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A B S T R A C T

We propose a complex 4-point method for characterization of flow batteries. The distribution of ohmic and
faradaic losses within a single-cell is evaluated from electrochemical impedance spectra and load curves of
positive and negative half-cells measured with platinum wire pseudo-reference electrodes positioned in
respective electrode compartment. The developed method can be used e.g., for the component screening and in-
situ durability studies on single-cell scale. The method was validated on a vanadium redox flow battery single-
cell; however, it can be analogically employed for various chemistries of flow battery.

� Complex 4-point method for characterization of flow battery single-cell was developed.

� Method is based on electrochemical impedance spectra and load curve measurements.

� Direct evaluation of ohmic and faradaic losses distribution within battery single-cell by the method.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Specifications Table
Subject area: � Chemistry

More specific subject area: Redox flow batteries
Method name: Four-point characterization of flow battery single-cell.
Name and reference of
original method:

Standard full-cell characterization of flow battery single-cell.

Resource availability: Method can be reproduced with regular materials and chemicals used for flow battery
construction and characterization.

Method details

We propose a modification of a standard characterization method of flow battery single-cell.
Majority of the publications related to research and development of the flow battery component is
based on full-cell characterization on a single-cell, typically in symmetric electrode set-up, i.e., same
electrode material for cathode and anode [1–4]. However, such approach is not sufficient to precisely
evaluate the individual sources of the battery inefficiencies. Due to the flow arrangement, reference
electrodes can be easily introduced to the system, typically on the electrolyte inlets which enables to
evaluate the polarization of positive and negative electrode independently [5,6]. More recently, the
application of dynamic hydrogen electrode composing of platinum wire surrounded between two
cation-exchange membranes was used to investigate the inefficiency losses of negative VRFB
electrode [7,8]. However, such approach does not provide the information about the distribution of
ohmic losses within the real battery single-cell.

In our modified method, four high purity platinum wires (0.25 mm diameter) are positioned in the
cell according to scheme depicted on Fig. 1. SM+ and SM� are placed in the electrolyte inlet channels
from both sides of membrane in the proximity of graphite electrodes (without touching them) and
they serve as pseudo-reference electrodes [9]. The wires are implemented in the membrane sealing
which enables to place the wire close to the membrane, as it is illustrated on cross-sectional scheme
on Fig. 2. This was realised by hot-pressing a wire between two thermoplastic elastomeric sheets to fix
the position of wire. The defined contact of the wire with inlet electrolyte is realised via a small hole in
the outer sealing sheet. The contact of the wire with membrane is prevented by inner sealing sheet
which also defines the distance between the wire and membrane to 0.2 mm. During the

Fig. 1. Scheme of VRFB single-cell with indication of positions of platinum wires.1 – current collectors, 2 – composite plates, 3�
– positive/negative felt electrode, 4 – membrane, SP� – platinum wires attached to composite plates, SM� – platinum wires
placed in electrolyte inlets surrounding membrane.
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characterization experiments the changes of the electrolyte composition are negligible, resulting in
sufficiently stable potential value of platinum wire.

Platinum wires SP+ and SP- are connected to carbon composite plates from the inner side by PTFE
adhesive tape (Gore). This enables us to measure the full-cell and half-cell voltage without the
contribution of ohmic drop in current collector and bipolar plates.

Such cell arrangement was used for electrochemical impedance spectroscopy (EIS) and load curve
(LC) measurements of full-cell and both positive and negative half-cells. From these measurements,
the ohmic and faradaic losses of the individual components of the single-cell can be evaluated. The
following experimental specifications of the characterizations were used:

� EIS with 5 mV potential amplitude in the frequency range from 200 kHz to 50 mHz. The obtained EIS
spectra were fitted to appropriate equivalent circuit using EC-Lab software tool.

� LC measurements with linearly increasing current scan (from 0 to +200 mA cm�2 for charging and
from 0 to – 200 mA cm�2 for discharging) with 1 mA cm�2 s�1 scan rate. The slopes of charge and
discharge U-j curves of full-cell and both half-cells were taken as the value of area-specific
resistance under load.

Battery testing was carried out with Potentiostat/galvanostat/FRA EC-LAB VSP-126 (Biologic) with
4 A current booster. All the measurements were performed at 20 �C using tempered box.

Method validation

The method was validated using a vanadium redox flow battery single-cell of our own design and
construction. The battery body was manufactured from polyvinylchloride and sealed by elastomeric
gaskets. The graphite felt electrodes (each of 20 cm2 active area and 25% compression of the original
thickness) were supported by carbon composite plates PPG86 (Eisenhuth). The electrode compartments
were mutually separated by PFSA type cation-exchange membrane (Fumatech). All the measurements
were conducted under electrolyte flow rate of 40 cm3min�1, which corresponds to the linear flow velocity
of approx. 27 cm min�1. Commercial electrolyte comprising 1.6 mol dm�3 of vanadium ions (with 1:1 M
ratio of V3+:V4+, 2 mol dm-3of H2SO4and 0.3% of H3PO4 (GfE, Gesellschaft für Elektrometallurgie mbH) was
used as the initial catholyte and anolyte. Nitrogen gas was bubbled through the negative electrolyte to
prevent its self-discharge due to the oxidation of V(II) ions by oxygen from air.

The battery was characterized in two different state-of charges (SOC). Firstly, characterization was
performed in initial electrolytes, i.e., in equimolar mixture of V3+ and V4+ in both tanks. The resulting
EIS spectra of single-cell and positive and negative half-cells are presented in the form of Nyquist
diagrams on Fig. 3a, with zoom of high-frequency region on Fig. 3b. The equivalent circuits shown on
Fig. 4 were used to fit the spectra.

According to the theory [7,10,11], the intercept of the curve with horizontal axis represents the
ohmic resistance of the cell (RIN) and the diameter of the flattened semi-circle in low frequency region
represents the charge transfer resistance (RCT) of electrode reactions. The flattening of the semi-circle
is caused by non-uniform potential distribution within porous graphite felt electrode and thus the

Fig. 2. Cross-section scheme of membrane sealings with implemented platinum wire pseudoreference electrodes. 1 – outer
membrane sealings, 2 – inner membrane sealings, 3 – membrane, SM� – platinum wires placed in electrolyte inlets surounding
membrane.
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constant phase element (CPE) was used in equivalent circuit instead of capacitor to account for unideal
behaviour of electrode-electrolyte double layer capacitance. EIS spectra of the full-cell contains only a
single semi-circle in low frequency region corresponding to both positive and negative electrode-
electrolyte interfaces, which are identical (same electrodes and same initial electrolyte composition).
In fact, RCT composes of two identical overlapped semi-circles of positive (RCTþ) and negative (RCT�)
electrode reactions, which were obtained by EIS characterization of respective half-cells.

Fig. 3. EIS spectra of vanadium redox flow battery single-cell in symmetric electrode set-up: full-cell (blue squares) and both
positive (red triangles) and negative (black crosses) half-cells measured with SM+ in –50% SOC electrolytes. Full spectra (a) and
zoom of high-frequency region (b) with indication of distributions of ohmic resistances within the cell.

Fig. 4. Equivalent circuit used for the evaluation of full-cell (a) and half-cell (b) EIS spectra.
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From the high-frequency region of the spectra we can evaluate the distribution of ohmic
resistances within the single-cell, as it is indicated on Fig. 3b. For better visualization, we present both
half-cells spectra obtained with positive pseudo-reference electrode (SM+). Subsequently, the battery
was charged by applying constant current to +50% (SOC) (defined by equimolar ratios of V4+:V5+ and V2

+:V3+ in catholyte and anolyte, respectively) and the EIS characterization was repeated, together with
LC measurements. On Fig. 5 the full-cell and half-cell LCs are compared. The overpotential values were
calculated by subtracting open circuit potential from the potentials under current load. We observed
linear dependence of overpotential on current density in a broad range of current density of 0–
200 mA cm�2. Thus, the resistances of individual cell components under current load can be calculated
from the slopes of the curves both for charging and discharging.

The data evaluated from the EIS characterization in –50% SOC and +50% SOC are summarised in
Table 1. In the last table row, the resistances of individual components (evaluated from half-cell
measurements) are summed-up and good accordance with full-cell values is documented. The results
obtained by EIS correlates well with the results of LC measurements. From these data we can see that,
for the measured single-cell, the efficiency losses originate mainly from ohmic resistance of
membrane and both electrodes. Slightly higher activation polarization is observed for negative
electrode.

We demonstrated that the distribution of ohmic and faradaic losses within single-cell can be
evaluate from EIS and LC measurements in full-cell and half-cell arrangement using Pt wire probes
inserted in the cell. The developed four-point characterization method can be used for various
investigations of redox flow battery single-cell scale, e.g., focused on component performance and

Fig. 5. Load curves of vanadium redox flow battery single-cell in symmetric electrode set-up with SM+ and SM– in +50% SOC
electrolytes.

Table 1
Summarization of the distribution of ohmic and faradaic resistances within the single-cell obtained from EIS characterization in
–50% SOC and +50% SOC.

–50% EIS +50% EIS +50% LC

RIN RCT RIN RCT Rcharge Rdischarge

Ohm cm2 Ohm cm2 Ohm cm2 Ohm cm2 Ohm cm2 Ohm cm2

Full-cell 0.85 12.80 0.87 0.20 1.06 1.12
Positive electrode 0.21 5.68 0.22 0.08 0.29 0.28
Negative electrode 0.20 6.74 0.20 0.13 0.35 0.34
Membrane 0.44 – 0.45 – 0.45 0.49
SUMMARY 0.85 12.42 0.87 0.21 1.09 1.11
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durability. The risk of hydrogen evolution reaction of negative electrolyte at higher SOC catalysed by Pt
wire pseudo-reference electrodes was taken into account. By comparing single-cell parameters of the
same system with and without Pt wires, we have not observed any difference on coulombic efficiency
and battery capacity (data are not shown here). Thus this effect seems to be negligible for our system,
probably due to very small area of Pt exposed to the environment (only tip of wire of low surface
roughness). But in general, Pt can be easily substitute by other chemically stable electron conductive
material, e.g., carbon fibre, if needed.
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