1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
J Proteomics Bioinform. Author manuscript; available in PMC 2017 October 26.

-, HHS Public Access
«

Published in final edited form as:
J Proteomics Bioinform. 2016 December ; 9(12): 306—-313. d0i:10.4172/jph.1000419.

A Template-Based Protein Structure Reconstruction Method
Using Deep Autoencoder Learning

Haiou Lil2, Qiang Lyul, and Jianlin Cheng?”
1Department of Computer Science and Technology, Soochow University, Suzhou, 215006, China

2Department of Computer Science, University of Missouri, Columbia, MO 65211, USA

Abstract

Protein structure prediction is an important problem in computational biology, and is widely
applied to various biomedical problems such as protein function study, protein design, and drug
design. In this work, we developed a novel deep learning approach based on a deeply stacked
denoising autoencoder for protein structure reconstruction. We applied our approach to a template-
based protein structure prediction using only the 3D structural coordinates of homologous
template proteins as input. The templates were identified for a target protein by a PSI-BLAST
search. 3DRobot (a program that automatically generates diverse and well-packed protein
structure decoys) was used to generate initial decoy models for the target from the templates. A
stacked denoising autoencoder was trained on the decoys to obtain a deep learning model for the
target protein. The trained deep model was then used to reconstruct the final structural model for
the target sequence. With target proteins that have highly similar template proteins as benchmarks,
the GDT-TS score of the predicted structures is greater than 0.7, suggesting that the deep
autoencoder is a promising method for protein structure reconstruction.
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Introduction

Protein Data Bank (PDB) is a database that provides rich structural information of many
proteins. The structures of these proteins were mainly determined by X-RAY or NMR
technology. Up to January 2016, the database had 106,554 known protein structures.
However, compared with the known primary sequence, the number of known protein
structures is still much fewer than the number of known sequences [1]. This suggests that
using experimental methods can only determine the structures of a tiny portion of all the
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protein sequences due to their relatively high cost. So computationally predicting protein
structures is very important to address this sequence-structure gap.

One useful component of protein structure prediction is protein structure reconstruction (or
generation) [2,3]. Given the preliminary or coarse-grained structural information of a target
protein (e.g., the structure of a homologous protein whose sequence is similar to the target
protein), the reconstruction is to generate a more accurate structural model for the target
protein. PULCHRA [4] is a method that uses Ca atoms and the center of side-chain mass
coordinates to reconstruct full-atom protein models. Peng et al. developed a method that
determines the positions of some key heavy atoms (N, C, O and side chain Cg) based the
knowledge of the Ca atom coordinates [5]. Both of these two protein structure
reconstruction methods depend on the accuracy of Ca atoms. Baeten et al. also introduced a
method that reconstructs protein backbones with protein fragments [6].

Here, we developed a new deep learning method for protein structure reconstruction.
Recently, deep learning has been used in protein secondary structure prediction [7,8], protein
fold prediction [9-11] and protein contacts prediction [12,13]. In this study, we combined
deep learning with the templates searched from big protein structure database to reconstruct
protein structures for template-based protein structure modeling.

Template-based modeling is one of the main approaches to protein structure prediction. The
principle of template-based protein structure is based on the following insights [14]: Proteins
that have similar sequences (e.g., homologous proteins) often have similar tertiary structures.
Therefore, we can use the structure of a protein’s homolog as the template to predict its
structure. It is also shown that the conservation of the tertiary structure is much greater than
that of the primary sequence [15]. Therefore, if similarity between two proteins is significant
at the sequence level, their structural similarity can usually be assumed.

Most current template-base modeling methods consist of four steps: (1) Search homologous
templates for a target sequence; (2) Align the template sequences with the target sequence to
generate an alignment; (3) Build models for the target sequence according to the alignment
and the structures of the template proteins; and (4) Evaluate and rank the models
[1,11,16,17]. During the last few decades, a lot of progress has been made in template-based
modeling [2,18,19]. SWISS-MODEL [20] generates a core model by averaging template
backbone atom positions. NEST [21] implements an artificial evolution algorithm where
changes from the template structure such as substitutions, insertions and deletions are made
at one time, and each mutation is followed by energy minimization. This process is repeated
until the whole target protein is modelled. MODELLER [22] is one of the most popular
template-based protein modeling programs that use spatial constraints. In MODELLER, the
various spatial relationships of distances and angles are expressed as conditional probability
density functions and are then used directly as spatial restraints to build models. I-TASSER
[23] constructs 3D structural models by reassembling fragments excised from threading
templates starting from the amino acid sequence. The accuracy of all of these methods
depends on the quality of templates and alignments.
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In this work, we focus on using structural data of templates to infer the 3D structure of the
target sequence. We present a protein structure reconstruction method that is based on a deep
stacked denosing autoencoder (named PRSDA). The method only relies on the tertiary
coordinates of the templates of a target protein. It trains a deep autoencoder model by using
a large set of template model decoys as a training set to reconstruct the structure of the target
protein.

Results and Discussion

In order to assess the reconstruction accuracy of our method we performed two tests on two
different testing data sets. We compared our method with MODELLER and I-TASSER-two
classic template-based protein structure prediction methods. In the first test, we want to
validate whether or not PRSDA could reconstruct protein structures successfully. The second
test shows what kind of target sequences suitable for the PRSDA method. We tried to use
unsupervised pre-training to initialize the parameters of the deep learning model. Compared
with the experiments of random initialization without pre-training, it slightly improved the
accuracy on some targets tested. For instance, we tried different amounts of pre-training data
points (i.e., 200, 400 and 800) and observed CRMSD difference less than 0.1 on some
targets tested. We used layer-wised pre-training on the whole training dataset to initialize the
parameters of the network for them.

We chose 14 testing targets and obtained useful information on each one, such as target
sequence, best template, GDT score, and CRMSD score in Gront et al. [24]. In order to
objectively compare our PRSDA method and MODELLER, we applied the methods to the
same best template for each of the targets and compared the final modeling results. In this
way, we used our PRSDA method as single-template protein structure reconstruction
method.

The comparison result between MODELLER and PRSDA in terms of GDT score and
CRMSD (i.e., RMSD of Ca atoms) is shown in Table 1. Columns under ‘PRSDA’ are best
results reconstructed by PRSDA. And columns under ‘MODELLER’ are best results of
MODELLER in Gront et al. [24]. GDT score is considered more robust against local
structural difference than RMSD, and is a major assessment metric used in the Critical
Assessment of Techniques for Protein Structure Prediction (CASP) [25]. In Table 1, PRSDA
performed worse than MODELLER on seven targets in terms of CRMSD. But except for
target “3DTO”, their GDT scores have no significant differences. We made a paired t-test on
the GDT scores of the 14 predictions made by PRSDA and MODELLER, assuming Hg: Lg
=0, Hq: ug 20, a =0.05, i.e., there is no difference between the GDT scores. The P-value of
two-tail t-test is 0.10 (>a), suggesting that the performance of PRSDA is comparable to
MODELLER on these targets. For the target “3DTO”, its native structure has a lot of
flexible loops, which is hard for our method to predict. The results in Table 1 demonstrate
that our deep learning architecture can use the spatial coordinates of templates to reconstruct
the structures of target proteins effectively on this dataset.

In the training data set we generated templates’ structures using 3DRobot, some of those
structures were close to the templates, but some deviated significantly. Because the input
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structures vary a lot, the modeling can be trained to get a common rule for the testing data
sets. So the input testing data set can be reconstructed to a new output. If the template is not
far away from the target structure, then the output should be close to the true target structure.

The second test focused on comparing PRSDA with MODELLER and I-TASSER (two of
the top template-based modeling methods) on target proteins whose sequences have high
sequence similarity with template proteins. In order to carry out the test, we installed
MODELLER and I-TASSER on our local server. We ran them with default parameter values
separately to obtain top 5 models for each target.

The results of the comparison are shown in Table 2. PRSDA predicted highly accurate
structures with RMSD less than 1 Angstrom for 15 out of 21 targets, MODELLER 14 out of
21 targets, and I-TASSER 8 out of 21 targets. MODELLER produced the best models for
more than half of the targets. We conducted a paired T-test to check whether there is
significant difference between MODELLER and other two methods. Our hypothesis is there
is no significant difference between MODELLER and the other method (Hg: g =0, Hy:pg #
0, a =0.05). The p-value of two-tail test between the MODELLER and PRSDA is 0.089,
which is greater than a., suggesting that the performance of these two methods has no
significant difference. But p-value of the t-test between I-TASSER and MODELLER is
0.000173, suggesting their difference is significant.

All of the three methods performed very well on most of the target sequences. Figure 1
illustrates one case in which PRSDA performed better than I-TASSER. The left part of
Figure 1 compares the structure predicted by PRSDA, I-TASSER and the native structure of
target 17TEN. We used PyMOL [26] to visualize the structures. On this target, the structure
predicted by PRSDA (the blue line) can cover more areas of the native structure (the green
line) than the structure predicted by I-TASSER (the red line). The right part of Figure 1
compares the structures of PRSDA (the blue one), I-TASSER (the red one) and the native
structure (the green one) in the cartoon mode.

In order to further validate the robustness of our method, we prepared extra testing data sets
for each target. The RMSD (comparison of estimation error) of input testing datasets varied
from 3 to 13 A (as shown by the data distribution in Figure 2). But the RMSD of all
generated output structures was lower than 2 A (the green cross points). On 15 of the whole
21 targets, the RMSD of their output structures was lower than 1 A. From the output data
sets, we found that the RMSD of output structures is almost same on each target, which
means the variation of input testing dataset, do not significantly affect the output in general.

However, PRSDA failed to predict accurate models for two targets (LCEW and 1KJS). This
was due to the structural discrepancy between the native structure of the target protein and
the structure of the templates. Figure 3 shows the templates of target LCEW and 1KJS and
their native structure separately. The green one represents the native structure, the blue and
red ones represent the two templates. A big difference is observed between the structure of
the target protein and those of the template proteins.

In summary, our PRSDA method is a new deep learning method applied to protein structure
reconstruction. The PRSDA method is different from some traditional protein structure
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prediction methods, in that it does not need some intermediate structural information such as
secondary structure, solvent accessibility, or fragments. Our deep autoencoder learning
method can learn some useful information from template structures. The current method
performs comparably with two state-of-the-art protein structure modeling methods when the
sequence similarity between target proteins and templates is high.

Data sets and evaluation metrics

We used two testing data sets to evaluate our method. The first testing data set was curated
from the data set in Gront et al. [24], used to assess the accuracy of a template-based
structure prediction method-MODELLER. It contains 14 protein sequences whose length
varied from 90 to 509 from the data set [24]. The second testing data set is from (a set of
targets used by I-TASSER), filtering out some sequences that do not have any sequence
similarity with templates according to the PSI-BLAST search [27,28]. We finally obtained
21 testing targets, all of which had a sequence similarity with their templates proteins >50%.
The details about how to prepare the training and testing data sets for our deep learning are
explained in the section entitled “Training of Autoencoder for Protein Structure
Reconstruction”.

The Root-Mean-Square Deviation (RMSD) is a measure of the average distance between the
atoms of superimposed protein structures. For each reconstructed decoy we calculated its
backbone RMSD and Ca RMSD with respect to the native structure of its corresponding
target protein. The lower the RMDS value is, the better the decoy model is. Since RMSD is a
length-dependent measure method, we also used another evaluation metric referred to as the
Global Distance Test (GDT) to assess the quality of decoys. GDT measures the fraction of a
structural model that can be superimposed to its native structure within a given distance. The
GDT value varies from 0.0 to 1.0 and the higher the better.

Deeply stacked denoising autoencoder

The deep autoencoder is a popular unsupervised machine learning method, which can make
nonlinear dimension reduction on original data in order to obtain the low-dimension data to
represent the high-dimensional data. The Denoising Autoencoder (DA) is a kind of special
autoencoder, which adds some noise on the input data to improve robustness [29]. A Stacked
Denoising Autoencoder (SDA) stacks multiple layers of DA together to improve the
accuracy of dimension reduction [30].

Figure 4 denotes a basic model of an autoencoder. The first layer (X1, Xy, ..., Xp) represents
the input, the middle layer (Y1, Y5, ..., Yr) is the hidden layer, and the last layer (Z1, Z5,
..., Zp) is the output. The number of nodes on each layer can be adjusted according to the
complexity of the problem.

The mapping formula from the input layer x € (0,1) to the hidden layer y € (0,1) is:

y=S(Wx+b) 1)

J Proteomics Bioinform. Author manuscript; available in PMC 2017 October 26.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Lietal.

Page 6
Here, Sis the sigmoid function as follows:

_ 1
R

Sigmoid(z)

The mapping between hidden layer y € (0,1) and the output layer z € (0,1) is calculated by a
similar function as follows.

Z=W'y+b" (3)

In these two mapping relations, W, b, b’ are the weights of the autoencoder. W is a matrix of
N*M, where Nis the dimension of the input data and M is the dimension of the hidden layer
data. b is a vector with length of M, b’ is a vector with length N, and W ”is the transposed of
matrix W. z is reconstructed data of x. The objective is to make z as consistent with x as
possible.

Stacked denoising autoencoder for protein structure reconstruction

Inspired by the successful example of using autoencoder for handwritten digital number
recognition, we designed a deep learning model based on the denoising autoencoder to
reconstruct protein structure (Figure 5). In the training phase, the templates’ native structures
are considered pure data without noise. The predicted protein decoys can be thought of as
noisy data. During training of the denoising autoencoder, the native structures of those
templates are known in advance to tune its parameters. In the prediction phase, the trained
model can be applied to the untrained target proteins whose native structures are not yet
known, but are close enough to those of the training proteins.

Representation of structure in a deep autoencoder model

In this work, we used X, y, z coordinates of backbone atoms to express protein spatial
structure. When using RMSD, it is easy to measure the gap between reconstruction data and
label data. We used the coordinates of backbone atoms and residue symbol as the input data
for the deep learning model. Before the data coordinates of input structures are converted
into input matrix, they are superimposed and translated to be in the same coordinate system.

Because an initial coordinate is often outside the range of [0,1], we use the following linear
function to normalize it into the range of (0, 1).
T — Tmin

€T = (2eX
new ZTmax — Lmin ( ) (4)

Xrepresents a set of coordinates. xis an initial coordinate. Xmax and Xmin are the
maximum and minimum coordinates in .X. Assuming these are the initial coordinates of two
atoms: (xz, V1, Z1), (X2, Vo, Z2), the original distance between them is as follows:
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L= \/(131 — 22)"+(y1 — y2)*+ (21 — 22)° (5)

The compression ratio after normalization is N,

N:Xmax - Xmin (6)
After compression, the two atoms coordinates are:
(ﬂ y ﬂ) and (2 Y2 Z_2>
NN’ N N'N'N/) (1)
Then the distance of two atoms after compression are as follows:

2 2 2
Ty X Y12 21z 1 2 2 2
L= _— — — —_ — = —_ — = =— — — L=
\/(N N) +(N N) +<N N) 3 V=240 -0+~ =)

®)

This means the relative distance between two atoms shrinks by the same ratio as
normalization. Therefore, the normalized new dataset can represent the original dataset well.

Training of autoencoder for protein structure reconstruction

We used RMSD to measure the difference between the coordinates of a native structure and
those of a predicted structural model as objective function to guide the training of the
autoencoder as follows:

RMSD= ¢Zz—1(Xk — 2) + (Ve — )" +(Z — 2)°
" ©)

Where, X, Yk, Zk represent native structure coordinates; X, Yk, Zk are the predicted
structural coordinates, and n is the number of total atoms. We implemented the calculation
of RMSD in Theano using GPU-Q-J, which use GPU to accelerate the calculation [31].

We designed a deep learning model based on the stacked denoising autoencoder for protein
structure reconstruction (PRSDA). In order to predict the tertiary structure of a protein target
sequence, we used its homology structures to train the weights of the PRSDA model, and
then test the model on a preliminary structure from the target sequence; finally we can get
the reconstructed structure for the target sequence. Figure 6 shows the flowchart of PRSDA
methodology.
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According to Figure 6, the input to our method is a target sequence, and the output is a
reconstructed protein structure. Specifically, our method has the following six steps.

1.

Prepare appropriate templates for the target sequence: This step is to use PSI-
BLAST to find templates for the target sequence, and then filters out those
templates that have low sequence similarity with the target sequence. We align
the templates sequences to the target sequence and make them have a consistent
length with the target sequence. We get rid of extra parts of a template if it is
longer than the target sequence. The vacant parts are filled with 0.

Generate decoys for the templates: The second step is to use 3DRobot [32] to
generate decoys for the templates. Generally, we generate 500 decoys for each
template, but if there is only one appropriate template for the target sequence, we
generate 1000 decoys for this template. The input of 3DRobot is a protein PDB
file and the outputs are diverse and well-packed protein structure decoys.
3DRobot generates a lot of diverse models with a wide range of RMSD
compared to the input PDB structure. Some of these generated decoys are close
to the input, but some of them are far away from the input.

Representation of training dataset: After template decoys are generated, we
extracted the coordinates of their 4 backbone atoms (C, Ca,, N, and O) to prepare
training datasets. Each atom has 3 coordinates (X-axis, Y-axis, and Z-axis). So
for each residue, there are 12 numbers to represent its spatial position. The total
number of the input features for the deep learning model is L*(12+1), where L is
the length of the target sequence. The extra input represents the amino acids type.
The labels of training datasets are the coordinates of templates’ native structures.

Construct the architecture of the training model: We used these training datasets
to train the deeply stacked autoencoder model. The first layer is a visible layer
and the node number of this layer equals to the number of the input features
(L*(12+1)). Next to the visible layer, there are three hidden layers. The number
of the hidden layers’ nodes is reduced layer by layer, and the decrease ratios are
0.9, 0.8, and 0.7 respectively. After training, we save the parameters of the model
for predicting structure of the target sequence.

Testing the model on a target sequence: First, we set torsion angles (phi, psi and
omega) for each residue of the target sequence to +135°, —135° and 180°, and
then we use Rosetta [33] to convert torsion angles to X, Y, Z coordinates to get
an extended structure. So the input data of the testing process is the coordinates
from the extended structure and the output of the model are new coordinates
values for the target sequence.

Construct PDB file for the target sequence: Finally, we combine these new
coordinate values and target sequence information to construct a standard PDB
file as the final protein reconstruction structure.
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(1) 1ITEN (2) 1CSP

Figure 1.
Comparision of predicted structures and their native structure in chain conformation (1) and

cartoon conformation (2). For the two typical pdbs, native structure, reconstructed structure
and predicted structure from I-TASSER are represented in green, blue and red color
respectively.
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Figure 2.

The data statistic of input data sets and output data set. The box-and-whisker diagram shows
the RMSD distribution between input conformation and native conformation, the blue and
purple points represents median and average values. Points plotted in green color represent
the average RMSD between reconstruction conformation and native conformation.
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(1) ICEW (2) 1KJS

Figure 3.
Templates for target (1) 1CEW and (2) 1KJS. For the two typical pdbs, native structure, and

templates structure for the targets are represented in green and other colors (blue and rose
red) respectively.
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Figure 4.
The basic architecture of an autoencoder.
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Reconstruct data

Reconstruct data

Calculate cost
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Denoising Autoencoder

Protein Reconstruct

The architecture of denoising autoencoder for protein structure reconstruction. The left part
is the principle of denosing autoencoder, and the right part is the principle of protein
structure reconstruction.
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Flowchart of the protein structure reconstruction method.
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