
A Semantic Web-based System for Mining Genetic Mutations in Cancer 
Clinical Trials  

Sambhawa Priya1,2, Guoqian Jiang, MD, PhD1, Surendra Dasari, PhD1, Michael T. 
Zimmermann, PhD1, Chen Wang, PhD1, Jeff Heflin, PhD2,

Christopher G. Chute, MD. Dr. PH1

1Mayo Clinic, Rochester, MN; 2Lehigh University, Bethlehem, PA

Abstract  

Textual eligibility criteria in clinical trial protocols contain important information about potential clinically 
relevant pharmacogenomic events. Manual curation for harvesting this evidence is intractable as it is error prone 
and time consuming. In this paper, we develop and evaluate a Semantic Web-based system that captures and 
manages mutation evidences and related contextual information from cancer clinical trials. The system has 2 main 
components: an NLP-based annotator and a Semantic Web ontology-based annotation manager. We evaluated the 
performance of the annotator in terms of precision and recall. We demonstrated the usefulness of the system by 
conducting case studies in retrieving relevant clinical trials using a collection of mutations identified from TCGA 
Leukemia patients and Atlas of Genetics and Cytogenetics in Oncology and Haematology. In conclusion, our system 
using Semantic Web technologies provides an effective framework for extraction, annotation, standardization and 
management of genetic mutations in cancer clinical trials. 

1 Introduction 

The eligibility criteria in a clinical trial protocol may contain information about genetic mutations that determine the 
appropriateness of a cancer patient being administered a particular drug/therapy. This genetic mutation information 
and related context has been considered as an important source for compiling pharmacogenomics (PGx) evidences. 
Unfortunately, this information occurs in free-text format eligibility criteria, which is difficult to parse using 
standard text mining techniques. In previous studies, different approaches have been explored for capturing and 
structuring information in clinical trials, however most systems are not focused on capturing mutations mentioned in
eligibility criteria. For example, Li et. al.1 used a dictionary based approach to detect genes, drugs and diseases 
based on the condition, intervention and study description fields. Wu et. al.2 used machine learning techniques to 
identify genes and their categorical status (mutated or not) from eligibility criteria, however they do not identify 
larger structural variations or specific variants. eTACTS3 mines frequently occurring tags from the free-text 
eligibility criteria to provide efficient filtering of trials and facilitate search for trials. Since this system only 
preserves the frequently occurring tags for high-level concepts, it is likely to miss less recurrent mutation mentions.
Other works by Kanagasabai et. al.4, Naderi et. al5 and Laurila et. al6 focus on extracting mutation mentions from 
biomedical literature, but not clinical trials.   

Thus, most of the systems lack the capability to provide sufficient mutation annotations for clinical trials, which 
makes it hard to search for relevant trials based on patients  mutation information. We consider that clinical research 
community would need such a system that can capture and store these annotations in a structured format so that it 
can be queried to retrieve relevant information from clinical trials. For this reason, we leveraged Semantic Web 
technology, that provides a scalable framework for standards-based data representation, integration and sharing.We 
store the extracted annotations in a structured representation using Resource Description Framework (RDF)*, a 
Semantic Web standard.  

Such a system can be used to support personalized genomics medicine or individualizing medicine, a goal of which
is to match the right patient to the right medicine based on the patient's genomic information. It is a common 
practice to compile PGx evidences from heterogeneous sources, such as PubMed,  PharmGKB16, COSMIC17, etc. 
Even though clinical trials may not have concluded, they are designed and carried out based on knowledge from 
preliminary studies1. Hence, PGx evidences from clinical trials are reasonable candidates for potential cancer 
treatment when a standard guideline is not clear. However, they should be tagged specifically if there are no 
published results confirming the study.  

*http://www.w3.org/RDF/ 
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Figure1: System Architecture 

2 Materials and Methods 

2.1 System Architecture Overview 

The system is comprised of 4 main modules: an extractor, an NLP-based annotator, a Semantic Web ontology-based 
annotation manager and a user interaction module with editing tools and a SPARQL14 query interface (Figure 1). 
The extractor selects the clinical trials based on some extration specifications (e.g. condition.). The NLP component 
annotates the eligibility criteria of the selected trials and maps it to a dictionary database. These annotations are
serialized into structured format by the Semantic Web component. The user can review and edit the generated 
annotations using the annotation editing tool and explore the generated model using the SPARQL query interface.   

2.2 Prototype Implementation  

The Extractor - We use LinkedCT7, an RDF version of ClinicalTrials.gov, as our raw dataset. In this 
implementation, the extractor selects some clinical trials associated with the condition of leukemia. We focus on 
leukemia trials because such trials are enriched with mutation evidences.   

The NLP-based annotator - There are three modules of the NLP subcomponent which achieve entity recognition, 
concept mapping, and dependency detection. For the entity recognition task, we created a rule set for capturing 
different types of mutation evidences. Based on manual curation of 50 leukemia trials, we created rules (regular 
expressions) to capture structural variations like translocations, deletions and inversions. We borrowed the regular 
expressions from the MutationFinder9 tool for capturing the point-mutations. We also include phrase-based rules to 

 etc.

After identifying the mutation entities, we mapped them to the Catalog of Somatic Mutations in Cancer (COSMIC)17

which serves as our dictionary database. We could map the extracted point-mutations and structural variations to 
those in COSMIC, however mapping broad low-resolution categories like MLL rearrangement , hypodipoidy ,
was more difficult. In these cases, we used bedtools12 to convert positions with variants in COSMIC (coordinates 
from GRCh37) to their corresponding cytoband, the resolution most commonly appearing in eligibility criteria. This 
process also enriched our annotation model with additional evidences from the COSMIC database, like PMID 
reference and associated gene(s) for the matching mutations.   

Sentences in eligibility criteria often contain negation or other context which may modify meaning (e.g. The 
absence of good risk molecular features: t(8;21)  or ny cytogenetic abnormality except inv16 ). It is important 
to capture this information and associate it with the corresponding mutation evidence for accurate information 
retrieval. The free-form narrative format of the eligibility criteria renders standard parsing tools (e.g. the Stanford 
parser15) ineffective. We manually reviewed 50 clinical trials with negative status for mutations in criteria and 
identified a list of common negative signals for mutation evidences If any negative 
word from the identified list appeared within a sentence or at the beginning of an enumerated list of sentences 
containing mutation evidence, we assigned a negative context to that mutation evidence.

The Semantic Web ontology-based annotation management  In order to store the extracted annotations in the 
RDF format, we need an ontology that represents the knowledge of the domain. We explored some existing domain 
ontologies that include the concepts and properties relevant to mutation annotations. One of the ontologies we 
explored was the mSTRAP ontology4, specifically designed for structuring annotations for point-mutations in 
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biomedical literature. However, since our focus was mainly on the eligibility criteria for clinical trials related to 
leukemia where structural abnormalities are more frequently occurring type of mutation evidence than the point- 
mutations, this at the OMM impact ontology5

that covers insertions, deletion and point-mutations but includes many other features that are irrelevant to our 
modelling requirements. Thus, by combining relevant features from the above two ontologies with some new classes 
and properties of our own, we designed our domain ontology for capturing mutation annotations in eligbility criteria 
of clinical trials. The domain ontology file can be accessed from the Github repository here: 
https://github.com/sambhawa/Mutations_In_LinkedCT_Ontology/blob/master/Mutations_In_LinkedCT_tbox.owl.
The captured mutation annotations are used for instantiating this domain ontology to create the annotation model.  

User-Interaction module - Apart from outputting the annotation model for eligibility criteria text, our system also 
creates output compatible with Semantator8 , an OWL annotation editing tool. This output contains highlighting 
information about the annotated entities and the classes they are instances of. A domain expert can export the 
Semantator-compatible output files to Semantator to review and edit the annotations generated by our system. 

We can store the annotation model in a triple store and query it using SPARQL14. We can use SPARQL to issue 
queries over distributed datasets, as shown in Figure 2.  

Figure 2:A SPARQL query template to retrieve information for leukemia trials that contain mutations of the type 
translocation. This query is executed over the datasets including our annotation ontology and LinkedCT. 

2.3 System Evaluation Design 

We use LinkedCT, the RDF version of ClinicalTrials.gov, as our input dataset. In this evaluation, the data collection 
consisted of 172,363 trials available as of August 2014. In total, we retrieved 3605 leukemia associated trials. Our 
annotation system detected a total of 2044 mutation mentions (247 unique mutations) in 472 trials which contained 
mutation evidences out of the complete set of retrieved trials. We evaluated the performance of the NLP component 
in terms of precision and recall. Standard ground-truth for eligibility criteria annotations is missing. Hence, with
help from 3 co-authors who have extensive expertise in molecular biology and bioinformatics, we created ground 
truth for a set of 125 leukemia trials that contained some mutation evidences. We manually annotated mutation 
mentions and their status as inclusion or exclusion criteria, incorporating any negative context for mutations in the 
inclusion criteria. These trials serve as our test-set for evaluation.

We demonstrate the usefulness of our system by conducting case studies in retrieving relevant clinical trials using a 
collection of mutations identified from TCGA Leukemia patients and Atlas of Genetics and Cytogenetics in 
Oncology and Haematology (AGCOH)11. Using cBioPortal13, we obtained a list of frequently mutated genes 
associated with Acute Myeloid Leukemia(AML). We randomly selected a few TCGA patient cases for some of 
these genes and, queried our annotation model to retrieve clinical trials associated with mutations matching with 
those in the selected patients. In order to demonstrate the effectiveness of our system in retrieving clinical trials with 
structural abnormalities, we performed an experiment to search for mutations from AGCOH in our annotation 
model. We extracted all the structural variations for leukemia from AGCOH and looked for partial or complete 
match in our annotation model and returned the corresponding trials.   

3 Evaluation Results 

3.1 Performance of the NLP subcomponent 

For this evaluation, we extracted annotations using our system for the trials in the test-set described above. Table 1 
shows precision, recall and f-score for different categories of mutation mentions (structural variations such as 

PREFIX: ... 
SELECT ?trialID,?drug,?mut,?context, ?InCOSMIC,?PMID_Ref 
FROM Mutations_In_LinkedCT.owl 
where { 
  ?criteria  belongs_to ?trial. 
  ?criteria has_mutation ?mut_type. 
  ?mut_type rdf:type  alct:Translocation. 
  SERVICE <http://http://data.linkedct.org/sparql/>{ 
  ?trialCT rdf:Type lct:Trial. 
  
  ...}
          } 

Dataset1: Our annotation  
ontology 

Dataset2: LinkedCT (via 
SPARQL endpoint) 

Query Patterns 
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del(12q) , inv(16) , t(16;16)(p13;q22) ; point-mutation such as Q252H , T315I and other mutation mentions 
such as MLL gene rearrangement , hypodiploidy ).  

Table 1: Precision, Recall and F-Score for different categories of mutation mentions appearing in leukemia trials. 

Category Precision Recall F-Score 

Structural Variants (SV) 90.2% 83% 86.5%

Point-Mutation (PM) 100% 100% 100%

Others 98.4% 85.33% 91.4% 

3.2 Utility of the system 

We identified 2 TCGA patients, one with FLT3 D835Y mutation, the most frequently seen point-mutation in FLT3 
and another one with KIT D816V mutation, the most frequently occurring point-mutation in KIT. For both the 
patients, our system found the clinical trials which specifically mentioned these mutations (Table 2). This use case 
demonstrates the capability of o
ClinicalTrials.gov website only retrieves search results for mutations appearing in the title or the keyword list for the 
trial, but not when the mutation occurs only in the eligibility criteria. 

Out of 455 chromosomal abnormalities found in AGCOH for leukemia, we found 98 matching unique variations in 
our annotation model (which has a total of 217 unique structural variations). A total of 273 unique matching trials 
were returned corresponding to the mutations in AGCOH. Most frequent matches for mutations from AGCOH were 
11q23 abnormalities, t(9;22) and inv(16). Searching for occurrence of structural variations in eligibility criteria is 
not supported by basic or advanced search facility on ClinicalTrials.gov website. Hence, our system is useful for 
searching for trials with such broader categories of mutations. 

Table 2: Information retrieved from our annotation model for clinical trials matching to the mutations in sample 
TCGA leukemia case-studies. The last column indicates if the search on ClinicalTrials.gov (CT.gov) website 
returned the matching trial or not. 

4 Discussion 

Our rule-based text-mining approach was effective in identifying mutation evidences and their associated contextual 
information from eligibility criteria of clinical trials associated with leukemia. Standard mutation extraction tools
such as MutationMiner and tmVAR reviewed by Yepes et. al.9 are not effective in capturing most of the mutation 
evidences occurring in the eligibility criteria because these tools do not handle non-standard formats of structural 
variations for translocations (e.g. t(1;2)(p12;q13)), deletions (e.g. del (5q), -5q), or complex mutation mentions (e.g. 

, +4) that frequently appear in the eligibility criteria for leukemia trials. Hence, we decided to design 
our own set of rules. We currently do not handle double negative does not have 
good risk cytogenetic features, i.e. t (8;21) and t(15;17) without c-kit mutations) or conditional negatives (e.g. No
MLL rearrangements if 12 to 24 months old). We plan to make the NLP component more robust by including richer 
rules and capturing annotations for other features in the eligibility criteria, including trials for other cancer types.

Our Semantic Web-based annotation model was useful in searching and retrieving relevant information for clinical 
trials associated with a diversity of variants in leukemia. The advantage of ontology-based annotation management 
is that it not only helps structure the extracted information, but also facilitates data integration. Most of the existing 
annotations for eligibility criteria, generally stored in relational databases or as indices1,3, are data silos that cannot 
be integrated easily. Our ontology can be easily integrated with LinkedCT and this combined dataset can serve as an 
enriched version for the later. Our RDF model can also be integrated with other biomedical datasets for capturing 
additional evidences for interactions between biomedical entities such as drugs, diseases and genetic-mutations. We 

CaseID Matching-
TrialID 

Matching
Mutation 

Drug Context Trial-
Status 

COSMIC-
ID

Search-
CT.gov 

TCGA-AB-2811 nct00045942 D835Y PKC412 Inclusion Completed 783 No

TCGA-AB-2945 nct00171912 D816V Imatinib Mesylate Exclusion Completed 1314 Yes

nct00233454 D816V PKC412 Inclusion Active 1314 No
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can align our ontology with other mutation-specific ontologies (e.g. Sequence Ontology10 or OMM impact 
ontology5). By converting the annotations to an instance of a domain ontology, an investigator can explore the 
annotation model using semantic queries in SPARQL or leverage other Semantic Web tools, such as reasoners that 
can check the consistency of the populated ontology. 

The mutation evidences captured by our system in the clinical trials may be disease-causing or disease-associated. 
Hence, the interactions between drugs and mutations that we extracted from the clinical trials may not specifically 
represent drug-target associations but rather reflect more loosely defined relationships between treatments and 
genetic-mutations.  In the future, we plan to associate the disease-drug-mutation relationships extracted from clinical 
trials to relevant evidences found in sources like PubMed and PharmGKB16 in order to authenticate the extracted 
relationships. 

5 Conclusion

We successfully developed a Semantic Web-based system that provides an effective framework for extraction, 
annotation, standardization and management of genetic mutations in cancer clinical trials. In the future, we plan to 
generalize our approach for clinical trials associated with other cancer types. As we annotate different types of 
cancer clinical trials, we will leverage scalable infrastructures for managing large-scale RDF datasets. We also plan 
to design a user-friendly interface that would allow a non-SPARQL expert to input different criteria (e.g. genomic 
feature, primary disease context, age, etc.) that will be translated into appropriate SPARQL queries.
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