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A B S T R A C T

Buprenorphine is currently being studied for treatment-resistant depression because of its rapid effect, relative
safety, and unique pharmacodynamics. To understand the neural impact of buprenorphine in depression, we
examined acute limbic and reward circuit changes during an intervention with low-dose buprenorphine aug-
mentation pharmacotherapy. Mid and late-life adults with major depression (N=31) who did not completely
respond to an adequate trial of venlafaxine were randomized to augmentation with low-dose buprenorphine or
matching placebo. We investigated early neural changes using functional magnetic resonance imaging (fMRI)
from pre-randomization to 3 weeks using both an emotional reactivity task and a gambling task. We tested if: 1)
there were significant neural changes acutely per intervention group, and 2) if acute neural changes were as-
sociated with depressive symptom change over 8 weeks using both the total score and the dysphoria subscale of
the Montgomery Asberg Depression Rating Scale. Participants in both the buprenorphine and placebo groups
showed similar changes in depressive symptoms. Neither the emotional reactivity nor gambling task resulted in
significant neural activation changes from pre-randomization to 3-weeks. In both groups, increases in rostral
anterior cingulate (rACC) and ventromedial prefrontal cortex (vmPFC) activation during the emotional reactivity
task were associated with overall symptom improvement. In the buprenorphine but not the placebo group,
increased activation in left anterior insula (aINS) and bilateral middle frontal gyrus (MFG) was associated with
improvement on the dysphoria subscale. Activation changes in the reward task were not associated with bu-
prenorphine. This is the first study to show an association between acute neural changes during emotion re-
activity and changes in depression severity with buprenorphine treatment.

1. Introduction

Persistent depressive symptoms in mid- and late-life contribute to
poor psychosocial functioning, worsened medical comorbidities, and
increased all-cause mortality and suicide (Blazer, 2003). Treatment
with selective serotonin reuptake inhibitors (SSRIs) or serotonin-nor-
epinephrine reuptake inhibitors (SNRI) lead to remission in less than
half of patients with depression (Smagula et al., 2015; Tedeschini et al.,
2011). In case of non-response, augmentation strategies are only ef-
fective in 20–44% of cases (Kaneriya et al., 2016; Lenze et al., 2015;

Rush et al., 2006). Thus, there is a need for novel pharmacologic
strategies for treatment-resistant depression (TRD) that are safe, well-
tolerated, and have a rapid onset of clinical benefit.

In this context, low-dose buprenorphine has emerged as a promising
augmentation agent. It has an established safety profile (e.g., limited
addiction risk, low risk of respiratory suppression, and pharmacoki-
netics not influenced by renal dysfunction) (Karp et al., 2014). Our pilot
data also suggest that it is well-tolerated, has a rapid clinical effect, and
may be effective in mid- and late-life adults with TRD (Karp et al.,
2014). These pilot data have been corroborated by a recent randomized
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double-blind placebo-controlled trial of buprenorphine (combined with
samidorphan) in younger adults (Fava et al., 2016).

Buprenorphine is a partial agonist at the mu opiate receptor (MOR)
and antagonist at the kappa opiate receptor (KOR), though this affinity
is complex (Falcon et al., 2015; Robinson et al., 2017). Cortical and
limbic regions rich in opioid receptors are associated with emotional
dysregulation and with clinical response to antidepressant pharma-
cotherapy (Lutz and Kieffer, 2013). However, the specific brain circuits
involved in these effects, and the mechanism of action of buprenor-
phine in treatment-resistant depression are still unknown. Given the
complexity of the opioid receptors in buprenorphine and the over-
lapping distribution of different opioid receptors in the brain (Peciña
et al., 2018), we decided to explore the down-stream changes in emo-
tional processing and reward circuitry as these are two character-
istically dysfunctional neural systems in major depressive disorder
(Kupfer et al., 2012). Therefore, we investigated: (1) low-dose bupre-
norphine's effect on emotional processing, (2) its effects on neural re-
ward circuitry, and (3) whether acute changes predicted overall
changes in depression severity. Our previous work (Karim et al., 2016;
Karim et al., 2018) has shown that acute neural changes are associated
with treatment response and may guide early clinical decisions. Mea-
suring acute change in brain activity may inform which neural targets
should be engaged in efforts to hasten treatment response.

A recently completed multi-site intervention development trial
(clinicaltrials.gov Identifier NCT02176291) will help determine clinical
efficacy of antidepressant augmentation with low-dose buprenorphine.
The goal for this report is focused on describing neural target engage-
ment that may be modulated by the drug. We employed two fMRI be-
havioral tasks (an emotional reactivity task (Hariri et al., 2002a) and a
gambling task (Delgado et al., 2000)) during an 8-week clinical trial of
low-dose buprenorphine or matching placebo augmentation in mid-
and late-life adults with TRD. These two tasks probe the brain activity
in the limbic and reward systems, respectively (Lutz and Kieffer, 2013).
We assessed whether acute activation changes in the limbic and reward
systems were associated with improvement in depressive symptoms,
evaluated by both the total score and the dysphoria subscale (Parker
et al., 2003) from the Montgomery Asberg Depression Rating Scale
(Montgomery and Asberg, 1979). We explored dysphoria as we aimed
to investigate the core antidepressant effect of buprenorphine and be-
cause it has been associated with KOR/dynorphin system in animals
(Land et al., 2008) and humans (Pietrzak et al., 2014). Thus, the KOR/
dynorphine system is a possible mechanism underlying buprenorphine's
antidepressant effect. We defined early symptom improvement, hen-
ceforth “acute,” as following 3 weeks of treatment, as there exists lit-
erature that suggests that clinical response within 2–4weeks of treat-
ment is predictive of remission (Andreescu et al., 2008; Joel et al.,
2014). Thus, we expected a significant neural change by 3weeks after
initiation of treatment.

We expected that buprenorphine may alter limbic neural activation
during the emotion reactivity task. Improvement of depressive symp-
toms may be associated with either an increased neural activation as-
sociated with improvement in emotion context insensitivity
(Rottenberg et al., 2005) or decreased neural activation associated with
lower cognitive bias toward negative stimuli (Disner et al., 2011). Be-
cause of the low-doses in this study and reduced addictive profile of
low-dose buprenorphine, we did not predict differences in reward
network activation between those exposed to buprenorphine and pla-
cebo (Koob and Mason, 2016; Tzschentke, 2002). However, increase in
reward network activation was anticipated in those who improved
clinically, irrespective of the buprenorphine or placebo groups.

2. Methods

2.1. Participants and study design

Participants were at least 50 years old and met DSM-IV criteria for

major depressive disorder (MDD) with a minimum Montgomery-Åsberg
Depression Rating Scale [MADRS]≥ 15 (Montgomery and Asberg,
1979). Participants were excluded if they had a major neurocognitive
disorder (e.g., dementia), psychosis, bipolar disorder, substance or al-
cohol use disorder, or contraindications to MRI. We also excluded those
with chronic pain, because we were interested in buprenorphine's an-
tidepressant effect without contribution from its analgesic effect. The
Institutional Review Board at the University of Pittsburgh approved the
study, and all participants provided written informed consent.

This study consisted of two phases and was part of a multi-site in-
tervention development trial investigating antidepressant augmenta-
tion with buprenorphine. The data reported here are from the
Pittsburgh site, which also collected fMRI data during the augmentation
phase.

During the first 12-weeks, participants with depression were treated
openly with venlafaxine XR (up to 300mg/day). Non-responders were
randomized under double blind conditions to augmentation with either
sublingual buprenorphine or matching placebo (2:1 allocation) for an
additional 8 weeks. Buprenorphine or placebo was started at 0.2mg/
day and increased by 0.2 mg/day each week based on depression se-
verity and tolerability up to a maximum of 1.2 mg/day. These dosages
were based on previous open-label trials using buprenorphine for
treatment resistant depression in younger (0.15–1.8mg/day) and older
adults (0.2–1.6mg/day) (Bodkin et al., 1995; Karp et al., 2014). Par-
ticipants had two fMRI scans: pre-randomization and after three weeks
of exposure to buprenorphine/placebo, to explore the association be-
tween acute changes in activation and 8-week treatment response (Kay
et al., 2016).

2.2. Assessments

The MADRS was administered weekly by raters blind to treatment
assignment. Response was defined as a MADRS ≤10 for two con-
secutive weeks. We chose this definition of response (instead of 50%
improvement from baseline) to include individuals in phase 2 who may
have responded to venlafaxine, but were still quite symptomatic. To
detect a depression-specific effect, all analyses also used the five-item
dysphoria subscale of the MADRS comprising apparent sadness, re-
ported sadness, lassitude, reduced concentration, and inability to feel
(Parker et al., 2003).

Side effects were assessed weekly with the self-reported
Antidepressant Side-Effect Checklist (ASEC) (Uher et al., 2009). Eu-
phoria was assessed with a 0–10 visual analog scale (Krystal et al.,
2005) to identify a euphoric effect that may promote addictive behavior
(Dackis and O'Brien, 2005).

2.3. Emotional reactivity: face/shapes task (Hariri et al., 2000)

During the emotional reactivity task participants either matched
faces or shapes. They were instructed to respond with an MR-compa-
tible glove (left or right index finger) by identifying one of two images
in the lower row that matches a “cue image” presented in the top row.
Only negative emotional faces (angry or fearful) were shown; shapes
were geometric forms. There were five shape-matching blocks (24 s)
interleaved with four face-matching blocks. For the faces block, six
images (balanced by sex and emotion [angry or fearful]) were pre-
sented. Before each block, participants were visually instructed to ei-
ther “match emotion” or “match form” (2 s). Through this implicit
emotional reactivity manipulation, the amygdala, anterior insula
(aINS), rostral cingulate, and other associated areas are activated
(Fitzgerald et al., 2008; Hariri et al., 2000), which may serve as a proxy
of brain changes in limbic circuitry during early treatment. Faces were
presented from a set of 12 different images and are derived from a
standard set of pictures of facial affect. We used E-Prime to present
stimuli and record responses (Psychology Software Tools, Inc., Pitts-
burgh, PA. 2002). While this task does not have happy or neutral faces,
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the goal was to understand limbic reactivity (amygdala activation), as
well as the regulatory components involved, which has been demon-
strated best via angry and fearful faces (Hariri et al., 2002b). Notably,
happy faces do not elicit a similar limbic response and those with de-
pression can subjectively perceive neutral faces as more negative – thus
shapes instead of neutral faces are a good visual and motor control.

2.4. Reward: gambling task

This task (Delgado et al., 2000) activates striatal and other reward-
related brain regions (Delgado et al., 2003; Wagner et al., 2007). In this
card-guessing game, a question mark appears on the screen as a cue.
Participants guess whether the number of the hidden card is greater or
lower than 5. Then the actual number is revealed, followed by an up-
ward green, red, or yellow arrow for correct, incorrect, or tie guesses.
Participants are told they will receive $1.00 on a win trial and lose
$0.50 on a loss trial and that the hidden numbers are generated ran-
domly from 1 to 9. Classic decision-making literature suggests that the
impact of negative outcomes, such as losses, is larger than that of po-
sitive outcomes, such as gains; thus similar to past studies we have
chosen a 2:1 win to loss ratio (Tversky and Kahneman, 1981). In reality,
the hidden numbers are picked by the computer based on the number
chosen by the participant to fulfill a pre-determined sequence of win,
loss, or neutral trials. A total of two blocks were run (38 s), with each
consisting of 9 trials (3 of each trial). By comparing the activation for
buprenorphine or placebo, this task probes the reward effect of bu-
prenorphine (e.g., abuse potential).

2.5. Image acquisition

All scanning was done on a 3 Tesla Trio TIM MRI scanner (Siemens,
Berlin, Germany) using a 12-channel custom head coil located at the
MR Research Center at the University of Pittsburgh. Magnetization-
prepared rapid gradient-echo (MPRAGE), fluid attenuated inversion
recovery (FLAIR), and T2*-weighted blood‑oxygen level dependent
(BOLD) sequences were collected during both tasks. Detailed para-
meters are described in the Supplementary Methods section (Image
Acquisition). Participants also had a resting state BOLD scan, however
this was not analyzed but will be given special attention in future work.

2.6. Image preprocessing

Image preprocessing was conducted via Statistical Parametric
Mapping software (SPM12; http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/) as detailed in the Supplementary Methods section
(Image Preprocessing). Briefly, functional scans were motion corrected,
normalized to a standard anatomical space (using the structural scans),
and then smoothed. FLAIR scans were used to automatically extract
white matter hyperintensity (WMH) burden.

2.7. Modeling task activation

For both tasks, we performed a mass-univariate regression that
modeled the mean of the voxel-wise time series, the six motion para-
meters, and the onset and duration of the task (faces and shapes for the
emotion reactivity task; win, loss, and neutral for the reward task)
convolved with the canonical hemodynamic response function. The
model used a series of temporal cosines to model low frequency noise
(1/128 Hz) and an autoregressive [AR(1)] filter was used to model
aliased biorhythms and unmodelled activity/noise. The primary con-
trast for the emotional reactivity task was emotional faces minus
shapes; while for the reward task the contrast was reward minus loss
(other possible contrasts, including reward minus neutral and loss
minus neutral, were reported in the Supplement).

2.8. Biochemistry analytical methods

Buprenorphine and metabolite (Brown et al., 2011) concentrations
were determined in venous plasma collected at the time of the second
MRI. Three of the metabolites (norbuprenorphine, buprenorphine-3-
glucuronide, and norbuprenorphine-3-glucuronide) (Brown et al.,
2011) are biologically active with equal or higher plasma levels than
the parent drug (Lutfy and Cowan, 2004). Thus, we measured the
plasma level of buprenorphine and these three metabolites. Plasma was
stored at −80 °C until analyzed. Concentrations of buprenorphine and
the major metabolites were determined by liquid chromatography-mass
spectrometry as described previously (Regina and Kharasch, 2013),
except that an ABSciex 6500 mass spectrometer was used.

2.9. Statistical analysis

Demographic and psychometric data were analyzed using the
Statistical Package for the Social Sciences version 19.0 (SPSS19.0). All
data were expressed as mean and standard deviations (SD), and the
significance level was set at 0.05. Treatment assignment had been un-
blinded at the time of statistical analysis.

We performed voxel-wise statistical analyses using statistical non-
parametric mapping (SnPM13; http://warwick.ac.uk/snpm) (Nichols
and Holmes, 2002) with permutation testing (10,000 permutations per
analysis). To adjust for multiple comparisons, we controlled the cluster-
wise (uncorrected cluster forming threshold at p < .001) family-wise
error (FWE) rate at 0.05. Due to the limited sample sizes and limited
approaches available voxel-wise, we have used a difference-based
analysis rather than other statistical approaches (e.g., mixed-effects
modeling – which would have required a significantly greater sample
size and number of observations).

We now describe the analyses conducted for both tasks separately.
After conducting an independent samples t-test on baseline imaging
comparing the two groups (i.e., buprenorphine and placebo) to verify
that there were no differences in activation at baseline, we created a
difference image for each participant by subtracting the pre-treatment
contrast map from the week 3 (acute post-treatment) contrast map. We
performed an independent samples t-test on this difference image to
examine changes in activation between the two treatment groups (bu-
prenorphine and placebo).

We also conducted a set of analyses with respect to associations
between changes in depression severity and neural activation.
Considering the sample size, we did not expect that there would be
significant changes in activation, however these associations would be
an important step to determining the neural impact of buprenorphine
and placebo. We examined the association between early changes (at
three weeks compared to pre-treatment) in activation and changes in
depression during the 8-week treatment trial, and its interaction with
treatment group (i.e., to examine whether early neural changes pre-
dicted changes in depression severity and if this was dependent on
treatment group). Relative changes in depression severity were calcu-
lated for both the total MADRS or its dysphoria subscale based on the
score at week 8 minus baseline score, divided by baseline score. Since
we had defined response as a 50% improvement in symptoms (see
Assessments section), we decided to use a ratio rather than the differ-
ence as this was more clinically meaningful whereas the raw difference
does not indicate whether this was a meaningful change (e.g., a de-
crease in raw score of 15 may seem like a lot of improvement, but given
a pre-treatment score of 40 – this would not be considered a strong
response).

As a post-hoc analysis, we also extracted the activation (measured as
the value of the contrast in those regions) within the significant clus-
ters, to assess their association with the plasma levels of buprenorphine
and its metabolites. Finally, in additional exploratory analyses, we in-
vestigated the association between baseline activation and baseline
symptom severity or end-of-trial symptom improvement (supplement
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Table S3 and Figs. S2–3). Similarly, we investigated the association
between euphoria and activation during the gambling task.

3. Results

In the buprenorphine group, 3 participants exited the trial prema-
turely and only had baseline fMRI scans (due to non-compliance with
the protocol, withdrawal of consent, and death from pre-existing car-
diac disease unrelated to study participation); one was excluded due to
corrupted imaging data; and one exited after only 6 weeks (due to high
depression severity) but the data were included in the analysis carrying
forward the last depression score. Thus, 16 participants randomized to
buprenorphine and 11 randomized to placebo that completed two
fMRIs are included in the analysis (Supplemental Fig. S1). These 27
participants did not significantly differ from the three who exited the
study in terms of age, sex, or baseline depression severity.

3.1. Clinical measures

In this multi-site treatment development project, the clinical data
from the Pittsburgh site indicated no differences between the bupre-
norphine and placebo groups for any of the demographic (age, sex,
ethnicity, education), baseline depression scores, or other clinical
characteristics (Supplemental Table S1). The final mean (SD) bupre-
norphine dosage was 0.5 (0.2) mg/day. All participants showed some
improvement in depression severity during the trial. There was no
significant group (placebo vs. buprenorphine) difference in: improve-
ment of depressive symptoms (with either the total MADRS or dys-
phoria subscale); side effects (ASEC); or euphoria (visual analog scale)
(Supplemental Table S2). We further confirmed no significant differ-
ences between the two groups by performing a mixed-ANOVA using
weekly MADRS, where we found that there was no significant inter-
action between group and time [F(8,168)= 0.44, p= .898], no sig-
nificant group differences [F(1,21)= 0.62, p= .439], but there was a
significant decrease in MADRS across time independent of group [F
(8,168)= 3.46, p < .005].

3.2. Emotional reactivity task: face/shapes

We found no group differences in activation at baseline or in the
change in activation but found that there existed significant associa-
tions between neural changes and symptom changes. Specifically, we
found that independent of group, an increase in rostral anterior cin-
gulate gyrus (rACC)/ventral medial prefrontal gyrus (vmPFC) activa-
tion was associated with overall improvement on both total MADRS and
dysphoria subscale (Table 1 and Fig. 1a/b). In the buprenorphine, but
not the placebo group, an increase in left anterior insula (aINS) and
bilateral middle frontal gyrus (MFG) activation was associated with
improvement on the dysphoria subscale (Table 1 and Fig. 2). Changes
in these regions were not associated with levels of BPN or its metabo-
lites (Table 2).

3.3. Gambling task

We found no group differences in activation at baseline or in the
change in activation, but again found significant associations between
neural and symptom changes. An acute increase in visual cortex acti-
vation was associated with improvement in total MADRS (Table 1 and
Fig. 3). However, no group specific associations were detected, even
under different contrasts, including reward minus neutral and loss
minus neutral (supplemental Fig. S4). Changes in these regions were
not associated with levels of BPN or its metabolites (Table 2).

4. Discussion

We identified associations between increased emotion reactivity

rACC/vmPFC activation and improvement of depressive symptoms in-
dependent of treatment (placebo or buprenorphine) and also between
increased emotion reactivity left aINS and bilateral MFG activation and
improvement of dysphoria in the buprenorphine but not placebo
groups. Given the preliminary nature of these results, it is important to
replicate this study and validate these results especially given the
modest sample size and failure to identify significant changes in neural
activation. However, given that this is one of the first studies on bu-
prenorphine in late-life depression, we propose that these results may
be related to some existing literature and provide a more general dis-
cussion to help identify future work.

During the emotional reactivity task, we observed that an increase
in rACC/vmPFC activation was associated with an improvement in
depressive symptoms, regardless of the intervention. The increase in
rACC/vmPFC activation may reflect top-down control of limbic systems
by rACC (Etkin et al., 2006) and vmPFC (Myers-Schulz and Koenigs,
2012). Our finding in the rACC is consistent with the previously re-
ported association in a PET study between increased glucose metabo-
lism of rACC and response to both fluoxetine and placebo (Mayberg
et al., 2002). Similarly, rACC activity has been associated with placebo
analgesia (Bingel et al., 2006; Petrovic et al., 2002), and modulation of
endogenous μ-opioid receptors has been linked to placebo response in
pain and antidepressant treatment (Peciña et al., 2015; Zubieta et al.,
2005). Within the ACC, both MOR binding (Peciña et al., 2015) and its
resting-state functional connectivity (Sikora et al., 2016) correlated
with placebo response and predicted subsequent antidepressant re-
sponse. Since the ACC is densely populated with both MOR and KOR
(Henriksen and Willoch, 2008), it is possible that buprenorphine and
placebo modulate the opioid system in rACC to improve depressive
symptoms.

Increased activation in left aINS and bilateral MFG was associated
with improvement on the dysphoria subscale for the buprenorphine but
not the placebo group. Both aINS and MFG are associated with negative
facial emotional processing (Fusar-Poli et al., 2009), and activation of
the aINS has been implicated in the response to antidepressant treat-
ments (Davidson et al., 2003; Langenecker et al., 2007; McGrath et al.,
2013). Consistent with our findings, Davidson et al. reported increasing
left aINS activation during a negative affect processing fMRI task with
successful venlafaxine treatment (Davidson et al., 2003). The aINS
functions as a hub in sensing or prioritizing emotional and cognitive
salience (Craig, 2002), and successful emotional regulation presumably
requires improvement in awareness and differentiation of one's own

Table 1
Association between changes in fMRI brain activity after three weeks and de-
pressive symptom improvement.

Region BA MNI coordinates Cluster size⁎ Peak t

x y z

Emotional reactivity task
MADRS total score in all participants
rACC/vmPFC 32,24 −2 32 6 588 4.9

Dysphoria subscale in all participants
rACC/vmPFC 32,10,24 26 42 −2 2259 5.5
Left MFG/DLPFC 10,9,46 −38 42 10 1651 6.0

Dysphoria subscale in buprenorphine group
Left aINS, MFG 10 −36 46 8 552 5.3
Right MFG 10 22 50 6 208 4.7

Gambling task
MADRS total score in all participants
Left cuneus 19 −6 −88 28 239 −5.0

rACC, rostral anterior cingulate gyrus; vmPFC, ventromedial prefrontal gyrus;
MFG, middle frontal gyrus; DLPFC, dorsolateral prefrontal gyrus; BA,
Brodmann area.

⁎ SnPM correction (p-uncorrected cluster forming threshold at 0.001) with
FWE p-value at 0.05.
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emotions (Barrett et al., 2001). Thus, our results suggest that the
combined effect from the heightened emotional awareness and greater
implicit emotional regulation among participants exposed to low-dose
buprenorphine (Gyurak et al., 2011; Ochsner and Gross, 2005; Phillips

et al., 2008) may be associated with improvement in depression.
It is of interest in our study that the MADRS dysphoria subscale was

more sensitive than the overall MADRS scale in suggesting an anti-
depressant effect of low-dose buprenorphine augmentation. This is

Fig. 1. Three-week increase in rACC/vmPFC activity in emotional reactivity task was associated with end-of-trial symptom improvement across all subjects. 2a.
Association with MADRS improvement. 2b. Association with dysphoria improvement.

Fig. 2. Three-week increase in left anterior insula
and bilateral middle frontal gyrus activity in emo-
tional reactivity task was associated with end-of-trial
dysphoria improvement in buprenorphine, not in
placebo. Note: Even after excluding the two partici-
pants in the BPN group that may seem like outliers
(far two most points), the association still holds [r
(13)= 0.84].
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supported by a recent PET study using a KOR-selective ligand in trauma
patients (Pietrzak et al., 2014). In that study, it was observed that ac-
tivating the dynorphine/KOR system in the aINS induced dysphoria.
Given that we did not find significant changes in activation, but rather
associations between changes in activation and changes in depression/
dysphoria severity, it is critical to replicate this exploratory finding to
validate these results. Ultimately, we were limited by the number of
scans at baseline and 3weeks after beginning treatment, as it is likely
that similar neural engagement could be detected in post-treatment
with an association beyond the dysphoria subscale as it could take a
longer duration for other items in MADRS to improve during depression
treatment (Alonzo et al., 2013; Tominaga et al., 2011; Wade and Friis
Andersen, 2006).

Although there existed an association between the early increase in
cuneus activation during the reward task and symptom improvement
across all participants, no expected brain areas involved in reward ac-
tivation, including ventral striatum, caudate, or insula (Delgado, 2007),
were found to be related to symptom improvement. If this lack of
greater engagement of the reward system with low-dose buprenorphine
compared to placebo is replicated, it may support limited activation of
neural reward circuits. However considering the modest sample size, it
is unclear if this is just an effect size that we were unable to detect.

We acknowledge that the small sample size does not permit mean-
ingful inferences about clinical effect. We observed neither significant
differences between placebo and buprenorphine clinically nor sig-
nificant neural changes following three weeks of treatment. We did
observe that acute changes in activation was associated with changes in
depression severity for individuals who received buprenorphine but not

placebo. These preliminary associations help improve our under-
standing of the neural mechanisms of buprenorphine and placebo
treatment and requires further investigation. It should be noted how-
ever, that only a limited set of regions were associated with bupre-
norphine specific changes in depression severity. The non-significance
of the association in the placebo group may also have to do with the
sample size, however the effect size was small (r=−0.16). In addition
to the modest sample size, the low dose of buprenorphine may also
have reduced our power to detect significant changes or associations.
Finally, our analyses did not allow for causative inference; thus, all
results are correlational in nature and do not imply causation. Future
studies should include multiple assessment points throughout the study
to sample fMRI and clinical measures to understand the causative
nature of these changes. Further validation of these findings is needed
in a sample that includes both clinically significant differences in de-
pression severity and neural activation.

Although speculative, it is possible that we would have observed
greater separation from placebo for both antidepressant clinical effect
and neural activation with a higher dosage of buprenorphine. For ex-
ample, in a recent placebo controlled study in which the active treat-
ment was superior to placebo, buprenorphine (combined with sami-
dorphan, a potent MOR antagonist) was prescribed at 2–4mg/day
(Fava et al., 2016). While this is the first study investigating the en-
gagement of depression-relevant neural targets, higher dosages should
be considered in future translational studies of buprenorphine.

Table 2
The correlation of three-week drug level, three-week brain activity increase in fMRI task, end-of-trial symptom improvement, and within different metabolites.

BPN norBPN B3G N3G

Pearson correlation (p-value)
Brain activity within the cluster from regression analysis

aINS/bilateral MFC in face/shapes task 0.007(0.981) 0.094(0.739) 0.131(0.642) 0.509(0.053)
ACC/vmPFC in face/shapes task (with MADRS) −0.052(0.853) 0.042(0.882) 0.053(0.852) 0.425(0.114)
ACC/vmPFC in face/shapes task (with dysphoria) −0.090(0.749) −0.114(0.687) 0.094(0.739) 0.305(0.269)
Occipital cluster in gambling task 0.043(0.878) 0.322(0.242) 0.029(0.917) −0.289(0.296)

Symptom improvement
MADRS (%) 0.107(0.704) −0.153(0.586) 0.357(0.191) 0.381(0.162)
dysphoria subscale (%) 0.166(0.553) 0.031(0.913) 0.18(0.180) 0.442(0.099)

Inter-metabolite association
Buprenorphine (BPN) – 0.694(0.004) 0.734(0.002) 0.456(0.087)
Norbuprenorphine (norBPN) – 0.460(0.085) 0.45(0.092)
Buprenorphine-3-Glucuronide (B3G) – 0.651(0.009)
Norbuprenorphine-3-Glucuronide (N3G) –

Bold numbers represent p < .05; italicized numbers denote p < .1.

Fig. 3. Three-week decrease in visual cortex activity in gambling task was associated with MADRS improvement across all subjects.
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5. Conclusion

This study found that acute changes in neural activation were as-
sociated with changes in symptom improvement in dysphoria in mid-
and lafe-life adults with TRD treated with low-dose buprenorphine
augmentation. Changes in specific neural activation in the buprenor-
phine but not the placebo group predicted symptom improvement at
8 weeks. Specifically, this associated increase in left anterior insula and
bilateral middle frontal gyrus activation during an emotional reactivity
task may explain a unique mechanism of augmentation with this opioid
agent. Task-based fMRI may provide a sensitive tool to optimize the
dosage of buprenorphine in future studies, balancing the trade-off be-
tween clinical efficacy and abuse risk. Future studies are needed to
confirm the specific changes we observed in neural activation and to
guide dose-finding strategies.
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