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Abstract

Protein structure prediction is an important problem in computational biology, and is widely 

applied to various biomedical problems such as protein function study, protein design, and drug 

design. In this work, we developed a novel deep learning approach based on a deeply stacked 

denoising autoencoder for protein structure reconstruction. We applied our approach to a template-

based protein structure prediction using only the 3D structural coordinates of homologous 

template proteins as input. The templates were identified for a target protein by a PSI-BLAST 

search. 3DRobot (a program that automatically generates diverse and well-packed protein 

structure decoys) was used to generate initial decoy models for the target from the templates. A 

stacked denoising autoencoder was trained on the decoys to obtain a deep learning model for the 

target protein. The trained deep model was then used to reconstruct the final structural model for 

the target sequence. With target proteins that have highly similar template proteins as benchmarks, 

the GDT-TS score of the predicted structures is greater than 0.7, suggesting that the deep 

autoencoder is a promising method for protein structure reconstruction.
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Introduction

Protein Data Bank (PDB) is a database that provides rich structural information of many 

proteins. The structures of these proteins were mainly determined by X-RAY or NMR 

technology. Up to January 2016, the database had 106,554 known protein structures. 

However, compared with the known primary sequence, the number of known protein 

structures is still much fewer than the number of known sequences [1]. This suggests that 

using experimental methods can only determine the structures of a tiny portion of all the 
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protein sequences due to their relatively high cost. So computationally predicting protein 

structures is very important to address this sequence-structure gap.

One useful component of protein structure prediction is protein structure reconstruction (or 

generation) [2,3]. Given the preliminary or coarse-grained structural information of a target 

protein (e.g., the structure of a homologous protein whose sequence is similar to the target 

protein), the reconstruction is to generate a more accurate structural model for the target 

protein. PULCHRA [4] is a method that uses Cα atoms and the center of side-chain mass 

coordinates to reconstruct full-atom protein models. Peng et al. developed a method that 

determines the positions of some key heavy atoms (N, C, O and side chain Cβ) based the 

knowledge of the Cα atom coordinates [5]. Both of these two protein structure 

reconstruction methods depend on the accuracy of Cα atoms. Baeten et al. also introduced a 

method that reconstructs protein backbones with protein fragments [6].

Here, we developed a new deep learning method for protein structure reconstruction. 

Recently, deep learning has been used in protein secondary structure prediction [7,8], protein 

fold prediction [9–11] and protein contacts prediction [12,13]. In this study, we combined 

deep learning with the templates searched from big protein structure database to reconstruct 

protein structures for template-based protein structure modeling.

Template-based modeling is one of the main approaches to protein structure prediction. The 

principle of template-based protein structure is based on the following insights [14]: Proteins 

that have similar sequences (e.g., homologous proteins) often have similar tertiary structures. 

Therefore, we can use the structure of a protein’s homolog as the template to predict its 

structure. It is also shown that the conservation of the tertiary structure is much greater than 

that of the primary sequence [15]. Therefore, if similarity between two proteins is significant 

at the sequence level, their structural similarity can usually be assumed.

Most current template-base modeling methods consist of four steps: (1) Search homologous 

templates for a target sequence; (2) Align the template sequences with the target sequence to 

generate an alignment; (3) Build models for the target sequence according to the alignment 

and the structures of the template proteins; and (4) Evaluate and rank the models 

[1,11,16,17]. During the last few decades, a lot of progress has been made in template-based 

modeling [2,18,19]. SWISS-MODEL [20] generates a core model by averaging template 

backbone atom positions. NEST [21] implements an artificial evolution algorithm where 

changes from the template structure such as substitutions, insertions and deletions are made 

at one time, and each mutation is followed by energy minimization. This process is repeated 

until the whole target protein is modelled. MODELLER [22] is one of the most popular 

template-based protein modeling programs that use spatial constraints. In MODELLER, the 

various spatial relationships of distances and angles are expressed as conditional probability 

density functions and are then used directly as spatial restraints to build models. I-TASSER 

[23] constructs 3D structural models by reassembling fragments excised from threading 

templates starting from the amino acid sequence. The accuracy of all of these methods 

depends on the quality of templates and alignments.
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In this work, we focus on using structural data of templates to infer the 3D structure of the 

target sequence. We present a protein structure reconstruction method that is based on a deep 

stacked denosing autoencoder (named PRSDA). The method only relies on the tertiary 

coordinates of the templates of a target protein. It trains a deep autoencoder model by using 

a large set of template model decoys as a training set to reconstruct the structure of the target 

protein.

Results and Discussion

In order to assess the reconstruction accuracy of our method we performed two tests on two 

different testing data sets. We compared our method with MODELLER and I-TASSER–two 

classic template-based protein structure prediction methods. In the first test, we want to 

validate whether or not PRSDA could reconstruct protein structures successfully. The second 

test shows what kind of target sequences suitable for the PRSDA method. We tried to use 

unsupervised pre-training to initialize the parameters of the deep learning model. Compared 

with the experiments of random initialization without pre-training, it slightly improved the 

accuracy on some targets tested. For instance, we tried different amounts of pre-training data 

points (i.e., 200, 400 and 800) and observed CRMSD difference less than 0.1 on some 

targets tested. We used layer-wised pre-training on the whole training dataset to initialize the 

parameters of the network for them.

We chose 14 testing targets and obtained useful information on each one, such as target 

sequence, best template, GDT score, and CRMSD score in Gront et al. [24]. In order to 

objectively compare our PRSDA method and MODELLER, we applied the methods to the 

same best template for each of the targets and compared the final modeling results. In this 

way, we used our PRSDA method as single-template protein structure reconstruction 

method.

The comparison result between MODELLER and PRSDA in terms of GDT score and 

CRMSD (i.e., RMSD of Ca atoms) is shown in Table 1. Columns under ‘PRSDA’ are best 

results reconstructed by PRSDA. And columns under ‘MODELLER’ are best results of 

MODELLER in Gront et al. [24]. GDT score is considered more robust against local 

structural difference than RMSD, and is a major assessment metric used in the Critical 

Assessment of Techniques for Protein Structure Prediction (CASP) [25]. In Table 1, PRSDA 

performed worse than MODELLER on seven targets in terms of CRMSD. But except for 

target “3DTO”, their GDT scores have no significant differences. We made a paired t-test on 

the GDT scores of the 14 predictions made by PRSDA and MODELLER, assuming H0: µd 

=0, H1: µd ≠ 0, α =0.05, i.e., there is no difference between the GDT scores. The P-value of 

two-tail t-test is 0.10 (>α), suggesting that the performance of PRSDA is comparable to 

MODELLER on these targets. For the target “3DTO”, its native structure has a lot of 

flexible loops, which is hard for our method to predict. The results in Table 1 demonstrate 

that our deep learning architecture can use the spatial coordinates of templates to reconstruct 

the structures of target proteins effectively on this dataset.

In the training data set we generated templates’ structures using 3DRobot, some of those 

structures were close to the templates, but some deviated significantly. Because the input 

Li et al. Page 3

J Proteomics Bioinform. Author manuscript; available in PMC 2017 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structures vary a lot, the modeling can be trained to get a common rule for the testing data 

sets. So the input testing data set can be reconstructed to a new output. If the template is not 

far away from the target structure, then the output should be close to the true target structure.

The second test focused on comparing PRSDA with MODELLER and I-TASSER (two of 

the top template-based modeling methods) on target proteins whose sequences have high 

sequence similarity with template proteins. In order to carry out the test, we installed 

MODELLER and I-TASSER on our local server. We ran them with default parameter values 

separately to obtain top 5 models for each target.

The results of the comparison are shown in Table 2. PRSDA predicted highly accurate 

structures with RMSD less than 1 Angstrom for 15 out of 21 targets, MODELLER 14 out of 

21 targets, and I-TASSER 8 out of 21 targets. MODELLER produced the best models for 

more than half of the targets. We conducted a paired T-test to check whether there is 

significant difference between MODELLER and other two methods. Our hypothesis is there 

is no significant difference between MODELLER and the other method (H0: µd =0, H1:µd ≠ 

0, α =0.05). The p-value of two-tail test between the MODELLER and PRSDA is 0.089, 

which is greater than α, suggesting that the performance of these two methods has no 

significant difference. But p-value of the t-test between I-TASSER and MODELLER is 

0.000173, suggesting their difference is significant.

All of the three methods performed very well on most of the target sequences. Figure 1 

illustrates one case in which PRSDA performed better than I-TASSER. The left part of 

Figure 1 compares the structure predicted by PRSDA, I-TASSER and the native structure of 

target 1TEN. We used PyMOL [26] to visualize the structures. On this target, the structure 

predicted by PRSDA (the blue line) can cover more areas of the native structure (the green 

line) than the structure predicted by I-TASSER (the red line). The right part of Figure 1 

compares the structures of PRSDA (the blue one), I-TASSER (the red one) and the native 

structure (the green one) in the cartoon mode.

In order to further validate the robustness of our method, we prepared extra testing data sets 

for each target. The RMSD (comparison of estimation error) of input testing datasets varied 

from 3 to 13 Å (as shown by the data distribution in Figure 2). But the RMSD of all 

generated output structures was lower than 2 Å (the green cross points). On 15 of the whole 

21 targets, the RMSD of their output structures was lower than 1 Å. From the output data 

sets, we found that the RMSD of output structures is almost same on each target, which 

means the variation of input testing dataset, do not significantly affect the output in general.

However, PRSDA failed to predict accurate models for two targets (1CEW and 1KJS). This 

was due to the structural discrepancy between the native structure of the target protein and 

the structure of the templates. Figure 3 shows the templates of target 1CEW and 1KJS and 

their native structure separately. The green one represents the native structure, the blue and 

red ones represent the two templates. A big difference is observed between the structure of 

the target protein and those of the template proteins.

In summary, our PRSDA method is a new deep learning method applied to protein structure 

reconstruction. The PRSDA method is different from some traditional protein structure 
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prediction methods, in that it does not need some intermediate structural information such as 

secondary structure, solvent accessibility, or fragments. Our deep autoencoder learning 

method can learn some useful information from template structures. The current method 

performs comparably with two state-of-the-art protein structure modeling methods when the 

sequence similarity between target proteins and templates is high.

Methods

Data sets and evaluation metrics

We used two testing data sets to evaluate our method. The first testing data set was curated 

from the data set in Gront et al. [24], used to assess the accuracy of a template-based 

structure prediction method-MODELLER. It contains 14 protein sequences whose length 

varied from 90 to 509 from the data set [24]. The second testing data set is from (a set of 

targets used by I-TASSER), filtering out some sequences that do not have any sequence 

similarity with templates according to the PSI-BLAST search [27,28]. We finally obtained 

21 testing targets, all of which had a sequence similarity with their templates proteins ≥50%. 

The details about how to prepare the training and testing data sets for our deep learning are 

explained in the section entitled “Training of Autoencoder for Protein Structure 

Reconstruction”.

The Root-Mean-Square Deviation (RMSD) is a measure of the average distance between the 

atoms of superimposed protein structures. For each reconstructed decoy we calculated its 

backbone RMSD and Cα RMSD with respect to the native structure of its corresponding 

target protein. The lower the RMDS value is, the better the decoy model is. Since RMSD is a 

length-dependent measure method, we also used another evaluation metric referred to as the 

Global Distance Test (GDT) to assess the quality of decoys. GDT measures the fraction of a 

structural model that can be superimposed to its native structure within a given distance. The 

GDT value varies from 0.0 to 1.0 and the higher the better.

Deeply stacked denoising autoencoder

The deep autoencoder is a popular unsupervised machine learning method, which can make 

nonlinear dimension reduction on original data in order to obtain the low-dimension data to 

represent the high-dimensional data. The Denoising Autoencoder (DA) is a kind of special 

autoencoder, which adds some noise on the input data to improve robustness [29]. A Stacked 

Denoising Autoencoder (SDA) stacks multiple layers of DA together to improve the 

accuracy of dimension reduction [30].

Figure 4 denotes a basic model of an autoencoder. The first layer (X1, X2, …, Xn) represents 

the input, the middle layer (Y1, Y2, …, Ym) is the hidden layer, and the last layer (Z1, Z2, 

…, Zn) is the output. The number of nodes on each layer can be adjusted according to the 

complexity of the problem.

The mapping formula from the input layer x ∈ (0,1) to the hidden layer y ∈ (0,1) is:

(1)
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Here, S is the sigmoid function as follows:

(2)

The mapping between hidden layer y ∈ (0,1) and the output layer z ∈ (0,1) is calculated by a 

similar function as follows.

(3)

In these two mapping relations, W, b, b’ are the weights of the autoencoder. W is a matrix of 

N*M, where N is the dimension of the input data and M is the dimension of the hidden layer 

data. b is a vector with length of M, b’ is a vector with length N, and W’ is the transposed of 

matrix W. z is reconstructed data of x. The objective is to make z as consistent with x as 

possible.

Stacked denoising autoencoder for protein structure reconstruction

Inspired by the successful example of using autoencoder for handwritten digital number 

recognition, we designed a deep learning model based on the denoising autoencoder to 

reconstruct protein structure (Figure 5). In the training phase, the templates’ native structures 

are considered pure data without noise. The predicted protein decoys can be thought of as 

noisy data. During training of the denoising autoencoder, the native structures of those 

templates are known in advance to tune its parameters. In the prediction phase, the trained 

model can be applied to the untrained target proteins whose native structures are not yet 

known, but are close enough to those of the training proteins.

Representation of structure in a deep autoencoder model

In this work, we used x, y, z coordinates of backbone atoms to express protein spatial 

structure. When using RMSD, it is easy to measure the gap between reconstruction data and 

label data. We used the coordinates of backbone atoms and residue symbol as the input data 

for the deep learning model. Before the data coordinates of input structures are converted 

into input matrix, they are superimposed and translated to be in the same coordinate system.

Because an initial coordinate is often outside the range of [0,1], we use the following linear 

function to normalize it into the range of (0, 1).

(4)

X represents a set of coordinates. x is an initial coordinate. Xmax and Xmin are the 

maximum and minimum coordinates in X. Assuming these are the initial coordinates of two 

atoms: (x1, y1, z1), (x2, y2, z2), the original distance between them is as follows:
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(5)

The compression ratio after normalization is N,

(6)

After compression, the two atoms coordinates are:

(7)

Then the distance of two atoms after compression are as follows:

(8)

This means the relative distance between two atoms shrinks by the same ratio as 

normalization. Therefore, the normalized new dataset can represent the original dataset well.

Training of autoencoder for protein structure reconstruction

We used RMSD to measure the difference between the coordinates of a native structure and 

those of a predicted structural model as objective function to guide the training of the 

autoencoder as follows:

(9)

Where, Xk, Yk, Zk represent native structure coordinates; xk, yk, zk are the predicted 

structural coordinates, and n is the number of total atoms. We implemented the calculation 

of RMSD in Theano using GPU-Q-J, which use GPU to accelerate the calculation [31].

We designed a deep learning model based on the stacked denoising autoencoder for protein 

structure reconstruction (PRSDA). In order to predict the tertiary structure of a protein target 

sequence, we used its homology structures to train the weights of the PRSDA model, and 

then test the model on a preliminary structure from the target sequence; finally we can get 

the reconstructed structure for the target sequence. Figure 6 shows the flowchart of PRSDA 

methodology.
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According to Figure 6, the input to our method is a target sequence, and the output is a 

reconstructed protein structure. Specifically, our method has the following six steps.

1. Prepare appropriate templates for the target sequence: This step is to use PSI-

BLAST to find templates for the target sequence, and then filters out those 

templates that have low sequence similarity with the target sequence. We align 

the templates sequences to the target sequence and make them have a consistent 

length with the target sequence. We get rid of extra parts of a template if it is 

longer than the target sequence. The vacant parts are filled with 0.

2. Generate decoys for the templates: The second step is to use 3DRobot [32] to 

generate decoys for the templates. Generally, we generate 500 decoys for each 

template, but if there is only one appropriate template for the target sequence, we 

generate 1000 decoys for this template. The input of 3DRobot is a protein PDB 

file and the outputs are diverse and well-packed protein structure decoys. 

3DRobot generates a lot of diverse models with a wide range of RMSD 

compared to the input PDB structure. Some of these generated decoys are close 

to the input, but some of them are far away from the input.

3. Representation of training dataset: After template decoys are generated, we 

extracted the coordinates of their 4 backbone atoms (C, Cα, N, and O) to prepare 

training datasets. Each atom has 3 coordinates (X-axis, Y-axis, and Z-axis). So 

for each residue, there are 12 numbers to represent its spatial position. The total 

number of the input features for the deep learning model is L*(12+1), where L is 

the length of the target sequence. The extra input represents the amino acids type. 

The labels of training datasets are the coordinates of templates’ native structures.

4. Construct the architecture of the training model: We used these training datasets 

to train the deeply stacked autoencoder model. The first layer is a visible layer 

and the node number of this layer equals to the number of the input features 

(L*(12+1)). Next to the visible layer, there are three hidden layers. The number 

of the hidden layers’ nodes is reduced layer by layer, and the decrease ratios are 

0.9, 0.8, and 0.7 respectively. After training, we save the parameters of the model 

for predicting structure of the target sequence.

5. Testing the model on a target sequence: First, we set torsion angles (phi, psi and 

omega) for each residue of the target sequence to +135°, −135° and 180°, and 

then we use Rosetta [33] to convert torsion angles to X, Y, Z coordinates to get 

an extended structure. So the input data of the testing process is the coordinates 

from the extended structure and the output of the model are new coordinates 

values for the target sequence.

6. Construct PDB file for the target sequence: Finally, we combine these new 

coordinate values and target sequence information to construct a standard PDB 

file as the final protein reconstruction structure.
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Figure 1. 
Comparision of predicted structures and their native structure in chain conformation (1) and 

cartoon conformation (2). For the two typical pdbs, native structure, reconstructed structure 

and predicted structure from I-TASSER are represented in green, blue and red color 

respectively.
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Figure 2. 
The data statistic of input data sets and output data set. The box-and-whisker diagram shows 

the RMSD distribution between input conformation and native conformation, the blue and 

purple points represents median and average values. Points plotted in green color represent 

the average RMSD between reconstruction conformation and native conformation.
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Figure 3. 
Templates for target (1) 1CEW and (2) 1KJS. For the two typical pdbs, native structure, and 

templates structure for the targets are represented in green and other colors (blue and rose 

red) respectively.
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Figure 4. 
The basic architecture of an autoencoder.
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Figure 5. 
The architecture of denoising autoencoder for protein structure reconstruction. The left part 

is the principle of denosing autoencoder, and the right part is the principle of protein 

structure reconstruction.
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Figure 6. 
Flowchart of the protein structure reconstruction method.
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