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ABSTRACT Bacillus licheniformis strain TAB7 degrades short-chain fatty acids re-
sponsible for offensive odor in manure and is used as a deodorant in a compost-
deodorizing technology. Here, we report the complete genome sequence of
strain TAB7, which consists of a 4.37-Mb chromosome and two plasmids (42 kb
and 31 kb).

TAB7 is a thermophilic Bacillus licheniformis strain isolated as a Tween 20 (a surfac-
tant with a fatty acid side chain) degrader from composting manure in Japan (1). It

degrades short-chain fatty acids responsible for the offensive odor in compost and is
commercially available as a deodorizing agent for composts (2). Several Bacillus spp.
can produce indole-3-acetic acid (IAA) and promote plant growth (3–5). Our cultivations
of TAB7 in lysogeny broth (LB) (6), with and without tryptophan, resulted in production
of IAA in both cases (Fig. 1). Thus, TAB7 may not only deodorize compost but may also
promote plant growth. Therefore, its genome sequence will be useful in comparative
genomic studies with known plant growth-promoting bacteria.

For genome sequencing, TAB7 cells were grown overnight in 10 ml of LB at 30°C
with shaking (300 strokes/min). DNA was extracted and purified using a Wizard
genomic DNA purification kit (Promega) following the manufacturer’s instructions.
Sequencing with a v3 chemistry 600-cycle kit (Illumina) was done using a MiSeq
sequencer with PCR-free paired-end (PE) and mate pair (MP) libraries that were pre-
pared with TruSeq DNA PCR-free and Nextera mate pair library preparation kits
(Illumina), respectively, following the manufacturer’s instructions. Obtained reads were
processed with ShortReadManager 0.995 (7) to extract paired reads, perform low-
abundance 21-mer-read trimming, and discard reads shorter than 150 and 100 bp in
the PE and MP data sets, respectively. One million PE (273 Mb) and 0.7 million MP
(128 Mb) reads were assembled with Newbler 2.8 (Roche) into three scaffolds, two of
which consisted of single circular contigs without gaps (plasmids). A total of 29
repeat-induced gaps in the remaining scaffold (chromosome) were identified using
GenoFinisher 2.1 (7), and their precise sequences and locations with respect to other
contigs were determined with AceFileViewer 1.5 (7), using the MP data. Assembled
replicons were checked for errors with the GenoFinisher tool FinishChecker (8), con-
firming complete gap resolution.

A 4,367,367-bp chromosome (85� coverage) and two circular plasmids, pTAB7A and
pTAB7B (42,138 bp and 31,204 bp, with 290� and 400� coverage, respectively) were
assembled. Open reading frame (ORF) prediction and annotation were done using the
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Microbial Genome Annotation Pipeline (MiGAP) (9) and the NCBI Prokaryotic Gene
Annotation Pipeline (PGAP) (10). The two annotation results were compared and
manually corrected using GenomeMatcher (11) and then merged. The Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway database (12) was used to predict
metabolic pathways.

The chromosome of TAB7 has a G�C content of 45.82% and bears 4,429 coding
DNA sequences (CDS). It contains 85 tRNA genes and 7 rRNA operons. pTAB7A (51 CDS)
and pTAB7B (33 CDS) have G�C contents of 40.10% and 38.61%, respectively. The TAB7
chromosome harbors nitrilase (yhcX) and IAA-acetyl-transferase (ysnE) (4) genes that
may be involved in IAA biosynthesis. It also has genes encoding phenolic acid decar-
boxylase (padC) (13), vanillic acid decarboxylase (vdcC) (14), and protocatechuic acid-
degrading enzymes (praABCDEHI) (15), which are involved in catabolism of phenolic
compounds known to have negative allelopathy on some plants (16–18). Furthermore,
putative genes involved in the production of other plant growth-promoting com-
pounds, such as bacillibactin (dhbABCEF), and acetoin (alsDRS) (4, 19) were found,
further suggesting TAB7 involvement in plant growth promotion.

Data availability. The genome sequence of Bacillus licheniformis strain TAB7 has
been deposited in DDBJ/ENA/GenBank under the accession numbers CP027789 (chro-
mosome), CP027790 (pTAB7A), and CP027791 (pTAB7B). Raw sequencing data have
been deposited under BioProject accession number PRJNA438467. Details of the
assembly procedure for the generation of the complete sequences and the parameters
used with each software are available in the comment section of each submission as
part of the metadata.
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