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In genomic data analysis, it is commonplace that underlying regulatory relationship over multiple genes is hardly ascertained due
to unknown genetic complexity and epigenetic regulations. In this paper, we consider a joint mean and constant covariance model
(JMCCM) that elucidates conditional dependent structures of genes with controlling for potential genotype perturbations. To
this end, the modified Cholesky decomposition is utilized to parametrize entries of a precision matrix. The JMCCM maximizes
the likelihood function to estimate parameters involved in the model. We also develop a variable selection algorithm that selects
explanatory variables and Cholesky factors by exploiting the combination of the GCV and BIC as benchmarks, together with Rao
andWald statistics. Importantly, we notice that sparse estimation of a precision matrix (or equivalently gene network) is effectively
achieved via the proposed variable selection scheme and contributes to exploring significant hub genes shown to be concordant
to a priori biological evidence. In simulation studies, we confirm that our model selection efficiently identifies the true underlying
networks. With an application to miRNA and SNPs data from yeast (a.k.a. eQTL data), we demonstrate that constructed gene
networks reproduce validated biological and clinical knowledge with regard to various pathways including the cell cycle pathway.

1. Introduction

Generally, joint estimation of mean and covariance has been
developed to address problems related to biomedical data.
In longitudinal data analysis, for instance, identifying correct
correlation structures within each subject is a major focus
and many studies come up with variants of joint mean and
covariance estimation to enhance statistical efficiency (see Ye
and Pan [1] and references therein). With regard to graphical
models, particularly, conditional Gaussian graphical mod-
els (cGGM) aiming to elucidate conditional dependence
structures subject to the mean have increasingly received
much attention [2–5] and conceptually can also be viewed as
examples of joint mean and covariance estimation in essence.
On amethodological side, joint estimation has been found to
be practically applicable in the sense that applications of joint
estimation methods cover bioinformatics, such as hormone
and transcriptome [1, 4, 6–8], and stock price analysis [9].
A majority of existing methods involve variable selection of
covariates for the mean vector and sparsity of covariance

mainly based on the penalization methods. However, in this
paper, we purposely focus on variable selection and joint
estimation with a pure implementation of the likelihood-
based method, unlike common penalization techniques, to
better analyze eQTL data in light of genetic feature selection.

Over the decades, genomics research has focused on
comprehensive understanding of regulatory networks in the
context of system biology. Commonly we are interested in
a gene network, which pictures the interplay among genetic
factors (e.g., gene regulation and activation). Particularly, it
is important to investigate how a given genotype (genetic
variants) at a particular quantitative trait locus (QTL) affects
measured phenotypes and traits at that locus. For instance,
gene expression quantitative loci (eQTL) make use of gene
expressions as quantitative traits. eQTL analysis has been
widely applied to figure out the effect of genetic perturbations
associated with diseases as well as to construct regulatory
networks describing how genes regulate expressions of other
genes [10, 11]. More precisely, the location of single nucleotide
polymorphisms (SNPs) may affect multiple gene expression
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levels, and this accidentally causes misleading inference for
dependency structure among genes [4]. Many popular meth-
ods [2–5, 12] have been introduced to identify gene networks,
aiming at learning networks subject to perturbation effects by
genetic variants on the basis of population gene expression
and genotype data.

Yin and Li [4] proposed the sparse conditional graphical
Gaussian model with ℓ1 and the adaptive lasso penalty
function. Li et al. [3] suggested the two-stage estimation
framework: (1) estimating a nonsparse conditional covari-
ancematrix of genes based on a conditional variance operator
between the reproducing kernel Hilbert spaces of marker
genes and then (2) using 𝑙1 and adaptive lasso penalty to
obtain sparse estimates of a precision matrix under the
cGGM. Cai et al. [12] studied the covariate-adjusted precision
matrix estimation (CAPME)methodusing the constrained ℓ1
optimization.

While most recent studies encourage sparsity estimation
of a precision matrix based on the penalized likelihood, we
instead rely on classical variable methods based on the stan-
dard likelihood. Strictly speaking, the penalized likelihood,
according to its definition, cannot be viewed as the likeli-
hood. It naturally poses a question whether the likelihood-
based method performs better than the penalized likelihood
approaches. To address this question, we consider a joint
mean and constant covariance model (JMCCM) inspired by
Pourahmadi [13] and propose methods for variable selection
which effectively identify sparse conditional gene networks
and covariates relevant to gene regulations. We employ
the modified Cholesky decomposition to guarantee positive
definiteness of an estimated precision matrix [13]. With this
reparametrization of the precision matrix, the log-likelihood
function corresponding to our model can be decomposed
into an additive form of each response in terms of Cholesky
parameters. This facilitates a coordinate descent type imple-
mentation we adopt for the precision matrix estimation.
The combination of both generalized cross-validation (GCV)
and Bayesian information criterion (BIC) performs variable
selection as a benchmark. Rao and Wald statistics are also
utilized to add and delete genetic markers for each gene
expression and the Cholesky factors for the precision matrix.
To the best of our knowledge, only a few works use Rao and
Wald statistics for variable selection in the joint estimation
problem, particularly with an application to eQTL analysis.

In simulation studies, extensive simulation scenarios
experimentally confirm improved estimation efficiency and
precise variable selection of the proposed method. For
real data applications, we perform eQTL analysis via the
JMCCM with gene expressions and SNPs of yeast data,
in pursuit of detecting the effects of variant perturbations
and underlying gene regulations. We find that the JMCCM
effectively uncovers biological pathways that may potentially
account for known biological processes. Taken together, the
JMCCM is shown to be effective in identifying conditional
dependence structures among variables compared to the
existing graphical models with penalization methods such as
the sparse cGGM [5] and CAPME [12].

The paper is outlined as follows. In Section 2, we describe
our JMCCM with modified Cholesky decomposition and

maximum likelihood estimates. The variable selection algo-
rithm using Rao and Wald statistics for SNPs and Cholesky
factors is explained in Section 3. Section 4 deals with
simulation studies to demonstrate performance of variable
selection and estimation of the proposedmodel.The yeast cell
cycle pathway genes with SNPs data analysis are presented in
Section 5. Concluding remarks and discussion in Section 6
are followed by the Appendix, which provides mathematical
details of our method.

2. Model And Estimators

2.1. JMCCM with the Modified Cholesky Decomposition.
Contrary to previous methods [3, 4], the JMCCM primarily
aims at simultaneous estimation over the mean and precision
matrix of the Gaussian graphical model. Suppose that (𝑥, 𝑦)
is a pair of the 𝑝 × 1 vector 𝑥 of genetic markers and the𝑚 × 1 random vector 𝑦 of expression levels. Let 𝑥 denote
the vector of SNPs and let 𝑦 denote the gene expression traits
following𝑚-variatemultivariate normal distributionwith the
mean 𝜇(𝑥; 𝛽) and covariance matrix Σ as follows:

𝑦 | 𝑥 ∼ 𝑁𝑚 (𝜇 (𝑥; 𝛽) , Σ) , (1)

where the 𝑗th entry of 𝜇(𝑥; 𝛽) is 𝑥⊤𝛽𝑗 for 𝑗 = 1, . . . , 𝑚,
and 𝛽𝑗 = (𝛽1𝑗 , . . . , 𝛽𝑝𝑗 ) is the 𝑝 × 1 linear regression
coefficient vector indicating effects of SNPs perturbations to
gene expressions and 𝛽 = (𝛽1, . . . , 𝛽𝑚). Importantly, note thatΣ does not depend on 𝑥. The coefficient 𝛽 is assumed to be
sparse, since each gene is known to have only a few genetic
regulators according to Cai et al. [12]. The precision matrix
represents a gene network (graph), as in an undirected GGM,
by corresponding the nonzero (𝑖, 𝑗)th element of the precision
matrix with an edge between two vertices 𝑖 and 𝑗 [14]. This
edge represents conditional dependence of genes 𝑖 and 𝑗 given
all other gene expression levels. Thus, our goal is to identify
nonzero entries of the precision matrix in order to construct
a conditional dependence genetic network after the effects of
SNPs perturbations are removed. The precision matrix Σ−1 is
also expected to be sparse [4].

One of our primary interests is to estimate the precision
matrix Σ−1, which is symmetrically positive definite, so we
need to ensure that the estimate of the precision matrix
also satisfies symmetrical positive definiteness. To this end,
we apply the modified Cholesky decomposition [13] to the
precision matrix, denoted by K, as follows:

K (𝜙, 𝜏) = C (𝜙)⊤ D (𝜏)C (𝜙) , (2)

whereC is an upper triangular matrix with diagonal entries 1
and above-diagonal elements consisting of negative of 𝜙 =(𝜙12, . . . , 𝜙1𝑚, 𝜙23, . . . , 𝜙2𝑚, . . . , 𝜙𝑚−1,𝑚) and D is a diagonal
matrix containing 𝜏 = (𝜏1, . . . , 𝜏𝑚) with 𝜏𝑗 > 0 for all𝑗 = 1, . . . , 𝑚 as diagonal entries. Here, the superscript ”⊤”
denotes the transpose of a matrix. Positive definiteness of K
is shown in Appendix A. Throughout this paper, a vector in
the parenthesis is considered as a column vector. Let 𝜙𝑗 =(𝜙𝑗,𝑗+1, . . . , 𝜙𝑗𝑚) for 𝑗 = 1, . . . , 𝑚 − 1. Then we can write 𝜙 =(𝜙1, . . . , 𝜙𝑚−1).The parameter space for JMCCM is defined by
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Θ = {𝜃 = (𝛽, 𝜙, 𝜏) : 𝛽 ∈ R𝑚𝑝, 𝜙 ∈ R𝑚(𝑚−1)/2 and 𝜏 ∈ R𝑚+ },
where R𝑚+ represents the set of 𝑚-dimensional vectors of
positive real numbers.

2.2. Maximum Likelihood Estimation. Suppose that we have
the 𝑁 independent observations (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 𝑁, sam-
pled from (1), where 𝑦𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑚) and 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝)
represent the 𝑖th observation of 𝑥 and 𝑦, respectively. WithΣ−1 = K = K(𝜙, 𝜏), 𝜇(𝑥) = 𝜇(𝑥; 𝛽), and 𝜇𝑖 = 𝜇(𝑥𝑖), the log-
likelihood function corresponding to (1) is given by

ℓ (𝜃) = 𝑁2 {{{−𝑚 log (2𝜋) + 𝑚∑
𝑗=1

log 𝜏𝑗 − tr (K𝑉 (𝛽))}}} , (3)

where 𝑉(𝛽) = (1/𝑁)∑𝑁𝑖=1(𝑦𝑖 − 𝜇𝑖)(𝑦𝑖 − 𝜇𝑖)⊤ and ”tr” denotes
the trace of a matrix. A derivation of (3) can be found in
Appendix B. The maximum likelihood estimator (MLE) of 𝜃
is defined by

𝜃 = argmax
𝜃∈Θ

ℓ (𝜃) . (4)

Some notations are needed to express MLE of 𝜃 in
conjunction with variable selection. For 𝑗 = 1, . . . , 𝑚, let 𝐺𝑗
be an index set of active (or significant) coefficients of 𝛽𝑗
and denote by 𝑔𝑗 the number of elements in 𝐺𝑗. Let 𝐺 ={𝐺1, . . . , 𝐺𝑚} and 𝑔 = 𝑔1 + ⋅ ⋅ ⋅ + 𝑔𝑚. Obviously, 𝑔 ≤ 𝑚𝑝 and if𝑔 = 𝑚𝑝, then all variables are significant for all 𝑦1, . . . , 𝑦𝑚.
Define 𝛽(𝐺) = (𝛽1(𝐺1), . . . , 𝛽𝑚(𝐺𝑚)) ∈ R𝑔 and 𝛽𝑗(𝐺𝑗) =[𝛽𝑙𝑗]𝑙∈𝐺𝑗 ∈ R𝑔𝑗 for 𝑗 = 1, . . . , 𝑚. Write 𝑦𝑘 = (𝑦1𝑘 , . . . , 𝑦𝑁𝑘 )
for 𝑘 = 1, . . . , 𝑚, 𝑋 = (1/𝑁)(𝑥1, . . . , 𝑥𝑝), and 𝑋(𝐺𝑗) =[𝑋𝑙]𝑙∈𝐺𝑗 ∈ R𝑁×𝑔𝑗 , where 𝑋𝑙 denotes 𝑙th column of 𝑋. Let
Y = (𝑦⊤1 , . . . , 𝑦⊤𝑚) ∈ R𝑚𝑁, X = ⊕𝑚𝑗=1𝑋(𝐺𝑗) ∈ R𝑚𝑁×𝑔, and
W = K ⊗ 𝐼𝑁 ∈ R𝑚𝑁×𝑚𝑁, where ⊕ and ⊗ represent direct
sum andKronecker product, respectively, and 𝐼𝑁 is the𝑁×𝑁
identity matrix.Then theMLE 𝛽(𝐺) of 𝛽(𝐺) can be expressed
as

𝛽 (𝐺) = (X⊤WX)−1 X⊤WY. (5)

Observe that estimating 𝛽(𝐺) involves K.
We can estimate K by obtaining MLE of 𝜙 and 𝜏. For 𝑗 =1, . . . , 𝑚−1, let 𝜃𝑗 = (𝛽, 𝜙𝑗, 𝜏𝑗)with 𝜃𝑚 = (𝛽, 𝜏𝑚). Let𝑉𝑗𝑗,𝑉𝑗,21,

and 𝑉𝑗,22 represent the (1, 1), (2, 1), and (2, 2) components of
the lower 𝑗th principal submatrix𝑉𝑗(𝛽) of𝑉(𝛽). Then we can
express

ℓ (𝜃) = 𝑚∑
𝑗=1

ℓ𝑗 (𝜃𝑗) , (6)

where

ℓ𝑗 (𝜃𝑗) = 𝑁2 {−log (2𝜋) + log 𝜏𝑗
− 𝜏𝑗 (𝑉𝑗𝑗 − 2𝜙⊤𝑗 𝑉𝑗,21 + 𝜙⊤𝑗 𝑉𝑗,22𝜙𝑗)} .

(7)

By (6), we can obtain (𝜙, 𝜏) from (𝜙𝑗, 𝜏𝑗) for each 𝑗 with𝜙𝑗 = argmax𝜙𝑗ℓ𝑗(𝜃𝑗) and 𝜏𝑗 = argmax𝜏𝑗ℓ𝑗(𝜃𝑗).Thus, instead
of finding a solution to the optimization problemwith (3), we
optimize each ℓ𝑗(𝜃𝑗)with respect to 𝜙𝑗 and 𝜏𝑗. Thus, the MLE𝜙𝑗 and 𝜏𝑗 are expressed in terms of 𝑉(𝛽) in a way that

𝜙𝑗 = 𝑉−1𝑗,22𝑉𝑗,21,
1̂𝜏𝑗 = 𝑉𝑗𝑗 − 𝑉𝑗,12𝑉−1𝑗,22𝑉𝑗,21

for 𝑗 = 1 . . . , 𝑚 − 1
(8)

with 𝛽 from (5) and 1/𝜏𝑚 = 𝑉𝑚𝑚. We estimate Σ−1 by K̂ and
it is defined by

K̂ = K (𝜙, 𝜏) . (9)

Derivations of (5), (6), and (8) are presented in Appendix C.

3. Consecutive Variable Selection Algorithm

As mentioned above, 𝛽 and K are commonly believed to
be sparse in genomic data analysis. To address sparsity,
the lasso-type penalty imposed on both regression coeffi-
cients and precision matrix has been popularly applied to
diverse graphical models [4, 5]. Stepping aside the lasso-
type approach, we develop a variable selection technique
that mainly relies on the combination of classical variable
selection methods. Generally, the numbers of SNPs and
genes tend to be considerably huge so that computational
costs normally become prohibitive. In order to address this
problem, the proposed variable selection algorithm proceeds
with largely two stages: (1) preliminary variable selection
for mean and precision matrix and (2) secondary variable
selection in the middle of the joint model estimation. It is
important to note that the first stage leads possible variables
to be limited in scope (i.e., working parameters in the model)
in order to circumvent high computational complexity.

3.1. Preliminary Variable Selection. Preliminary variable
selection is largely twofold: variable selection for the mean
part and covariance part. The idea behind that is to add
variables (or equivalently parameters) to the joint model
with the maximum Rao statistic and to delete ones with the
minimum Wald statistic. You may refer to Koo [15] for the
basis selection method or Kooperberg et al. [16] that explain
variable selection schemes based on Rao and Wald statistics.

3.1.1. Mean Part. When it comes to the mean part, we carry
out selecting predictor variables (i.e., SNPs) for each response
variable (i.e., gene expression), dealing with a univariate
multiple regression problem. In the addition stage, we start
off with a model including only an intercept term. The MLE
is used as estimator for 𝛽 and maximum Rao statistic (Rao
[17]) is the criterion for adding a predictor together withGCV
(Friedman [18]) as a stopping rule. In the deletion stage,Wald
statistic is calculated to exclude predictor variables such that
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(1) for𝑗 in 1 : 𝑚 do(2) Set the minimal linear regression model: 𝑌𝑗 = 𝛽0𝑗 .(3) Compute 𝛽0𝑗 and GCV.(4) while GCV decreases do(5) Among predictors not in the current model, add a predictor𝑋𝑏 having the
maximum Rao statistic.(6) Update 𝛽𝑗(𝐺𝑗) using (5) and compute GCV.(7) end while(8) while GCV decreases do(9) Among predictors in the current model, delete a predictor𝑋𝑏 having the
minimumWald statistic.(10) Update 𝛽𝑗(𝐺𝑗) using (5) and compute GCV.(11) end while(12) The optimal model is chosen by the minimum GCV.(13) end for

Algorithm 1: Variable selection in the mean vector estimation.

the updatedmodelminimizesWald statistics.Thefinalmodel
for the mean regression is chosen by the minimum GCV.
Details are summarized in Algorithm 1. Once Algorithm 1
is done, the number of predictor variables included in the
joint model no longer increases, while variable reduction can
happen in Algorithm 3 (Section 3.2).

3.1.2. Covariance Part. The rationale behind variable selec-
tion in the precision matrix estimation is that each 𝑌𝑗, 𝑗 =1, . . . , 𝑚 − 1, is regressed on 𝑌𝑗+1, . . . , 𝑌𝑚, and the regression
coefficients are negative of off-diagonal entries of C(𝜙),
the by-product of the modified Cholesky decomposition
(2) [13, 19, 20]. Clearly, this is one of the major benefits
of reparametrization via Cholesky decomposition [13] in
pursuit of improved interpretation.

Subsequent to selection for predictor variables, we com-
pute𝑉(𝛽(𝐺)). Given initial 𝜙(0)𝑗 = 0, we start with computing𝜏𝑗 for 𝑗 = 1, . . . , 𝑚 as in (8) using 𝑉(𝛽(𝐺)) obtained from
Algorithm 1. Then compute Rao statistic to add one variable
out of 𝑌𝑗+1 . . . , 𝑌𝑚 to the current model that builds on the
response variable 𝑌𝑗. We repeatedly update for 𝑌𝑗, where𝑗 = 1, . . . , 𝑚 − 1. Next, we choose one variable, say 𝜙𝑙𝑏,
for 𝑙 = 1, . . . , 𝑚 − 1 and 𝑏 = 𝑙 + 1, . . . , 𝑚, such that
Rao statistic is maximized and thereby update 𝜙𝑙 and 𝜏𝑙,
respectively. When calculating 𝜏 and 𝜙, the BIC is computed,
and the addition process stops if the BIC no longer decreases.
At the completion of addition, we build a model with all
selected variables as a full model and subsequently begin
deletion from a full model. Deletion process is similar to
the addition process except that the minimumWald statistic
is used for deletion in place of the maximum Rao statistic.
Successive deletion continues until the BIC stops decreasing.
In the last stage, the final model is also selected by the BIC.
Details are presented in Algorithm 2. Once Algorithm 2 is
finished, the number of 𝜙𝑗𝑘 included in the joint model no
longer increases, while variable reduction could occur in the
joint estimation (Algorithm 3, Section 3.2). Sparsity of K̂ is

achieved through this variable selection scheme along with
Algorithm 3.

3.2. Secondary Variable Selection in the Middle of the Joint
Model Estimation. With variables (i.e., parameters) selected
by the preliminary stage above, we implement simultaneous
parameter estimation for bothmean and precision in the joint
model and additional variable selection. Once K̂ is computed
via Algorithm 2 with fixed 𝛽(𝐺), we start joint estimation
by updating 𝛽(𝐺), which is formed with weight least square
estimates as in (5) and weights coming from K̂. Then 𝜙 and𝜏, ultimately K̂, are newly computed using updated 𝑉(𝛽(𝐺)),
and again this updated K̂ serves as a weight for updating𝛽(𝐺). Over the updates, the interplay between 𝑉(𝛽(𝐺)) and
K̂ continues until the log-likelihood function converges.
Afterwards, deletion to current parameters begins by Wald
statistic, excluding one parameter with the minimum Wald
statistic. Finally, the BIC is used as a stopping rule for deletion
and selection to finalize model estimation. Algorithm 3
contains details about this procedure. While the preliminary
variable selection works for each mean and covariance part
under the assumption of 𝛽(𝐺) or K̂ are fixed, this joint
estimation procedure is designed to improve estimation and
selection accuracy by reflecting the changes of 𝛽(𝐺) and K̂.

4. Experimental Studies

In order to assess the performance of our proposed method,
we carry out experimental simulations and compare the
sparse conditional Gaussian graphical model (SCGGM),
Zhang and Kim [5], covariate-adjusted precision matrix
estimation (CAPME), Cai et al. [12] and joint model with
lasso penalty (JML), and Jhong et al. [21], all of which are
based on penalized likelihood approaches. The competing
methods are run with their default setting regarding tuning
parameters. To evaluate similarity, the estimated precision
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(1) Compute 𝑉(𝛽(𝐺)) using 𝛽(𝐺) obtained from Algorithm 1.(2) Compute 𝜏1, . . . , 𝜏𝑚 by (8).(3) Combining initial 𝜙(0)𝑗 = 0 for all 𝑗 = 1, . . . , 𝑚 − 1 with 𝜏, compute K̂ and BIC.(4) while BIC decreases do(5) for𝑗 in 1 : (𝑚 − 1) do(6) if no elements of 𝜙𝑗 = (𝜙𝑗,𝑗+1, . . . , 𝜙𝑗𝑚) are included in the joint model then(7) compute Rao statistics for 𝜙𝑗𝑘 by 𝑉2𝑘𝑗/𝑉𝑘𝑘, 𝑘 = 𝑗 + 1, . . . , 𝑚.(8) else(9) Set a linear regression model with response 𝑌𝑗 and predictors 𝑌𝑏’s whose
corresponding coefficients 𝜙𝑗𝑏 are already included in the joint model. Here 𝑏 ∈{𝑗 + 1, . . . , 𝑚}. Compute Rao statistic for adding one predictor among 𝑌𝑗+1, . . . , 𝑌𝑚
whose corresponding 𝜙𝑗𝑘’s are not in this linear model.(10) end if(11) end for(12) Among all 𝜙𝑗𝑘’s not in the joint model, add one with the maximum Rao value.
Denote this by 𝜙𝑙𝑏 for 𝑙 = 1, . . . , 𝑚 − 1 and 𝑏 = 𝑙 + 1, . . . , 𝑚.(13) Update 𝜙𝑙, 𝜏𝑙 using (8) as well as K̂ and compute BIC.(14) end while(15) while BIC decreases do(16) Compute Wald statistics for all 𝜙 in the current model.(17) Delete one 𝜙𝑙𝑏 with the minimumWald.(18) Update 𝜙𝑙 , 𝜏𝑙 using (8) as well as K̂ and compute BIC.(19) end while(20)The optimal model is chosen by the minimum BIC.

Algorithm 2: Variable selection in the precision matrix estimation.

(1) repeat(2) Update 𝛽(𝐺) by (5) and compute 𝑉(𝛽(𝐺)) with K̂ from Algorithm 2.(3) Update 𝜏, 𝜙 and K̂ using 𝑉(𝛽(𝐺)) obtained from the previous step.(4) until the log-likelihood function converges.(5) while BIC decreases do(6) Compute Wald statistic of deleting each 𝛽𝑝𝑗 and 𝜙𝑗𝑏 in the current model.(7) Delete one variable (i.e., parameter) with the minimumWald statistic.(8) repeat(9) Update 𝛽(𝐺) by (5) and compute 𝑉(𝛽(𝐺)) with K̂ from the previous step.(10) Update 𝜏, 𝜙 and K̂ using 𝑉(𝛽(𝐺)) obtained from the previous step.(11) until the log-likelihood function converges.(12) end while(13)The optimal model is chosen by BIC.

Algorithm 3: Variable selection in the joint estimation.

matrix and true matrix are benchmarked by the Steins loss
function:

𝛿𝑆𝑡𝑒𝑖𝑛 (K, K̂) = tr (KK̂−1) − log KK̂−1 − 𝑚, (10)

where K̂ is an estimate of the true precision matrix K and| ⋅ | denotes the determinant of a matrix. The Frobenius
norm of difference between K and K̂, denoted by ‖Δ‖𝐹, whereΔ = K − K̂, is also considered. In addition to the Steins
loss function, to measure how efficiently our model recovers

the true conditional dependent relationship among genes,
specificity (SPE) and sensitivity (SEN) are used, as defined by

SPE = TN
TN + FP ,

SEN = TP
TP + FN ,

(11)

where TN, TP, FN, and FP are the numbers of true negatives,
true positives, false negatives, and false positives with regard
to off-diagonal elements of a precisionmatrix.Here, we treat a
nonzero entry of a precisionmatrix as “positive.” To combine
sensitivity and specificity, Youden’s index (=SPE+ SEN−1) is
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Table 1: Six scenarios for small-scale experimental study.

Model m p P(k𝑖𝑗 ̸= 0) P(𝛽𝑙𝑗 ̸= 0)
1 10 10 2/𝑚 3.5/𝑝
2 20 10 2/𝑚 3.5/𝑝
3 40 10 2/𝑚 3.5/𝑝
4 20 20 2/𝑚 4/𝑝
5 30 30 2/𝑚 4/𝑝
6 40 40 2/𝑚 4/𝑝

Table 2: Three scenarios for large-scale experimental study.

Model m p P(k𝑖𝑗 ̸= 0) P(𝛽𝑙𝑗 ̸= 0)
7 100 100 2/𝑚 3/𝑝
8 200 200 2.5/𝑚 15/𝑝
9 400 200 1.5/𝑚 20/𝑝
used.The smaller values of 𝛿𝑆𝑡𝑒𝑖𝑛 and ‖Δ‖𝐹 are better, whereas
the larger values of SPE, SEN, and Youden are better.

Inspired by Yin and Li [4], we generate simulation data
sets in the form of eQTL data sets such that nonzero entries
of a precision matrix, commonly called a link (or edge), are
randomly assigned with probability 𝑐1/𝑚, where 𝑚 is the
number of genes and 𝑐1 is some positive constant. For a
link generated at the (𝑖, 𝑗)th entry of the precision matrix,
denoted by k𝑖𝑗, the corresponding element is sampled from
the uniformdistribution over [−1, 0.5]∪[0.5, 1]. For each row,
off-diagonal elements are divided by the sum of their absolute
values multiplied by 1.5. And we obtain the true precision
matrixK by symmetrizing and setting diagonals as 1. To create
the 𝑝 × 𝑚 regression coefficients matrix 𝛽, we first generate
a 𝑝 × 𝑚 indicator matrix that has 1 as entry with probability𝑐2/𝑝 for some positive constant 𝑐2. If the (𝑙, 𝑗)th element of
this indicator matrix is 1, 𝛽𝑙𝑗 is randomly generated from𝑈𝑛𝑖𝑓([𝑑𝑚, 1] ∪ [−1, −𝑑𝑚]), where 𝑑𝑚 is the smallest absolute
value of K generated.

Producing 𝛽 and K, we generate SNPs, 𝑋 = (𝑋1, . . . , 𝑋𝑝)
with 𝑋𝑙 ∼ Bernoulli(1, 0.5) for 𝑙 = 1, . . . , 𝑝. Finally, we
simulated gene expressions by generating 𝑦 from the multi-
variate normal distribution given 𝑥, 𝑌 | 𝑋 ∼ 𝑁(𝑋𝛽,K−1).
We generate a data set of𝑁 i.i.d. random vectors (𝑋, 𝑌), and
simulations are repeated 50 times. In Table 1, we outline the
six simulation scenarios of small-scale setup. Table 2 contains
the three simulation scenarios of large-scale setup.

The small-scale simulation results in Table 3 suggest that
the JMCCMproduces better estimates than all othermethods
across all six models. Due to computational issues, we drop
some results of JML fromTable 3. By comparing the results of
model 3 with 6 and 2 with 4, when𝑁 = 1000 and the number
of genes is fixed, we can see that JMCCM and CAPME
show less changes in 𝛿𝑆𝑡𝑒𝑖𝑛 and ‖Δ‖𝐹 than they appear in the
SCGGM as the number of SNPs increases.This indicates that
JMCCM and CAPME are less subject to the increment of the
number of SNPs than SCGGM, when modest size of genes
is involved. Estimation performance of CAPME seems to be
affected by the number of genes more easily than JMCCM
because Stein loss and Frobenius normof CAPME formodels

1, 2, and 3 with fixed 𝑝 increase more rapidly than those
of JMCCM do. For identifying structures of the precision
matrix, JMCCM surpasses SCGGM in discovering nonzero
elements (higher sensitivity) as complexity of themodel rises.
This is possibly due to the fact that SCGGM tends to produce
sparse estimates more than the true precision matrix. Higher
sensitivity implies that our proposed model is less likely to
miss the influential conditional dependency among genes.
While CAPME and JML score near 1 in sensitivity, they mark
poor number in specificity because 5-fold cross-validation
for CAPME and validation approach for JML with default
setting for tuning parameters selection tend to choose small
ones, leading to dense estimates. JMCCM produces higher
Youden’s index across all simulation scenarios compared to all
other methods, and the performance gap between JMCCM
and others is increasingly widened as the models increase in
sample size and complexity. The results for the large-scale
simulations (models 7–9) are summarized in Table 4 and
Table S3. Due to long computing time, the results of CAPME
for models 8 and 9 are not reported. Overall, the results are
consistent with the small-scale simulations. The gap between
JMCCM and SCGGM in estimation performance widened as
the complexity of the model increases (Table 4).

We also simulate SNPs to mimic the linkage disequilib-
rium (LD) which is known to be a common phenomenon
in DNA sequence and to assess the performance of our
approach. We randomly generate two groups of SNPs which
lie on LD, each ofwhich contains LDblock including 10 corre-
lated SNPs such that correlation is greater than 0.9. Together
with these SNPs, 10 SNPs are generated independently from
Bernoulli trials with probability of 0.5 for a total of 20 SNPs
and 20 genes: 𝑚 = 20 and 𝑝 = 20. Table 5 presents the
simulation results using these data of sample size 𝑁 = 500
and 𝑁 = 1000 with 50 repetitions. Compared to the results
of model 4 in Table 3, which is based on 20 independent
SNPs with 𝑁 = 500, LD is found to have little impact on
all methods, except for slight decreases in Stein loss and
Frobenius norm of SCGGM.

5. eQTL Analysis of Yeast Data

In this section, we apply the proposed algorithm to genomic
eQTL (i.e., expression quantitative trait loci) data in order
to examine whether the proposed method effectively recov-
ers true dependency of gene expressions, which builds on
known molecular mechanisms. To this end, we collect a
set of yeast data [22], including polymorphic genotypes and
mRNA expressions. The yeast data have been widely applied
to elucidate the biological interactions between nucleotide
polymorphisms and their responding genes (e.g., perturba-
tion effects) [23–26]. Thus, our primary goal is to identify
conditional dependency among genes with an adjustment of
SNPs perturbations to each gene expression level.

The data sets are collected for two yeast parent strains,
BY4716 (BY) and RM11-1a (RM), and their 112 segregants.
We obtain SNPs for 1,260 loci to the exclusion of the
redundant SNPs observed in neighboring genetic regions
and leave 3,684 expression genes after screening out genes
of missing more than 5%. In order to validate whether or
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Table 3: Comparisons of the performance of JMCCM with SCGGM, CAPME, and JML for models 1–6. Standard errors are presented in
parenthesis.

Model Method 𝛿𝑆𝑡𝑒𝑖𝑛 ‖Δ‖𝐹 SPE SEN Youden𝑁 = 500
1

JMCCM 0.139 (0.004) 0.519 (0.008) 0.864 (0.010) 0.723 (0.014) 0.587 (0.012)
SCGGM 0.171 (0.007) 0.556 (0.010) 0.865 (0.030) 0.624 (0.027) 0.506 (0.014)
CAPME 0.113 (0.003) 0.512 (0.008) 0.002 (0.001) 1.000 (0.000) 0.002 (0.001)
JML 0.099 (0.003) 0.450 (0.005) 0.160 (0.026) 0.980 (0.005) 0.140 (0.024)𝑁 = 500

2

JMCCM 0.241 (0.005) 0.677 (0.009) 0.915 (0.004) 0.801 (0.007) 0.716 (0.006)
SCGGM 0.349 (0.008) 0.821 (0.012) 0.661 (0.029) 0.882 (0.016) 0.542 (0.017)
CAPME 0.430 (0.007) 1.028 (0.011) 0.005 (0.001) 1.000 (0.000) 0.005 (0.001)
JML 0.232 (0.004) 0.670 (0.008) 0.210 (0.009) 0.980 (0.003) 0.200 (0.009)𝑁 = 500

3

JMCCM 0.705 (0.011) 1.145 (0.009) 0.947 (0.002) 0.653 (0.006) 0.600 (0.005)
SCGGM 1.158 (0.034) 1.506 (0.032) 0.716 (0.036) 0.706 (0.029) 0.422 (0.010)
CAPME 1.703 (0.012) 2.217 (0.015) 0.005 (0.000) 1.000 (0.000) 0.005 (0.000)
JML - - - - -𝑁 = 500

4

JMCCM 0.239 (0.006) 0.678 (0.011) 0.910 (0.004) 0.802 (0.007) 0.712 (0.007)
SCGGM 0.402 (0.010) 0.869 (0.011) 0.825 (0.031) 0.772 (0.017) 0.597 (0.019)
CAPME 0.447 (0.007) 1.081 (0.010) 0.004 (0.001) 1.000 (0.000) 0.004 (0.001)
JML 0.284 (0.005) 0.793 (0.008) 0.110 (0.006) 1.000 (0.001) 0.100 (0.006)𝑁 = 500

5

JMCCM 0.463 (0.007) 0.953 (0.007) 0.941 (0.003) 0.731 (0.007) 0.672 (0.006)
SCGGM 0.743 (0.011) 1.188 (0.010) 0.978 (0.002) 0.567 (0.007) 0.545 (0.007)
CAPME 0.983 (0.008) 1.683 (0.012) 0.005 (0.001) 1.000 (0.000) 0.005 (0.001)
JML 0.524 (0.524) 1.074 (0.009) 0.140 (0.006) 0.980 (0.002) 0.120 (0.006)𝑁 = 500

6

JMCCM 0.711 (0.010) 1.153 (0.010) 0.951 (0.002) 0.639 (0.006) 0.590 (0.005)
SCGGM 1.126 (0.011) 1.438 (0.007) 0.988 (0.001) 0.440 (0.004) 0.428 (0.004)
CAPME 1.781 (0.013) 2.406 (0.013) 0.006 (0.000) 0.999 (0.000) 0.006 (0.000)
JML - - - - -𝑁 = 1000

1

JMCCM 0.068 (0.002) 0.364 (0.006) 0.814 (0.007) 0.886 (0.009) 0.700 (0.009)
SCGGM 0.139 (0.010) 0.483 (0.018) 0.888 (0.024) 0.668 (0.031) 0.556 (0.016)
CAPME 0.055 (0.002) 0.346 (0.006) 0.003 (0.001) 1.000 (0.000) 0.003 (0.001)
JML 0.046 (0.001) 0.301 (0.005) 0.150 (0.015) 1.000 (0.001) 0.150 (0.015)𝑁 = 1000

2

JMCCM 0.117 (0.003) 0.466 (0.006) 0.894 (0.003) 0.898 (0.005) 0.793 (0.004)
SCGGM 0.168 (0.007) 0.550 (0.010) 0.652 (0.018) 0.960 (0.006) 0.612 (0.016)
CAPME 0.215 (0.003) 0.696 (0.007) 0.003 (0.001) 1.000 (0.000) 0.003 (0.001)
JML 0.119 (0.002) 0.459 (0.006) 0.320 (0.120) 0.990 (0.003) 0.310 (0.012)𝑁 = 1000

3

JMCCM 0.321 (0.006) 0.766 (0.007) 0.916 (0.002) 0.808 (0.004) 0.724 (0.003)
SCGGM 0.645 (0.015) 1.107 (0.011) 0.674 (0.021) 0.847 (0.024) 0.521 (0.008)
CAPME 0.824 (0.006) 1.405 (0.007) 0.005 (0.000) 1.000 (0.000) 0.005 (0.000)
JML - - - - -𝑁 = 1000

4

JMCCM 0.115 (0.003) 0.467 (0.006) 0.893 (0.003) 0.904 (0.006) 0.797 (0.005)
SCGGM 0.286 (0.009) 0.745 (0.012) 0.786 (0.028) 0.822 (0.019) 0.609 (0.015)
CAPME 0.215 (0.003) 0.703 (0.006) 0.003 (0.001) 1.000 (0.000) 0.003 (0.001)
JML 0.123 (0.002) 0.486 (0.005) 0.160 (0.006) 1.000 (0.002) 0.150 (0.005)
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Table 3: Continued.

Model Method 𝛿𝑆𝑡𝑒𝑖𝑛 ‖Δ‖𝐹 SPE SEN Youden𝑁 = 1000
5

JMCCM 0.217 (0.004) 0.643 (0.006) 0.924 (0.002) 0.867 (0.005) 0.792 (0.004)
SCGGM 0.671 (0.011) 1.141 (0.001) 0.995 (0.002) 0.542 (0.009) 0.536 (0.008)
CAPME 0.473 (0.004) 1.065 (0.007) 0.004 (0.000) 1.000 (0.000) 0.004 (0.000)
JML - - - - -𝑁 = 1000

6

JMCCM 0.331 (0.005) 0.781 (0.006) 0.926 (0.002) 0.789 (0.005) 0.715 (0.004)
SCGGM 1.024 (0.010) 1.380 (0.006) 0.998 (0.000) 0.414 (0.003) 0.412 (0.003)
CAPME 0.844 (0.006) 1.466 (0.008) 0.005 (0.000) 0.999 (0.000) 0.004 (0.000)
JML - - - - -

Table 4: Comparisons of the performance of JMCCM with SCGGM and CAPME for models 7–9. Standard errors are presented in
parenthesis.

Model Method 𝛿𝑆𝑡𝑒𝑖𝑛 ‖Δ‖𝐹 SPE SEN Youden𝑁 = 500
7

JMCCM 2.234 (0.021) 2.071 (0.011) 0.969 (0.001) 0.638 (0.004) 0.608 (0.003)
SCGGM 2.670 (0.017) 2.160 (0.007) 0.994 (0.000) 0.512 (0.002) 0.506 (0.002)
CAPME 12.914 (0.038) 9.257 (0.028) 0.002 (0.000) 1.000 (0.000) 0.002 (0.000)𝑁 = 500

8
JMCCM 6.560 (0.073) 3.669 (0.028) 0.982 (0.001) 0.475 (0.004) 0.457 (0.003)
SCGGM 10.687 (0.035) 4.318 (0.006) 0.925 (0.000) 0.430 (0.002) 0.355 (0.002)
CAPME - - - - -𝑁 = 500

9
JMCCM 16.703 (0.254) 5.998 (0.062) 0.986 (0.001) 0.466 (0.003) 0.452 (0.002)
SCGGM 34.025 (0.722) 7.277 (0.048) 0.874 (0.005) 0.453 (0.003) 0.328 (0.003)
CAPME - - - - -

Table 5: Comparisons of the performance of JMCCM with SCGGM and CAPME for the experiment with highly correlated SNPs. 20 genes
(m) and 20 SNPs (p) are involved. Standard errors are presented in parenthesis.

Method 𝛿𝑆𝑡𝑒𝑖𝑛 ‖Δ‖𝐹 SPE SEN Youden𝑁 = 500
JMCCM 0.239 (0.006) 0.678 (0.011) 0.910 (0.004) 0.802 (0.007) 0.712 (0.007)
SCGGM 0.402 (0.010) 0.869 (0.011) 0.825 (0.031) 0.772 (0.017) 0.597 (0.019)
CAPME 0.447 (0.007) 1.081 (0.010) 0.004 (0.001) 1.000 (0.000) 0.0004 (0.001)𝑁 = 1000
JMCCM 0.115 (0.003) 0.467 (0.006) 0.893 (0.003) 0.904 (0.006) 0.797 (0.005)
SCGGM 0.286 (0.009) 0.745 (0.012) 0.786 (0.028) 0.822 (0.019) 0.609 (0.015)
CAPME 0.215 (0.003) 0.703 (0.006) 0.003 (0.001) 1.000 (0.000) 0.003 (0.001)

not the estimated gene network is consistent with unknown
biological knowledge, we take the true signaling pathway for
comparison. Out of 3,684 yeast genes, we purposely focus on
a set of 64 genes that are ascertained in the cell cycle yeast
pathway available in the KEGG database [24]. Together with
1,260 SNPs as predictors, we construct a gene network model
of 64 genes. JMCCM selects 222 nonzero elements of the
precision matrix and leaves nonzero regression coefficients,
for a total of 111 links among genes. A total of 489 regression
coefficients of SNPs over gene expression levels are included
in the final model. Figure 2 displays the conditional gene

network estimated by the proposed joint model. A pair of
two genes is linked if an off-diagonal element of the estimated
precision matrix is nonzero, and so 51 genes are shown to be
linked and assemble in a module.

Given this estimated gene network, we notice that the
gene network is found to be concordant with the true cell
cycle pathway. For instance, according to the true cell cycle
pathway in Figure 1,MCM3 is linked toORC3,ORC5,MCM7,
andMCM4.MCM5 is connected to TAH11 andORC1. PHO4
is closely linked to CLN2 and SIC1, whosemolecular function
is related to MAP kinase orthologs (i.e., MAPK pathway
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Figure 1: The yeast cell cycle pathway from the KEGG database. Source: http://www.kegg.jp/kegg-bin/highlight pathway?scale=1.0&map=
map04111&keyword=cell%20cycle.
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Table 6: Gene ontology (GO) enrichment analysis over the genes in detected module from the JMCCM.

Module Module size GO category GO enrichment 𝑝 value

Module 1 94

Carboxylic acid metabolic process 0.00101
Carboxypeptidase activity 0.00904
Catabolic process 0.00101
Cellular catabolic process 0.00101
Exopeptidase activity 0.00904
Metalloexopeptidase activity 0.00904
Metallopeptidase activity 0.00904
Organic acid metabolic process 0.00101
Peptidase activity 0.00904

genes). It is interesting to note that CLN3 and SWI4 are
mutually connected together, linking to their downstream
gene MBP1. Hence, this undirected graph contributes to
recovering lots of links among the 64 genes of the pathway.

With regard to genetic variant effects, JMCCM is shown
to effectively identify some of the well-known direct genetic
perturbations. Gene expressions are regulated by some
genetic variants, which, unless otherwise taken into account,
may falsely capture the interplay of genes in a network.
Our founding includes Clb-specific Cdk inhibitor (SIC1)
as influencing the molecular interface between cyclin-Cdk
complexes (e.g., binding to and blocking Cdk1/Clb activity,
ultimately to maneuver the timing of DNA replication (see
Table S1 in Supplementary Materials; [27]). In addition, our
gene networks demonstrate that SIC1 is strongly perturbed by
CLB3, while SCGGM did not detect any perturbation effects.
More interestingly, many previous experiments validated
the association between SIC1 and CLB3 to uncover the
underlying mechanism of the cell cycle [28–30]. Clearly, this
implies that JMCCMdoes a better job in accounting for SNPs
perturbation as compared to SCGGM.

Moreover, the gene module detected from JMCCM is
shown in Table 6. Pertaining to these gene modules, we
hypothesize if gene modules, each containing hub genes
and their neighboring genes, are enriched with common
biological processes or not. To test this hypothesis, we
conduct the gene ontology (GO) enrichment analysis [31]
over the detected gene network modules (see Table S2 in
Supplementary Materials) from both JMCCM and SCGGM
using Fisher’s exact tests. Table 6 demonstrates that the
proposedmethod outstandingly performs detectingmodules
biologically associated with many molecular processes, while
none is detected by SCGGM. More importantly, the pathway
of the organic acid metabolic process enriched in gene
module 1 is also reported and validated on the basis of the
network modules constructed with large-scale integration of
yeast data in Zhu et al. [32].

Putting all things together, we conclude that the proposed
method facilitates recovering the true SNPs perturbations in
the midst of gene regulations and elucidating the underlying
interplay of gene interactions. These fortes of the proposed
algorithm are favored for reinforcing a priori biological
knowledge and address a novel hypothesis related to clinical
and translational potential.

6. Conclusion and Discussion

In this paper, we propose JMCCM to efficiently identify
conditional dependent structures of gene expressions with
adjustments to perturbation effects of SNPs. Contrary to the
existing conditional graphical models, the precision matrix
commonly used to reveal the true relationship among genes
is parameterized via the modified Cholesky decomposi-
tion. The maximum likelihood estimates of the precision
matrix were computed, while variable selection of SNPs and
Cholesky factors are carried out separately and jointly by
the GCV and BIC criterion. From experimental studies, it is
clearly shown that JMCCM performs better than the existing
penalization methods. Besides, JMCCM in the application to
yeast cell cycle data successfully recovers many parts of the
cell cycle pathway with adjustments of SNPs to each gene
expressions level. Notably, the model entails the estimation
of precision matrix, of which components are assumed to be
constant. So, in the future, wemay relax this somewhat strong
assumption in the way that the model can parametrize over𝜏 and 𝜙 in pursuit of more accurate estimation [13]. We leave
this for next study.

Appendix

A. Positive Definiteness of K

The matrix representation of the modified Cholesky decom-
position (2) is given by

C (𝜙) =
[[[[[[[[[
[

1 −𝜙12 . . . −𝜙1𝑚1 . . . −𝜙2𝑚
d

...
1

]]]]]]]]]
]
,

D (𝜏) =
[[[[[[[[
[

𝜏1 𝜏2
d

𝜏𝑚

]]]]]]]]
]
.

(A.1)
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For simplicity, write C = C(𝜙) and D = D(𝜏). For any
nonzero vector 𝑢 ∈ R𝑚,

𝑢⊤K𝑢 = 𝑢⊤C⊤DC𝑢 = (C𝑢)⊤ D (C𝑢)
= 𝑚∑
𝑗=1

((C𝑢)𝑗)2 𝜏𝑗 > 0. (A.2)

Since 𝜏𝑗 > 0 for all 𝑗 = 1, . . . , 𝑚, ∑𝑚𝑗=1((C𝑢)𝑗)2𝜏𝑗 = 0 if and
only if C𝑢 = 0, which cannot happen here because 𝑢 is a
nonzero vector. Thus K is a positive definite matrix.

B. A Derivation of
the Log-Likelihood Function

The probability density function of (1) is given by

𝑓 (𝑦 | 𝑥; 𝜃)
= |K|1/2(2𝜋)𝑚/2 exp {−12 (𝑦 − 𝜇 (𝑥))⊤ K (𝑦 − 𝜇 (𝑥))} ,

(B.1)

where 𝜃 = (𝛽, 𝜙, 𝜏). The log-likelihood function correspond-
ing to JMCCM can be derived as follows:

ℓ (𝜃) = log
𝑁∑
𝑖=1

𝑓 (𝑦𝑖 | 𝑥𝑖; 𝜃)
= −𝑚𝑁2 log (2𝜋) + 𝑁2 log |K|
− 12
𝑁∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖)⊤ K (𝑦𝑖 − 𝜇𝑖)

= 𝑁2 {{{−𝑚 log (2𝜋) + 𝑚∑
𝑗=1

log 𝜏𝑗 − tr (K𝑉 (𝛽))}}}

(B.2)

where the last equality comes from |C| = |C⊤| = 1, |D| =𝜏1𝜏2 ⋅ ⋅ ⋅ 𝜏𝑚, and
log |K| = log C⊤ |D| |C| = log |D| = 𝑚∑

𝑗=1

log 𝜏𝑗. (B.3)

C. Derivations of MLE 𝛽, 𝜙, and 𝜏
Using notations presented in Section 2.2, optimization prob-
lem for 𝛽(𝐺) is expressed as

max {12 [log |K| − (Y − X𝛽 (𝐺))⊤W (Y − X𝛽 (𝐺))]} . (C.1)

Denote the score function of 𝛽(𝐺) by 𝑆(𝛽(𝐺)). Observe that
𝑆 (𝛽 (𝐺)) = 𝜕𝜕𝛽 (𝐺) {{{−

12 (Y⊤WY

− 2𝛽 (𝐺)⊤ X⊤WY + 𝛽 (𝐺)⊤ X⊤WX𝛽 (𝐺)
− 𝑚∑
𝑗=1

log 𝜏𝑗)}}} = X
⊤
WY − X⊤WX𝛽 (𝐺)

(C.2)

By solving the normal equation 𝑆(𝛽(𝐺)) = 0, we have (5).
To derive (6), let 𝐶(𝜙𝑗) = (0, . . . , 0, 1, 𝜙𝑗,𝑗+1, . . . , 𝜙𝑗𝑚), 𝑗th

row of C. Then we can see that C⊤DC = ∑𝑚𝑗=1 𝜏𝑗𝐶(𝜙𝑗)𝐶(𝜙𝑗)⊤.
The log-likelihood function (3) can be expressed as the sum
of ℓ𝑗(𝜃𝑗) as follows:
ℓ (𝜃) = 𝑁2 {{{−log (2𝜋) +

𝑚∑
𝑗=1

log 𝜏𝑗 − tr (K𝑉 (𝛽))}}}
= 𝑁2 {{{−𝑚 log (2𝜋) + 𝑚∑

𝑗=1

log 𝜏𝑗

− tr( 𝑚∑
𝑗=1

𝜏𝑗𝐶 (𝜙𝑗) 𝐶 (𝜙𝑗)⊤ 𝑉 (𝛽))}}}
= 𝑁2 {{{−𝑚 log (2𝜋) + 𝑚∑

𝑗=1

log 𝜏𝑗

− 𝑚∑
𝑗=1

𝜏𝑗𝐶 (𝜙𝑗)⊤ 𝑉 (𝛽)𝐶 (𝜙𝑗)}}}
= 𝑁2 {{{−𝑚 log (2𝜋) + 𝑚∑

𝑗=1

log 𝜏𝑗

− 𝑚∑
𝑗=1

𝜏𝑗 (𝑉𝑗𝑗 − 2𝜙⊤𝑗 𝑉𝑗,21 + 𝜙⊤𝑗 𝑉𝑗,22𝜙𝑗)}}}
= 𝑚∑
𝑗=1

ℓ𝑗 (𝜃𝑗) .

(C.3)

Finally, for any given 𝑗 = 1, . . . , 𝑚 − 1, the gradient of
log-likelihood function with respect to 𝜙𝑗 and 𝜏𝑗 is given by

∇ℓ𝑗 (𝜃𝑗)

= [[[
[

𝑁𝜏𝑗 (𝑉𝑗,21 − 𝑉𝑗,22𝜙𝑗)𝑁2 { 1𝜏𝑗 − (𝑉𝑗𝑗 − 2𝜙⊤𝑗 𝑉𝑗,21 + 𝜙⊤𝑗 𝑉𝑗,22𝜙𝑗)}
]]]
]
. (C.4)

Then (8) is obtained by solving ∇ℓ𝑗(𝜃𝑗) = 0with respect to 𝜙𝑗
and 𝜏𝑗.
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applied to the genes of cell cycle pathway. The columns
refer to genes and the rows to SNPs. Table S2 contains the
gene lists of each module estimated from both SCGGM and
JMCCM. Table S3 shows results of simulation with a large
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