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Abstract: Tuberculosis (TB) is the leading cause of death of any single infectious agent, having led
to 1.4 million deaths in 2019 alone. Moreover, an estimated one-quarter of the global population is
latently infected with Mycobacterium tuberculosis (MTB), presenting a huge pool of potential future
disease. Nonetheless, the only currently licensed TB vaccine fails to prevent the activation of latent
TB infections (LTBI). These facts together illustrate the desperate need for a more effective TB vaccine
strategy that can prevent both primary infection and the activation of LTBI. In this study, we employed
a machine learning-based reverse vaccinology approach to predict the likelihood that each protein
within the proteome of MTB laboratory reference strain H37Rv would be a protective antigen (PAg).
The proteins predicted most likely to be a PAg were assessed for their belonging to a protein family of
previously established PAgs, the relevance of their biological processes to MTB virulence and latency,
and finally the immunogenic potential that they may provide in terms of the number of promiscuous
epitopes within each. This study led to the identification of 16 proteins with the greatest vaccine
potential for further in vitro and in vivo studies. It also demonstrates the value of computational
methods in vaccine development.
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1. Introduction

Despite being an ancient disease, tuberculosis (TB) persists as one of the ten leading
causes of death globally and the leading cause of death of any single infectious agent with
10 million new cases and 1.4 million deaths in 2019 alone [1,2]. The emergence of HIV
and multidrug-resistant TB in the past several decades has further complicated global TB
control [3,4].

In light of the significant impact of TB on global health, the World Health Organization
(WHO) has prioritized the control of the TB epidemic, launching the End TB Strategy, which
aspires to reduce the number of TB deaths by 95% and TB incidence by 90% by 2035, as
compared to the 2015 figures [5,6]. Despite this ambition, the current pace of progress
suggests that neither goal will be met [7]. Compounding the inadequacy of the current
progress, the coronavirus disease 2019 (COVID-19) pandemic has impaired TB surveillance,
which could increase TB mortality by 13%, undoing the last five years’ progress [7].

Perhaps the greatest barrier to meeting these goals is the absence of a universally
effective vaccine against all types of TB. This is in part because the unique natural history of
MTB infection makes it a difficult vaccine target. MTB is able to survive many years within
host immune cells, suppressing the intracellular attacks of the macrophage [8]. In order
to contain these persistent bacteria, the host forms a granuloma—an aggregate of host
immune cells encasing the site of infection [9,10]. This state of persistent asymptomatic
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infection is referred to as latent TB infection (LTBI). If the host immune system can no longer
contain the bacteria, LTBI may activate to post-primary TB, including highly contagious
pulmonary TB, which accounts for a majority of TB cases and deaths [1,11]. The WHO
estimates that one-quarter of the global population has an LTBI, representing a huge pool
of potential future disease [1]. Unfortunately, there are currently no licensed vaccines that
prevent the activation of LTBI. Despite its efficacy in preventing miliary and meningeal
TB in infants, the only licensed TB vaccine, Bacillus Calmette-Guérin (BCG), which is
derived from an attenuated strain of Mycobacterium bovis, has widely variable efficacy
against pulmonary TB in adult populations, ranging from 0 to 80%, being least efficacious
in tropical climates, which is perhaps due to immunological sensitization to environmental
mycobacteria [12,13]. Thus, in order to End TB by 2035, a new vaccine strategy that prevents
both primary and post-primary TB in all age groups must be developed.

One promising approach that may compensate for the inadequacies of BCG in sensi-
tized populations is the use of subunit vaccines given in conjunction or succession with
BCG [12]. The first attempt at this strategy was the development of MVA85A [14]. Despite
great promise, subsequent clinical trials showed that it was no more effective than BCG
alone [15]. The candidate vaccine M72 has shown more success, offering 54% protection
against pulmonary TB [16]; however, the need for an even more protective vaccine persists.

In light of the observation that MTB modifies the expression of many genes in the
hypoxic and nutrient-starved conditions of the granuloma, more recent efforts have em-
ployed a subunit vaccine strategy that includes antigens relevant to both TB virulence
and latency [17]. It has been hypothesized that such a vaccine can prevent both primary
and post-primary TB [17]. Examples of such multistage vaccines include H56, which in
early clinical trials has demonstrated better containment of late-stage TB than BCG alone,
and ID93, which has been shown in animal models to protect against TB and in Phase I
trials has elicited humoral and cell-mediated responses in humans [17–20]. The protective
efficacy of these vaccines remains to be seen in later-stage clinical trials.

Despite the encouraging progress made with these recent candidate vaccines, it is
unlikely that a single vaccine will be protective against all forms of TB in all age groups,
and so diversification of candidate vaccines is important [21]. Thus, a broader search for
MTB protective antigens (PAgs) is anticipated to provide a variety of new candidates and
inform the design of new and effective multistage TB vaccines. While previous studies
have applied bioinformatic strategies to the selection of PAgs for vaccine candidates,
machine learning (ML) has not been previously used for this task. Additionally, reverse
vaccinology (RV) allows for the identification of PAgs that may otherwise be impossible
to identify or isolate using conventional methods [22]. Furthermore, while traditional RV
methods primarily consider surface-exposed proteins, ML-based RV methods allow for
the identification of non-surface-exposed proteins. This may be especially important for
the development of vaccines against intracellular pathogens, such as MTB, because these
non-surface-exposed proteins may induce cell-mediated immunity, which is critical to the
control and clearance of intracellular infection. To contribute to the growing knowledge of
PAgs in MTB, we conducted the present study employing a recently developed ML-based
RV model, Vaxign-ML [23].

2. Materials and Methods

Vaxign-ML was applied to the MTB H37Rv proteome (Uniprot Proteome UP000001584)
to compute the protegenicity score of each protein [24]. This score predicts the likelihood
that a given protein will be a PAg. As described previously by Ong et al., Vaxign-ML
used 397 bacterial PAgs with at least one experimental evidence of protection (e.g., in
an animal challenge assay) to train an extreme gradient boosting model [23]. With a
recommended protegenicity score threshold, Vaxign-ML achieved the highest performance
with 0.96 weighted F1-score in a nested five-fold cross-validation and outperformed other
existing web-based RV tools [23,25].
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We then selected proteins with the previously recommended Vaxign-ML protegenicity
score threshold [23]. Of these proteins, those that had previously been established as PAgs
according to Protegen were excluded from selection so that all selected prospective PAgs
were novel. Protegen is a web-based database that compiles PAgs of several pathogens,
including MTB, which are curated from peer-reviewed articles [26]. The remaining proteins
were designated as novel Vaxign-ML-predicted PAgs. This list of predicted PAgs was
further refined using two independent criteria.

The first criterion considered whether each novel Vaxign-ML-predicted PAg belonged
to the family of an established MTB PAg. The rationale for this selection criterion was that
novel Vaxign-ML-predicted PAgs that belong to the protein family of an established PAg
were likely to be similar in structure, function, and amino acid sequence to the established
PAgs and thus were more likely to be PAgs themselves.

To do this, we compiled a list of the protein families of the established MTB PAgs
using Protegen and the UniProt Knowledgebase, which is a manually annotated database
of protein sequence data combined with summaries of experimentally verified or compu-
tationally predicted functional information about each protein [27]. The protein family
for each novel Vaxign-ML-predicted PAg for which it was available was also identified
using the UniProt Knowledgebase. Novel Vaxign-ML-predicted PAgs that belonged to the
protein family of an established PAg were selected.

The second criterion considered whether each novel Vaxign-ML-predicted PAg was
involved in biological processes related to either MTB virulence or LTBI. The rationale
for the selection of proteins involved in MTB virulence was that PAgs are likely to come
from virulence factors. The rationale for the selection of latency-related proteins was their
importance in inducing a cell-mediated immune response in the latency of TB. As it has
been hypothesized, we were operating under the assumption that a more effective vaccine
preventing activation of LTBI could be developed by combining PAgs involved in virulence
with those expressed in the latent stage of the disease [17].

The Gene Ontology (GO) biological processes of each novel Vaxign-ML-predicted
PAg for which they were available were gathered via the UniProt Knowledgebase [27].
Gene Ontology is a project to systematically categorize the function of proteins in terms of
molecular function, cellular component, and biological process. We then selected by litera-
ture review eleven categories of GO biological processes that were relevant to the unique
pathophysiology of MTB in either latency or virulence, including cell envelope biogenesis
and maintenance [28,29], DNA repair [30], interaction with host immune system [8], fatty
acid beta-oxidation [31], growth in host [32], protein folding [33], response to antibiotic [34],
response to acidic pH [35], response to hypoxia [36], response to nitrosative or oxida-
tive stress [32], and response to starvation [37]. Novel Vaxign-ML-predicted PAgs whose
biological processes belonged to at least one of these categories were selected.

Upon first selecting the proteins with sufficiently high Vaxign-ML protegenicity scores
and then refining this list using the two selection criteria mentioned above, we finally
selected the proteins with the greatest number of promiscuous MHC-I and MHC-II epitopes
using T-cell epitope prediction. The rationale for this final selection was the necessity that
vaccine candidates provide broad population coverage. The presence of promiscuous
epitopes is important in the prediction of T-cell epitope candidates because of the highly
polymorphic nature of HLA alleles [38].

For MHC-I binding prediction, the IEDB-recommended NetMHCpan-4.1 prediction
method was used. This method employs an ML strategy trained on both binding affinity
and mass spectrometry-eluted ligands [39,40]. Binding predictions were made for 9-mer
epitopes with a reference set of 27 frequently occurring HLA alleles which together cover
>97% of the global population [41]. The selection threshold for MHC-I binding prediction
was percentile rankings less than 1%, as has previously been recommended [42,43].

For MHC-II binding prediction, the IEDB-recommended prediction method was
used [40]. This method employs the consensus approach, which combines the NN-align,
SMM-align, CombLib, and Sturniolo methods if a corresponding predictor is available for
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the given molecule, and if not, NetMHCIIpan is used [38,39,44–47]. Binding predictions
were made for 15-mer epitopes with a reference set of 27 frequently occurring HLA alleles,
which together cover >99% of the global population [48]. The selection threshold for MHC-
II binding prediction was adjusted percentile rankings less than 10%, as has previously
been recommended [49].

For both MHC-I and MHC-II binding prediction, epitopes that were predicted to
bind with high affinity (i.e., binding percentile rank meeting the threshold) to at least four
different HLA alleles within the reference set were considered promiscuous epitopes.

The novel Vaxign-ML-predicted PAgs having been selected by the two criteria men-
tioned above were ranked by the number of promiscuous epitopes they contained for both
MHC-I and MHC-II separately. The top-ranked 11 proteins in each ranking were selected.

3. Results
3.1. Novel Protective Antigens Predicted by Vaxign-ML

Vaxign-ML was used to predict the protegenicity of the entire H37Rv proteome. This
step yielded 238 proteins with protegenicity scores meeting the recommended threshold.
Of these 238 proteins, 24 had previously been established as PAgs according to Protegen
and thus were excluded from further selection. The remaining 214 novel Vaxign-ML-
predicted PAgs (Figure 1, Table S1) were subjected to further selection as described in the
following sections.
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3.2. Antigens Belonging to Protein Families of Previously Established MTB PAgs

A list of all previously established PAgs was gathered using Protegen (Table S2). The
protein family of each for which it was available was determined using UniProt. These
established PAgs belonged to 11 unique protein families (Table S2). The protein family
of each novel Vaxign-ML-predicted PAg for which it was available was also determined
using UniProt. The 214 novel Vaxign-ML-predicted PAgs belonged to 116 unique protein
families (Table S1). There were 14 novel Vaxign-ML-predicted PAgs that together belonged
to seven unique protein families of established PAgs (Figure 1; Table 1).

Table 1. Novel Vaxign-ML-predicted PAgs that belong to protein families of established MTB PAgs.

Protein Family Protein Tuberculist ID

mycobacterial A85 antigen FbpC (Ag85C) Rv0129c

mycobacterial PE
PE_PGRS11 Rv0754
PE4 Rv0160c
PE26 Rv2519

mycobacterial PPE

Hypothetical protein Rv3822 Rv3822
PPE28 Rv1800
PPE8 Rv0355c
PPE12 Rv0755c
PPE30 Rv1802

peptidase S1C HtrA Rv1223
PepD Rv0983

PstS PstS2 Rv0932c

RsiV Hypothetical protein Rv3036c Rv3036c

WXG100 EsxI Rv1037c

3.3. Antigens Having Biological Processes Associated with MTB Virulence or LTBI

The GO biological processes of each novel Vaxign-ML-predicted PAg for which
they were available were identified using UniProt. These 214 proteins were involved
in 226 unique biological processes, of which the most common were pathogenesis and
growth of symbiont in host (Figure 2).

In summary, there were 72 novel Vaxign-ML-predicted PAgs that had GO biological
processes that belonged to one or more of these biological process categories (Figure 1,
Table 2). The 72 proteins selected here had biological processes that most commonly
belonged to the growth in host, interaction with the host immune system, and cell envelope
biogenesis and maintenance categories (Figure 3).

3.4. Antigens with the Greatest Number of Promiscuous MHC-I and MHC-II Epitopes

Fourteen proteins were selected by the first criterion on the basis of belonging to a
protein family of an established PAg. Seventy-two proteins were selected by the second
criterion on the basis of having a biological process related to the virulence or latency of
MTB. Upon merging the proteins selected by these criteria, 82 unique proteins remained.

The binding affinity of each of these 82 proteins to the reference sets of MHC-I and
MHC-II alleles was predicted using IEDB binding prediction tools. The 82 selected pro-
teins were ranked by the number of promiscuous epitopes for both MHC-I and MHC-II
(Tables S3 and S4, respectively). To further refine our selection, we took the 11 proteins
with the most promiscuous epitopes for both the MHC-I and MHC-II reference set of alleles,
yielding 22 proteins. Because six of these proteins were found in both the MHC-I and MHC-
II rankings, a total of 16 unique proteins remained in this final selection (Figure 1; Table 3).
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Table 2. Novel Vaxign-ML-predicted PAgs having biological processes related to MTB virulence or latency. More than 72
proteins are listed here due to redundancy between categories.

Biological Process Category Proteins (Tuberculist IDs)

Cell envelope biogenesis and maintenance

PonA2 (Rv3682), PonA1 (Rv0050), FadD15 (Rv2187), LdtB (Rv2518c), PbpB (Rv2163c),
FadD30 (Rv0404), FbpC (Ag85C) (Rv0129c), AccD4 (Rv3799c), FadD32 (Rv3801c),
hypothetical protein Rv3811 (Rv3811), LprQ (Rv0483), PbpA (Rv0016c), FadD19
(Rv3515c)

DNA Repair RecA (Rv2737c), HtpG (Rv2299c), UvrA (Rv1638), LigD (Rv0938), RecG (Rv2973c),
UvrB (Rv1633)

Interaction with host
immune system

FadE5 (Rv0244c), Mce1A (Rv0169), probable aldehyde dehydrogenase (Rv0458),
CaeA (Rv2224c), LprA (Rv1270c), FadD30 (Rv0404), EccCa1 (Rv3870), Icl1 (Rv0467),
PknH (Rv1266c), MmpL12 (Rv1522c), UvrB (Rv1633), EccB1 (Rv3869), halimadienyl
diphosphate synthase (Rv3377c), FadD19 (Rv3515c)

Fatty acid beta-oxidation FadB (Rv0860), FadA3 (Rv1074c), Ltp1 (Rv2790c), probable nonspecific lipid-transfer
protein (Rv1627c)

Growth in host

FadD13 (Rv3089), Mce2C (Rv0591), Mce4A (Rv3499c), Mce1A (Rv0169), Mce1F
(Rv0174), Tgs4 (Rv3088), Mce3C (Rv1968), Mce1C (Rv0171), Mce3D (Rv1969), Mce3A
(Rv1966), EccCa (Rv3870), Mce4C (Rv3497c), Mce2F (Rv0594), Mce4D (Rv3496c),
Mce2A (Rv0589), EccA1 (Rv3868), Mce2D (Rv0592), Mce1D (Rv0172), FadA (Rv0243),
Mce4F (Rv3494c)

Protein folding GroEL2 (Rv0440), Mpa (Rv2115c), GroEL1 (Rv3417c), ClpX (Rv2457c), HtpG
(Rv2299c), ClpB (Rv0384c)

Response to antibiotic
PonA2 (Rv3682), GyrB (Rv0005), RecA (Rv2737c), RpoB (Rv0667), PonA1 (Rv0050),
FbpC (Ag85C) (Rv0129c), possible penicillin-binding lipoprotein (Rv2864c), PepD
(Rv0983), IleS (Rv1536), LprG (Rv1411c)

Response to acidic pH FadD13 (Rv3089), Tgs4 (Rv3088), Icl1 (Rv0467), AccD4 (Rv3799c)

Response to hypoxia
GroEL2 (Rv0440), PonA1 (Rv0050), Tgs4 (Rv3088), Icl1 (Rv0467), AccD4 (Rv3799c),
PE_PGRS11 (Rv0754), Tuf (Rv0685), SdhA (Rv3318), probable succinate
dehydrogenase (Rv0248c)

Response to nitrosative or oxidative stress Mpa (Rv2115c), FtsH (Rv3610c), HtpG (Rv2299c), Tgs4 (Rv3088), Mpt53 (Rv2878c),
AccD4 (Rv3799c), UvrB (Rv1633), CysN (Rv1286)

Response to starvation halimadienyl diphosphate synthase (Rv3377c), PknD (Rv0931c), CysN (Rv1286)

Table 3. Final selection of prospective novel MTB vaccine candidates with sufficiently high Vaxign-ML protegenicity scores,
belonging to the protein family of an established PAg and/or having a biological process related to the virulence or latency
of MTB, and having the greatest number of MHC-I and/or MHC-II promiscuous epitopes.

Protein Tuberculist
ID GO Biological Process Subcellular

Location

MHC-I
Promiscuous

Epitopes

MHC-II
Promiscuous

Epitopes

Having highest numbers of both MHC-I and MHC-II promiscuous epitopes
PPE8 Rv0355c not available not available 104 194

IleS Rv1536 isoleucyl-tRNA aminoacylation,
response to antibiotics cytoplasm 92 156

MmpL12 Rv1522c response to host immune response
cell membrane,

multi-pass
membrane protein

86 263

UvrA Rv1638

cellular response to DNA damage
stimulus, negative regulation of strand

invasion, nucleotide-excision repair, SOS
response

cytoplasm 73 116

RpoB Rv0667 response to antibiotic, DNA-templated
transcription

cell wall, cytosol,
plasma membrane 72 109

ClpB Rv0384c protein refolding, response to heat cytoplasm 62 104
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Table 3. Cont.

Protein Tuberculist
ID GO Biological Process Subcellular

Location

MHC-I
Promiscuous

Epitopes

MHC-II
Promiscuous

Epitopes

Having highest number of MHC-I promiscuous epitopes only

PonA2 Rv3682 peptidoglycan biosynthetic process,
response to antibiotic not available 60 88

FadE5 Rv0244c response to host immune response
extracellular

region, plasma
membrane

57 86

Mce2D Rv0592 growth of symbiont in host, growth of
symbiont in host vacuole cell wall 57 84

FadD30 Rv0404

Actinobacterium-type cell wall
biogenesis, fatty acid biosynthetic

process, induction by symbiont of host
immune response, lipid biosynthetic

process

not available 56 85

EccCa1 Rv3870

evasion of host immune response,
growth of symbiont in host,

pathogenesis, protein secretion by the
type VII secretion system

cell inner
membrane,
multi-pass

membrane protein

56 79

Having highest number of MHC-II promiscuous epitopes only
PPE28 Rv1800 not available not available 54 176

PE4 Rv0160c not available not available 48 100

FadD15 Rv2187

Actinobacterium-type cell wall
biogenesis, fatty acid biosynthetic
process, lipid biosynthetic process,

long-chain fatty acid metabolic process

cell wall, plasma
membrane 48 113

PknD Rv0931c

cellular response to phosphate
starvation, negative regulation of

catalytic activity, negative regulation of
fatty acid biosynthetic process, negative

regulation of protein binding,
pathogenesis, positive regulation of

catalytic activity

cell membrane,
single-pass

membrane protein
42 105

Mce2A Rv0589 growth of symbiont in host, growth of
symbiont in host vacuole

integral
component of

membrane
36 100

4. Discussion

This study aimed to identify novel MTB PAgs to assist in the creation of a multistage
TB vaccine strategy that will overcome the inadequacy of the BCG vaccine and confer
broad immunity against both primary and post-primary TB in all populations. Upon
filtering the H37Rv genome through Vaxign-ML, we selected 82 novel predicted PAgs that
either belonged to protein families of previously established PAgs or were relevant to the
virulence or latency of MTB. From this group, we then identified 16 predicted PAgs with
the broadest immunogenic potential as indicated by the number of promiscuous MHC-I
and MHC-II epitopes.

Although none of the identified 16 prospective MTB PAgs have previously been stud-
ied as vaccine candidates, several have been characterized to various degrees [17,50–53].
PE4 (Rv0160c) has previously been shown to exhibit elevated expression during cellular
stress, including in the persistent stage of the MTB infection and has been described as
an immunodominant antigen that elicits a strong humoral response in patients [50]. ClpB
(Rv0384c) has been demonstrated to be required for the persistence of MTB bacilli within
macrophages and under the stressful conditions of latency [51]. EccCa1 (Rv3870) has
been shown to be essential for the secretion of ESAT-6 and CFP-10, proteins involved
in MTB pathogenesis [52]. FadE5 (Rv0244c) was shown to be expressed to a similar de-
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gree in early- and late-stage TB and to be involved in the stress response [17]. Finally,
PknD (Rv0931c) is believed to be essential for MTB infections of the central nervous sys-
tem [53]. As none of these 16 proteins have been studied as vaccine candidates and many
have not been previously characterized at all, they may be good candidates for future
laboratory-based studies.

Of the 11 biological process categories that were identified as relevant to MTB viru-
lence or LTBI, seven were represented among the 16 selected proteins, including interaction
with the host immune system, cell envelope biogenesis and maintenance, growth in host, re-
sponse to antibiotic, DNA repair, protein folding, and response to starvation (Table 3). Four
of the 16 selected proteins, MmpL12 (Rv1522c), FadE5 (Rv0244c), FadD30 (Rv0404), and
EccCa1 (Rv3870), are involved in interaction with the host immune system; these processes
allow MTB to evade, modulate, or suppress a host’s immune system via mechanisms such
as attenuation of macrophage antigen presentation to T-helper cells or downregulation of
MHC-II gene expression, which can enable continued latency [8]. Three of the 16, PonA2
(Rv3682), FadD30 (Rv0404), and FadD15 (Rv2187), are involved in cell envelope biogenesis
and maintenance; these processes are responsible for the unique cell envelope of MTB,
which is critical to its slow intracellular growth, virulence, and innate impermeability to
many drugs and antibiotics [28,29]. Three of the 16, Mce2D (Rv0592), EccCa1 (Rv3870),
and Mce2A (Rv0589), are involved in growth in the host, a process self-evidently relevant
to MTB’s virulence; many of the proteins involved in this process are considered virulence
factors [32]. Three of the 16, IleS (Rv1536), RpoB (Rv0667), and PonA2 (Rv3682), are in-
volved in the response to antibiotics; though proteins involved in antibiotic resistance are
not themselves virulence factors, they can be instrumental in the persistence of disease [34].
One of the 16, UvrA (Rv1638), is involved in DNA repair, which is critical for the persistence
of MTB in the hostile, oxidative environment of the macrophage [30]. One of the 16, ClpB
(Rv0384c), is involved in protein folding; proteins that ensure correct protein folding, such
as chaperonins, are also essential to MTB survival under stressful environments such as
in the macrophage [33]. Finally, one of the 16, PknD (Rv0931c), is involved in response to
starvation; because MTB faces both energy and nutrient starvation within the granuloma,
proteins that enable persistence of the bacilli in spite of these low-nutrient conditions are
also necessary for latency [37].

Among the 16 proteins selected on the basis of promiscuous epitopes, six are among
those having the most promiscuous epitopes for both MHC-I and MHC-II alleles (Table 3).
These six may provide the greatest immunogenic potential within this set of 16 proteins.
However, it is worth noting that we exclusively consider the proteome of the H37Rv
reference strain of MTB in this study. Taking into account the genetic diversity of MTB
globally, it is important that proteins selected as vaccine candidates are highly conserved.
Future studies of the genetic diversity of selected antigens using MTB clinical strains
representing different genetic lineages are, therefore, warranted.

A major limitation of our study is that only the peptide sequence of each antigen was
considered in our analyses. Our prediction did not consider higher-level protein structures
or vaccine formulation, both of which may affect the interaction between the antigen and
the host immune system, thereby impacting the induced immune response. A second
major limitation is the absence of experimental validation of the protective antigenicity of
the identified proteins with vaccine potential.

In light of these limitations, it is important to note that RV methods, such as Vaxign-
ML, are not intended to replace laboratory-based immunological studies, but rather they
are to serve in a complementary fashion. For example, in a lab setting it is not feasible to
conduct a genome-wide search for protective antigens; RV methods, however, can quickly
narrow the list of potential protective antigens, thereby informing the prioritization of
targets for laboratory investigation. This narrowed list can then be tested and validated in
a lab setting. Additionally, Vaxign-ML has previously been validated by demonstrating
that all of the PAgs included in five recent MTB vaccines in clinical trials received Vaxign-
ML protegenicity scores that met the threshold used in this study [23]. Similarly, it is
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worth noting that of the 25 proteins that have been established as MTB PAgs according to
Protegen, 24 (recall = 0.96) of these received Vaxign-ML protegenicity scores that met the
threshold for selection within this study.

To summarize, the bioinformatic approach applied in this study has allowed for the
identification of 16 prospective novel MTB PAgs that may have been difficult to identify
using traditional vaccinology techniques and that may be used in future subunit vaccines.
For the selected antigens, all computational measures of immunogenicity and epitope
promiscuity should, however, be further validated in vitro and in vivo. This integration
of traditional and computational vaccine development tools may be the best approach
in developing a broadly effective TB vaccine strategy that prevents both primary and
post-primary TB in all populations and takes us closer to our ambition to End TB.
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10.3390/vaccines9101098/s1, Table S1: Novel Vaxign-ML-predicted protective antigens, Table S2:
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on the basis of belonging to the protein family of a previously established protective antigen or on the
basis of having a GO biological process related to the virulence or latency of MTB, ranked by number
of promiscuous MHC-I epitopes, Table S4: Proteins selected on the basis of belonging to the protein
family of a previously established protective antigen or on the basis of having a GO biological process
related to the virulence or latency of MTB ranked, by number of promiscuous MHC-II epitopes.
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