2004; Bhavsar and Verma, 2014). The cells of this 
zone have darker granular cytoplasm, large nuclei and 
produce pepsinogen II, a major proteolytic enzyme of 
the seminal fluid (Roy-Burman et al., 2004; Sharma 

et al., 2017). This zone is described as having a low 
incidence of prostate disorders (Lee et al., 2011; Aaron 
et al., 2016). The TZ represents only 5% of the prostate 
volume and consists of two small lobes of glandular 
tissue which surround the proximal urethra between 
the bladder neck and the verumontanum (Roy-Burman 
et al., 2004; Bhavsar and Verma, 2014; Aaron et al., 
2016). The epithelium is simple with small rounded 
glands, the secretory cells have pale cytoplasm and 
the stroma is dense with smooth muscle fibers (Roy-
Burman et al., 2004; Bhavsar and Verma, 2014). TZ is 
the most common site for benign hyperplasia lesions 
and less commonly adenocarcinoma (De Marzo et al., 
2007; Bhavsar and Verma, 2014). The AFMS represents 
less than 1% of the glandular prostate and forms the 
anterior surface of the prostate, and is located from 
PZ anterior to pre-prostatic urethra, extending from 
the apex to the base (Selman, 2011; Chatterjee et al., 
2019). This zone is composed of connective tissue, 
smooth muscle, and some skeletal muscle with few 
glandular structures (Sharma et al., 2017; Chatterjee 
et al., 2019). Also, AFMS contains blood vessels that 
supply and drain the anterior prostate (Fine and Reuter, 
2012). The prostate is composed of glandular and non-
glandular (the stroma) elements within a capsule (Lee 
et al., 2011; Sharma et al., 2017). The existence of this 
capsule has been a controversial subject over the years, 
being considered more of an extension of the AFMS 
than a true capsule (Ayala et al., 1989; Roy-Burman 
et al., 2004; Bhavsar and Verma, 2014; Chatterjee 
et al., 2019). In 2004, a research paper analyzed 79 
radical prostatectomy specimens and concluded that 
in 89% of the cases, the prostate capsule blends with 
the AFMS and forms the only anterior covering of the 
prostate (Kiyoshima, 2004). Also, in the majority of 
cases, AFMS connected and fused with lateral pelvic 
fascia and covers the outermost regions of the lateral 
and anterior surfaces of the prostate (Kiyoshima, 2004). 
The human prostate stroma is composed of smooth 
muscle cells (the most abundant cell type), fibroblasts, 
endothelial cells, infiltrating cells (like mast cells and 
lymphocytes), blood vessels, nerves, and stromal stem 
cells (Schalken, 2005; Prajapati et al., 2013; Ittmann, 
2018). The muscle cell contractions will help the 
secretions enter into the urethra during ejaculation 
(Ross and Pawlina, 2006; Bhavsar and Verma, 2014). 
Stromal cells express mesenchymal markers such as 
CD34, vimentin, CD44, CD117, and CD90 (Takao 
and Tsujimura, 2008). Stromal stem cells have also 
been reported in the prostate stroma and have the 
function to replace and regenerate local cells that are 
destroyed due to injury or aging (Lin et al., 2007; 
Isaacs, 2008; Prajapati et al., 2013). These cells show 
high proliferative activity and the ability to differentiate 
into fibroblasts or smooth muscle cells and express 
mesenchymal stem cells markers, such as CD34 and 
Sca-1 (Lin et al., 2007; Prajapati et al., 2013). The 
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prostatic glands are composed of acini and ducts lined 
by different types of cells and are responsible for the 
production of seminal fluid. Luminal or secretory, basal, 
and neuroendocrine cells are the three major cell types, 
similar to rat and dog, but human prostate epithelium 
also has intermediate or amplifying cells and stem cells 
(Long et al., 2005; Adamowicz et al., 2017; Henry 
et al., 2018). The acini have a papillary appearance that 
is more visible in the CZ (Paner, 2016; Ittmann, 2018). 
The luminal cells are the most abundant cells, which 
are attached to the basal epithelial cells and extend into 
the acinar lumen (Fig. 3). The function of these cells 
is to secrete fluids to the lumen which contributes to 
the seminal fluid, such as the PSA and prostate acid 
phosphatase (Sharma et al., 2017; Ittmann, 2018). 
Moreover, these cells express cytokeratin 8 and 18, cell 
surface marker CD57, androgen-regulated secretory 
proteins (e.g. KLK3), AR, and estrogen receptor beta 
(ERβ) (Schalken, 2005; Di Zazzo et al., 2016; Henry 
et al., 2018). Their secretory capacity and viability are 
androgen dependent (Denmeade et al., 1996). Basal 
cells have a polygonal shape, large irregular-shaped 
nuclei, and a lack of secretory vesicles (Sharma et al., 
2017). They are located between luminal cells and the 
underlying basement membrane and express cytokeratin 
5 and 14, the transcription factor p63, Bcl1-2 (an anti-
apoptotic factor), CD44, ERβ, and hepatocyte growth 
factor (Bonkhoff and Remberger, 1993; Di Zazzo et al., 
2016; Sharma et al., 2017; Henry et al., 2018). Their 
function is the synthesis and secretion of the basement 
membrane components in these cells the AR are low 
or not expressed, which makes these cells independent 
of androgens for their survival (Sharma et al., 2017). 
Neuroendocrine cells are androgen-independent 
cells distributed all over the basal layer and don’t 
express PSA (Schalken, 2005). There are two types of 
neuroendocrine cells: the open cells, with extensions at 
their apex that connect with the lumen, and closed cells, 
with dendritic processes that extend between adjacent 
cells located in the basal lamina and contact with the 
nerves (Vashchenko and Abrahamsson, 2005). Their 
function is cell growth, differentiation, and homeostatic 
regulation as well as regulation of prostatic secretion 
(Vashchenko and Abrahamsson, 2005). The major 
secretory products are chromogranin A, serotonin, 
bombesin, neuro-specific enolase, and calcitonin 
(Abrahamsson and Sant’agnese, 1993; Vashchenko and 
Abrahamsson, 2005). Intermediate or amplifying cells 
are proliferating cells that express basal and luminal 
markers, such as cytokeratin 8 or cytokeratin 5 (Long 
et al., 2005; Li and Shen, 2019). However, these cells 
raise the question of whether they can be considered a 
distinct cell type or just a transition between basal and 
luminal cells (Li and Shen, 2019). The prostate basal 
layer also contains a small heterogeneous population 
of stem cells, located mainly in the proximal region 
of the prostate ducts, near the urethra (Adamowicz 

et al., 2017; Leão et al., 2017; Li and Shen, 2019). 
The proliferation of these cells occurs when there are 
changes in the androgen levels triggered by physiology 
hormonal medium or by hormone therapy (Adamowicz 
et al., 2017). The markers used to identify these cells 
are CD133, CD44, ATP-binding cassette subfamily G 
member 2, telomerase reverse transcriptase, and CK5/
CK14 (Mimeault et al., 2008; Prajapati et al., 2013; 
Adamowicz et al., 2017).

Conclusion
Animal models play a key role in biomedical research 
as they are used to test several therapies and drugs. 
However, translating the results obtained from these 
models into treatments for humans is a complex and 
controversial process. One of the most critical factors 
when selecting an animal model for biomedical trials is 
the degree of physiological and/or pathophysiological 
and anatomic similarity between the chosen species 
and humans. Selecting an inappropriate animal model 
for scientific research can lead to false results, waste 
of resources, and unnecessary harm to animal lives. 
Moreover, it can lead to inaccurate, redundant, and 
inappropriate trials. Therefore, a thorough understanding 
of the macroscopic and microscopic anatomy of the 
different animals used in experimentation is essential 
for obtaining results that can be translated into effective 
clinical outcomes for humans.
This review summarizes the major differences and 
similarities between rat, dog, and human prostate glands 
(Table 1). Dogs are considered by many researchers 
the best model to study PCa, due to the development 
of spontaneous cancer with a higher incidence when 
compared with other animals and the development of 
bone metastases. Moreover, although prostate tumors 
in dogs tend to be hormone insensitive and many of 
the tumors arise in castrated dogs, the fact that human 
and canine prostate glands share an embryologic origin 
and have many homologous anatomic and micro-
anatomic structures suggests that they could serve as 
a model for human advanced castrate-resistant tumors. 
Anatomically, dog and human prostate share some 
characteristics. For example, the similarity in lymphatic 
system and the sentinel lymph node (Wawroschek 
et al., 2003). However, dogs have not been very used in 
experimental studies due to ethical reasons as they are 
commonly regarded as companion animals. But, dogs in 
animal experimentation aimed at helping humans have 
the potential to benefit not just humans, but also pet 
dogs themselves. Despite anatomical differences, the 
rats remain an important model to study human prostate 
diseases, once they share some features implicated in 
carcinogenesis with humans. Moreover, the rats are 
easy and cheap to maintain when compared with other 
species, and their physiology and genetics are well 
studied (Fagundes and Taha, 2004; Annon, 2020).
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