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Abstract

Vaccine hesitancy is currently recognized by the WHO as a major threat to global health.

Recently, especially during the COVID-19 pandemic, there has been a growing interest in

the role of social media in the propagation of false information and fringe narratives regard-

ing vaccination. Using a sample of approximately 60 billion tweets, we conduct a large-scale

analysis of the vaccine discourse on Twitter. We use methods from deep learning and trans-

fer learning to estimate the vaccine sentiments expressed in tweets, then categorize individ-

ual-level user attitude towards vaccines. Drawing on an interaction graph representing

mutual interactions between users, we analyze the interplay between vaccine stances, inter-

action network, and the information sources shared by users in vaccine-related contexts.

We find that strongly anti-vaccine users frequently share content from sources of a commer-

cial nature; typically sources which sell alternative health products for profit. An interesting

aspect of this finding is that concerns regarding commercial conflicts of interests are often

cited as one of the major factors in vaccine hesitancy. Further, we show that the debate is

highly polarized, in the sense that users with similar stances on vaccination interact prefer-

entially with one another. Extending this insight, we provide evidence of an epistemic echo

chamber effect, where users are exposed to highly dissimilar sources of vaccine informa-

tion, depending the vaccination stance of their contacts. Our findings highlight the impor-

tance of understanding and addressing vaccine mis- and dis-information in the context in

which they are disseminated in social networks.

Introduction

Vaccine hesitancy, defined as the reluctance or refusal to vaccinate [1], is a growing threat to

global health, and is believed to be driven mainly by the ‘three C’s’: Confidence, Complacency,

and Convenience [2]. Social media platforms may potentially influence vaccine hesitancy

through the former two, for example by enabling easy and wide-spread sharing of content that

exaggerates the risks of vaccination and/or understating the risk of vaccine-preventable dis-

eases [3]. Vaccine hesitancy exist on a continuous spectrum [4], where the extreme positions

of rejecting or accepting all vaccines tends to be overrepresented in online settings [5].
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While vaccine hesitancy is a nuanced and context-dependent phenomenon, some general fac-

tors influencing hesitancy have been identified in the literature [6]. Key among those factors are

the availability of information regarding vaccines [4, 7], the accuracy of beliefs about the risks

and benefits of vaccines and vaccine-preventable diseases [8, 9], social norms regarding vacci-

nation, i.e. whether or not vaccinating is perceived as a ‘normal’ thing to do [5, 10], and trust in

health authorities and/or the pharmaceutical industry, particularly concerns regarding com-

mercial conflicts of interest [4, 7, 8]. The list above is by no means exhaustive, rather a few cen-

tral factors which are well-described in the literature and of particular relevance for this paper.

These factors are strongly connected to the topic of social networks and online misinforma-

tion: Anti-vaccine messages on Twitter typically aim to alter the reader’s perception of risks

and benefits regarding vaccination, often drawing on conspiracy theories [9]. In addition to an

inaccurate risk picture, anti-vaccine content on Twitter, especially during the COVID-19 pan-

demic, has focused on commercial interests in the pharmaceutical sector [11], and often rely

on conspiracy theories in doing so [12].

The detrimental effects of reduced vaccine uptakes on public health are well described in

the literature [13–18]. Somewhat paradoxically, vaccination rates have declined in part due to

the success of vaccines in preventing disease, leading to complacency [19, 20]. However, online

misinformation has also been linked to decreasing vaccine uptake [21–24], and outbreaks of

vaccine-preventable diseases have been observed in areas where anti-vaccine activists have

organized disinformation campaigns [25]. In this sense, the growing amount of online misin-

formation [26, 27] can be characterized as a threat to public health [28].

Countering medical misinformation in online systems is no easy task. While the scientific

literature is rife with evidence which disproves the narratives outlined above [29, 30], individu-

als at the ‘rejection’ extreme of the vaccine hesitancy continuum often have a strong sense of

identity regarding their stance on vaccines [31]. Individuals tend to reinterpret or disregard

information if it conflicts with a stance that they strongly identify [32], an effect which has

been demonstrated in numerous contexts [33] including vaccination [34].

The challenges of countering misinformation is compounded by the fact that strongly anti-

vaccine individuals often form tightly knit communities in large social networks, such as Twit-

ter [35, 36] and Facebook [37]. In such environments, evidence challenging in-group beliefs is

dismissed as untrustworthy [8], and often ends up only reinforcing said beliefs [37, 38].

Therefore, study of the interplay between vaccination attitudes and vaccine-related online

(mis)information is essential to inform policy [39–41], also at the community level [42].

We utilize two large datasets to study this interplay. The first (Dataset 1) is a large, random

sample consisting of of approximately 60 billion tweets. The second (Dataset 2) consists of 6.75

million tweets obtained via Twitter’s search API for tweets containing vaccination-related

terms. Both datasets are discussed in detail in the Methods section. Using these datasets, we con-

struct a large network which captures interactions on Twitter, and use machine learning meth-

ods to identify Twitter profiles with vaccine stances at the ‘rejection’ and ‘acceptance’ extremes

of the hesitancy continuum, known colloquially as anti- and pro-vaxxers, respectively.

Based on the data and methods outlined above (which are elaborated upon in the materials

and methods section), the remainder of the paper presents a number of analyses on the inter-

play between strong vaccination stances, social network structure, and online information.

Anti- and pro-vaccine profiles distinct types of URLs

We use a deep neural network to classify vaccine sentiments expressed in tweets from dataset

2, and identify ‘antivaxx’ and ‘provaxx’ profiles which consistently express highly negative and

positive attitudes toward vaccination, respectively. Full details regarding the stance detection
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methods are presented in the materials and methods section. In the following, we assess the

degree to which anti- and provaxx users tend to rely on distinct types of outside sources, what

characterizes these sources, and whether interactions occur disproportionally between profiles

with similar stances. After estimating vaccine sentiment in the individual tweets, we estimate

the vaccine stance of each individual profile. We define a profile’s stance as provaxx or antivaxx

if at least half of vaccine-related tweets posted by the profile are assigned a probability of at

least 50% of expressing pro- and anti-vaccine sentiment, respectively. Approximately 48% of

profiles were assigned pro- and antivaxx stances, as some profiles had posted only a few tweets

regarding vaccination, or did not unambiguously express the same attitudes toward vaccina-

tion. In terms of the vaccine hesitancy continuum [4], these labels correspond loosely to the

extremes, which tend to be over represented in online discussions [5]. Note that the correspon-

dence is not exact, because hesitance is defined in terms of accepting or rejecting vaccines,

whereas the labels used here refer to attitudes regarding human vaccination. However, inten-

tion to vaccinate is strongly influenced by attitudes regarding vaccination [43].

The distributions of tweet sentiments and profiles stances are shown in Fig 1. Of the vac-

cine-related tweets in English, approximately 35% could be identified as originating from the

United States. An analysis at the state level of the vaccine sentiments expressed in tweets is pro-

vided in S2 Appendix. Details on data gathering, classification, and geolocation are provided

in the materials and methods section.

Of those tweets, approximately 2.65 million contain external links (URLs outside of Twit-

ter). Many such URLs start with a base URL, such as youtube.com, followed by a part which

specifies which subpage (e.g. which particular video) the link points to, as well as various API

calls, etc. We extracted the base URL for each such link, resulting in around 100 thousand

Fig 1. Distribution of tweet sentiment and profile stance. Tweets expressing anti-vaccine sentiment constitute an estimated 17% of

vaccination-related tweets, where only about 3% of profiles stance are classified as antivaxx. Error bars are too small to depict

visually, see S1 Appendix for uncertainty analyses.

https://doi.org/10.1371/journal.pone.0263746.g001
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distinct base URLs. Of those, we identified the 10 most frequently used by anti- and provax-

xers, resulting in 18 URLs due to two domains (facebook.com and youtube.com) appearing

among the ten most common URLs for both groups. The lists of top ten URLs contained 47%

of links posted by antivaxx users, and 15% of links posted by provaxx users. Comparing the

most frequently used base URLs with sentiment results reveals that profiles with different

stances share highly dissimilar content, as shown in Fig 2. In the top ten URLs, profiles with a

pro-vaccine stance typically share content from mainstream news sites, medical or technol-

ogy/science sites, and various social media sites, whereas anti-vaccine profiles tend to share

content from YouTube, social media sites, and a number of sites specializing in alternative

health products, pseudoscience, and conspiracy theories. For details on the categorization of

links, see the Materials and methods section. The absolute number of links posted to each such

domain varies a lot over time for some domains, yet the relative frequency of posts for each

stance is relatively constant; visualizations and statistics are provided in S3 Appendix.

Expanding upon the above, we assign to each of the popular base URLs one or more of the

following labels: “news”, “social”, “science”, “conspiracy”, “pseudoscience”, “commercial”. By

‘commercial’ we here mean sites which sell products related to (alternative) health, and so

have a direct financial interest in the vaccination discourse. Exact definitions of all labels are

provided in the methods section. Fig 3 shows that fraction of links posted by profiles of differ-

ent stances which belong to each such category. The results summarized in Fig 3 are generally

robust to changes in the sentiment threshold for stance attribution, with one exception: When

increasingly strict thresholds are applied, i.e. when we consider only users who share very

Fig 2. The top 10 most linked to domains by strongly antivaxx and provaxx profiles. Bar length shows percentage of the total number of links shared

by profiles in the given category and hence do not sum to 100. For each domain, the red bars going right represent antivaxxers and blue bars going left

provaxxers. Antivaxxers rely heavily on links to YouTube, and the page ‘natural news’, which promulgates pseudoscience and sells products related to

health and nutrition. Provaxxers link to a wide array of news and science sites, which is why a lower overall percentage of their links are contained in

the top 10. Error bars are too small to depict visually, see S1 Appendix for uncertainty analyses.

https://doi.org/10.1371/journal.pone.0263746.g002
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strong vaccine sentiments, the “news” category becomes more frequently linked to among

anti-vaccine profiles. This is due to strongly anti-vaccine profiles disproportionally posting

URLs which point to Fox News. Details and figures regarding that analysis are presented in

S1 Appendix.

The most frequently occurring link category for pro- and anti-vaxxers are news sites, and

Youtube links, respectively. The second most frequent category among antivaxx profiles is

commercial sites profiting from selling health related products. This finding is unexpected, as

common reason for vaccine hesitancy is mistrust in medical research due to perceived finan-

cial conflicts of interest and industry ties to pharmaceutical companies [44]. Links to pseudo-

science and conspiracy sites are also posted disproportionally by profiles with a strong anti-

vaccination stance.

Polarization and epistemic echo chambers

Using Dataset 1, we construct a large network representing observed mutual interactions

between profiles on Twitter. In this network, profiles are linked if there exists a reciprocal

@-mention, or a reciprocal retweet, within a 3-month time window. We refer to the interac-

tion network as the MMR (mutual mention/retweet) network for this reason. Additional

details regarding the MMR network, as well as some analyses of the network structure and

temporal stability, are provided in the materials and methods section. Links are constructed in

Fig 3. Frequency of various categories of links for profiles grouped by vaccination stance (provaxx, antivaxx, or neutral). Antivaxx profiles often

post links to Youtube videos, and to sites that sell health related products and thus have a vested financial interest in the vaccine discourse. Error bars

are too small to depict visually, see S1 Appendix for uncertainty analyses.

https://doi.org/10.1371/journal.pone.0263746.g003
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this fashion for consecutive time windows, where the number of such 3-month time windows

in which two users have interacted can then be viewed as the weight of the link. In addition to

thresholding on this weight, which is illustrated in Fig 5, the graph may be thresholded accord-

ing to the number of vaccine-related tweets from each user, such that only nodes correspond-

ing to users who posted at least a desired number of tweets with vaccination-related keywords

are retained in the graph.

We initially consider a version of the MMR graph constructed using very strict criteria for

node and link inclusion, then subsequently investigate the effects of easing those criteria. We

first include, in each time window, only nodes that are assigned a pro- or anti-vaccine stance.

Further, we only include links between nodes that interacted in several windows. The strict-

ness of these criteria retains only nodes which consistently express strong vaccine-sentiments,

in interact repeatedly nodes that do so as well. As a consequence of the strict criteria, the result-

ing graph contains only 4894 nodes, of which 3359 (69%) nodes form a giant connected com-

ponent. The remaining connected components are loosely scattered, have fewer than 30 nodes

in each, and contain only 5.6% anti-vaccine users. 395 nodes (11.76%) in the giant connected

component represent antivaxx profiles. A representation of the graph using a force layout algo-

rithm [45] is shown in Fig 4. The interplay between the stances of users and their neighbor-

hoods, as well as user connectivity and activity, is visualized in S4 Appendix.

The graph is heavily stratified with regards to vaccination stance. The assortativity coeffi-

cient (Pearson correlation between stance and connectedness in the graph) is r = 0.813.

The analyses above, however, dependend on discretely partitioning users into two distinct

categories. Considering instead user stance as a continuous variable—given by e.g. the average

anti-/pro-vaccine sentiment expressed in their tweets—we obtain similar findings. Discarding

users with fewer than 5 vaccination related tweets, we rebuilt the interaction graph while

Fig 4. Representation of the repeated mutual interaction graph from 2013–2016. Profiles frequently interact with

others who share their own stance, and antivaxx profiles are localized in relatively few, tightly nit clusters. Profiles with

and anti- and provaccine stances are illustrated in red and blue, respectively. Only the giant conected component of the

interaction graph is depicted.

https://doi.org/10.1371/journal.pone.0263746.g004
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varying the minimum number of 3-month time windows in which users must have interacted

before being connected in the graph. Results on the interplay of (continuous) stance and

(repeated) connectivity are summarized in Fig 5.

Correlations between the mean vaccine sentiment expressed in neighboring users’ tweets

were roughly the same independently of how frequently the users interacted, as shown in Fig

5a, although the number of users in the interaction graph decreases quickly when using strict

inclusion criteria (additional analyses in the methods section). Similarly, we observe an anti-

correlation between pro- and anti-vaxx probabilities of neighbors, which seems to diminish

somewhat when considering repeated interactions. However, this decrease appears to be

driven by a few nodes which have many connections, yet do not frequently discuss vaccines, as

shown in Fig 5b.

Fig 5. Interplay between average vaccination sentiment and user interactions. a: Users tend to disproportionally interact with

users of similar stance, both in cases where users only interact during a single, and multiple, three-month time windows. Specifically,

we compute for all users the average probabilities of that user’s tweets expressing pro/anti-vaccine sentiment. Comparing these

averages for all nodes and their neighbors, we find a positive correlation between the average pro- and antivaccine sentiments.

Similarly, the average pro-vaccine sentiment of nodes exhibits a negative correlation with the anti-vaccine sentiments of their

neighbors. The number of nodes in the interaction network decreases exponentially as the minimum number of time windows is

increased. The negative correlation between pro- and antivaxx probabilities of neighbors tends slightly toward zero as the threshold

for repeated interaction grows. b: As increasingly repeated interactions are considered, users in the interactions graph are

increasingly well connected. However, the number of vaccination-related tweets posted by users decreases for interactions occurring

very frequently, indicating that at this point, the graph likely includes users who are highly active on Twitter, yet do not discuss

vaccination-related topics very often. Error bars on Pearson correlations represent one standard deviation of the Fisher-transformed

variables z, i.e. the bounds on the error bar on a correlation r of n data points, is given by tanh(z±σz), where z = arctanh(r) and

sz ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
n � 3
p

:

https://doi.org/10.1371/journal.pone.0263746.g005
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The finding that users interact disproportionally with other users sharing their stance,

aligns with previous findings that long time anti-vaccine users of social media tend to form

tightly knit clusters which exhibit a high degree of in-group solidarity [46], and in which mis-

information may thrive unquestioned [47]. To qualify the latter, we turn again to the URLs

most frequently shared by users discussing vaccines, shown in Fig 2, we probe regions in the

MMR network around individuals of various stances and assess whether the URLs shared in

those regions differ more or less from a normal distribution depending on stance.

Considering only the approximately 32 thousand users with at least 5 vaccination-related

tweets, we group users based on the mean probability of antivaxx (pav) of their tweets. We

computed the deciles of pav for all tweets and grouped users based on which deciles their mean

score fell between, i.e. one bin for mean pav values below the first decile, one for values between

the first and second deciles, and so forth. For each such group of users, we observed the regions

surrounding them in the MMR network, and extracted the URLs shared by all users who were

located in that region, and who had shared at least 5 URLs and posted at least 5 vaccine-related

tweets. We then computed the frequency for each of the top URLs for the regions (locally),

and observed the difference from the overall (global) frequency distribution. The frequency

distributions may be interpreted as maximum likelihood estimates of the probability distribu-

tions over links shared in the regions around specific users, and globally. Therefore, we quan-

tify the difference between such distributions using the Jensen-Shannon (JS) distance [48]—an

information-theoretical measure of distance between probability distributions which take val-

ues in the range between zero (no overlap between distributions) and one (identical

distributions).

Fig 6 shows the JS-distances between overall link frequencies, and links shared by users

adjacent to users with a given mean pav. The figure shows that Twitter profiles that engage in

online vaccine discourse are not only disproportionately connected to other users who share

their stance, but that users with stronger anti-vaccine stances are also exposed to increasingly

atypical sources of information. This is indicative of ‘epistemic echo chambers’ in online vac-

cine discourse in the sense that users, depending on their stance, are exposed not only to a

skewed distribution of stances from other users (i.e. network homophily), but also to informa-

tion sources that are highly dissimilar to those typically partaking in the overall discussion.

Although we do not attempt to explain how these echo chambers arise in the first place, we

can point to some mechanisms described in the literature which are consistent with our

results. First, it is a well-known result in sociology and network science that links tend to form

between nodes that share similar attributes [49, 50]. Second, some studies indicate that people

are highly selective in sharing information that aligns well with their convictions [51], which

in term can cause polarization by opinion reinforcement [52], and by users cutting ties to

avoid exposure to information causing cognitive dissonance [53].

Discussion

In summary, our findings paint a picture of the vaccine discourse on Twitter as highly polar-

ized, where users who express similar sentiments regarding vaccinations are more likely to

interact with one another, and tend to share contents from similar sources. Focusing on users

whose vaccination stances are the positive and negative extremes of the spectrum, we observe

relatively disjoint ‘epistemic echo chambers’ which imply that members of the two groups of

users rarely interact, and in which users experience highly dissimilar ‘information landscapes’

depending on their stance. Finally, we find that strongly anti-vaccine users much more fre-

quently share information from actors with a vested commercial interest in promoting medical

misinformation.
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One implication of these findings is that online (medical) misinformation may present an

even greater problem than previously thought, because beliefs and behaviors in tightly knit,

internally homogeneous communities are more resilient [37, 54], and provide fertile ground

for fringe narratives [55, 56], while mainstream information is attenuated [57]. Furthermore,

such polarization of communities may become self-perpetuating, because individuals avoid

those not sharing their views [58], or because exposure to mainstream information might fur-

ther entrench fringe viewpoints [59].

A further problem exacerbated by the structure of the debate is that, parents often base

their vaccination decisions on their impression of what other parents do [60], so vaccine hesi-

tant parents who encounter a strongly anti-vaccine community might get the impression that

not vaccinating is the norm and opt not to. This risk is compounded by the fact that anti-vac-

cine communities are highly effective at reaching out to undecided individuals [61], which

highlights the need to reach undecided individuals with accurate information to overcome

vaccine hesitancy [62].

In summary, the characteristics of the online vaccine discourse may contribute to increas-

ing vaccine hesitancy, possibly into the extreme of vaccine denial. A brief discussion of mea-

sures that have proven successful in decreasing hesitancy and increasing vaccine uptake

therefore seems in order. One such measure is encouraging direct communication between

hesitant individuals and healthcare professionals. Parents who interact with health care

Fig 6. Profiles that express fringe vaccine sentiments are also exposed via their interaction networks to sources of information

that are highly dissimilar to link frequencies in the overall discussion. Here we consider users who posted a minimum of 5 tweets

containing vaccine-related keywords, and partition them into deciles based on their tweets’ mean probability of expressing anti- and

pro-vaccine sentiment. For each such decile and vaccine stance, the plot shows the Jensen-Shannon distance between the frequencies

at which links from the domains shown in Fig 2 are shared in the vicinity of users in that decile, and in the interaction network

overall. The error bars are computed using a bootstrap technique in which users in the target stance-decile combination where

randomly sampled with replacement and the JS-distance to the overall distribution calculated. The error bars depict the standard

deviations of each 1000 such samples.

https://doi.org/10.1371/journal.pone.0263746.g006
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professionals are significantly more likely to vaccinate their children [63, 64], whereas parents

of underimmunized children are significantly more likely to obtain medical information

online [23]. Another measure is implementing policies which incentivize vaccination or dis-

courages rejection [65–67].

In terms of digital interventions, our findings highlight the need for measures based—not

just on whether content is true or false—but on a more nuanced understanding of the interplay

between vaccination attitudes, social network structure, and information sources, including

actors with a vested interest in promoting false beliefs. With disinformation campaigns aiming

to erode consensus [24, 68], fact-checking at the level of individual stories being shared online

might need to be complemented by an understanding of the complex interplay between com-

munity structure and information content.

Future work based on the findings presented here could investigate e.g. the text content of

the communication between users with highly similar and dissimilar stances regarding vacci-

nation, as well as interactions between text topics and community structure.

Materials and methods

This section provides details of the data analyzed and the methods employed.

Twitter data

The work presented here relies on a large collection of data from Twitter. For clarity, we

describe below two subsets of the data used in the analysis. The reason for this is that one part

of the data comes from a large collection of data not specific to vaccination but well suited, due

to its size, to analysis overall interactions on Twitter, whereas another was obtained by query-

ing for vaccination-related keywords, and thus is better suited for analyses specific to vaccina-

tion. All data were collected through Twitter’s public search API—no terms of service

agreements were violated in collecting the data.

Dataset 1 consists of a large collection (approximately 60 billion) of tweets [69], collected as

a random 10% in 2013–2016. These data were used to a general ‘interaction network’ in which

nodes represent Twitter profiles, and connections between nodes represent cases where both

profiles either mention or retweet each other. We refer to this as the Mutual Replies/Retweets

(MMR) network.

Dataset 2 was constructed using Python to paginate backwards through the official search

API for tweets containing various keywords pertaining to vaccination. A full list of the key-

words queried for is: “unvaccinated”, “unvaccined”, “vaccinate”, “vaccinated”, “vaccinating”,

“vaccination”, “vaccinations”, “vaccinator”, “vaccinators”, “vaccine”, “vaccined”, “vacciner-

ing”, “vaccines”, “vaccinology”, “vaxx”.

When a match occurred, the tweet was analyzed and stored in a database. The analysis

involved evaluating the sentiment expressed by the tweet’s contents, and following any exter-

nal links it contained. In the following, we present details regarding the link analysis, the

MMR network, and the sentiment classification process.

Ethics statement

The study, including the data collection process, has received written approval from the Insti-

tutional Review Board at the Technical University of Denmark (IRB number COMP-IRB-

2021–09).
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Network analysis

Using the sample of approximately 60 billion tweets (Dataset 1), we construct an interaction

network, in which profiles are connected only if both profiles interact with the other, by

retweeting content, or by replying, within a three month time window. Each such time win-

dow contained an average of 19,588,474 nodes and 47,115,188 edges. Combining the graph for

all time windows resulted in a graph with a total of 89,577,277 nodes and 434,193,958 edges.

The degree distribution—the probability distribution over k, the number of such connections

to each profile—for the combined graph is showed in Fig 7a. The degree distribution closely

matches a Weibull distribution,

pk ¼
b

a

k
a

� �b� 1

eðk=aÞ
b

; ð1Þ

with the parameter values specified in the figure legend.

To assess the stability of the interaction network over time, we constructed an MMR net-

work for each three-month time window in the period 2013–2016. For every pair of such net-

works, we compared how similar the connections in the two networks were, using the Jaccard

similarity index

HSi ;Sj
¼
j Si \ Sj j
j Si [ Sj j

: ð2Þ

If the Jaccard similarity between the networks at two time points is 1, the network is

completely unchanged, and if it is 0, no connection between any two profiles exists at both

time points. Fig 7b shows the Jaccard similarities between the MMR networks for all of the

three-month time windows. It shows that the similarity is relatively large at neighboring time

points, with 14% of connections appearing at both time points, following which the self-simi-

larity over time gradually reduces to almost zero over the period of 3 years.

Fig 7. a: The degree distribution of the MMR graph, truncated at degree 500 to exclude automated profiles. The dashed line indicates the best fit for a

stretched exponential (Weibull) function. b: The Jaccard similarity index of the sets of edges in the MMR graph for different 3-month periods. Each row

and column correspond to a three-month time windows in the period from 2013–2016. The diagonal is therefor left out, as it represents the self-

similarity of the interaction network in each time window, and so the Jaccard similarity is 1 by construction.

https://doi.org/10.1371/journal.pone.0263746.g007
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Link analysis

Links contained in tweets are shortened by Twitter, and sometimes by external URL shorten-

ers as well. In order to analyze external URLs contained in the vaccine-related tweets, we used

python to crawl each URL, repeatedly follow redirects, end noting the domain of the final des-

tination. For profiles that were categorized as strongly anti- or pro-vaccine, we recorded the

ten most frequently used such domains. This resulted in a total of 18 domains, due to youtube

and facebook occurring in both top tens.

We manually assigned one or more categories to these 18 domains. The categories, along

with classification criteria, are outlined below. For classifying pages as conspiracy or pseudo-

science sites, we looked up the domains on the online service media bias/fact check (MBFC).

• Commercial—Pages that include an online store selling health related products.

naturalnews.com, articles.mercola.com, go.thetruthaboutvaccines.com, greenmedinfo.com,

healthimpactnews.com, healthnutnews.com, infowars.com, newstarget.com, vaccineimpact.

com.

• Conspiracy—Classified using MBFC.

awarenessact.com, newspunch.com, newstarget.com, worldtruth.tv, collective-evolution.

com, inshapetoday.com, realfarmacy.com.

• News—Known news sites.

bbc.co.uk, bbc.com, bioportfolio.com, cbc.ca, choice.npr.org, cnn.com, edition.cnn.com,

forbes.com, foxnews.com, huffingtonpost.com, medicalnewstoday.com, nbcnews.com,

nytimes.com, reuters.com, sciencedaily.com, statnews.com, theguardian.com, time.com,

whitehouse.gov.

• Pseudoscience—Classified using MBFC.

collective-evolution.com, inshapetoday.com, realfarmacy.com, seattleorganicrestaurants.

com.

• Science—Sites promoting mainstream science/medical information.

bioportfolio.com, cdc.gov, medicalnewstoday.com, sciencedaily.com, statnews.com, webmd.

com.

• Social Media—Large social media platforms.

facebook.com, instagram.com, reddit.com.

• Youtube—The popular video-sharing platform.

youtube.com.

Classification of vaccine-sentiment in tweets

Using machine learning techniques in general often requires a large amount of ‘ground truth’

data on which ones model can be trained, and this is particularly true for deep learning mod-

els. Establishing a ground truth dataset often requires human work and is thus often costly.

One technique to work around this issue is transfer learning, in which a model is first trained

on a large ‘source’ dataset, in which the ground truth has already been established, and then

applied to a ‘target’ dataset. In the case of deep neural networks, this approach typically con-

sists of first training a complex model to the source data, then stripping off the layer of output

neurons and using the output of the second last layer, often called a representation layer, in

conjunction with another model to predict the desired target dataset. This sometimes increases
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model performance, as it allows one to ‘reuse’ higher-order representations of the input data

learned by the original classifier. We here describe the source and target datasets, along with

the final model architecture, which is summarized in Fig 8.

The target data consisted of 10000 randomly selected tweets containing vaccine related key-

words. We hired workers on Amazon’s Mechanican Turk (MTurk) platform to classify tweets

as being either for, or against human vaccination, or as undecideable or unrelated. To ensure

high-quality ratings, we first manually rated 100 tweets, then hired a number of MTurk work-

ers for a test assignment which clearly stated that top performers would receive offers for addi-

tional tasks. The payment was set to be very high compared to typical MTurk to provide

incentive for good performance. We then identified top performers whose scores where most

similar to our own, and launched the remaining tasks, allowing only the identified workers to

participate. We hired workers such that each tweet would be rated by 3 distinct raters. We

then kept only the tweets for which all 3 raters agreed on a label, which reduced the data set to

5358, the distribution of labels in which was 18.8% antivaxx, 45.67% provaxx, and 35.50% neu-

tral/unrelated.

As the source dataset, we chose to train the classifier to predict a number of hashtags which

we presumed to be related to the sentiment prediction task. From an initial qualitative analysis

of the data, and from a brief review of the literature, we noted that

• Anti-vaccine narratives occasionally supposes underlying conspiracies, as represented by

hashtags such as #cdctruth, or #cdcwhistleblower.

Fig 8. Representation of the final classifier. An initial input layer, in which strings are represented by a sequence of one-hot

encoded words, is passed to a) a deep neural network similar to the DeepMoji classifier [70], and b) a fasttext classifier [71]. After

being pre-trained to predict hashtags from the surrounding text (source dataset), the model is fine-tuned to instead predict vaccine

sentiment from tweet text (target dataset).

https://doi.org/10.1371/journal.pone.0263746.g008
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• Many tweets that that mention vaccine-related keywords are not concerned with vaccination

of humans, but rather of pets. To help the classifier disambiguate, we included hashtags such

as #dog and #cat.

• There is a relatively popular indie rock band called The Vaccines. To help disambiguate, we

included hashtags like #music and #livemusic.

Based on the above observations, we opted to scrape for our source dataset a large number

of tweets containing any of the following hashtags: #endautismnow, #antivax, #autism, #autis-

mismedical, #cat, #cdctruth, #cdcwhistleblower, #dog, #ebola, #flu, #health, #hearthiswell,

#hpv, #immunization, #livemusic, #measles, #medication, #music, #polio, #sb277, #science,

#vaccination, #vaccine, #vaccines, #vaccinescauseautism, #vaccineswork, #vaxxed.

Using a large number of tweets (� 10,670,000 in total) of tweets containing either of those

hashtags, and trained a deep neural network classifier to predict the hashtags from text. These

tweets were obtained in a similar fashion to dataset 2. We used a random upsampling approach

to achieve a balanced dataset within each training sample when doing cross-validation [70].

The classifier consisted of an embedding layer, a spatial dropout, then a parallel sequence of

a) a bi-directional GRU (gated recurrent unit) and a dropout layer, and b) a weighted attention

average layer [70]. Those were then concatenated into a representation layer.

After fitting the hashtag model, we removed the output layer and ‘froze’ the remaining lay-

ers, to prohibit training of the weights contained in the original model. We then added a fas-

ttext network [71] in parallel with the pretrained classifier. The rationale for this was that,

while the initial classifier might have learned to recognize highly complex patterns in text, it

might not do a good job of making simpler connections between input text and target proba-

bilities. After fitting the fasttext part of the classifier, we used the chain-thaw approach of [70]

to further improve performance.

On the three-class prediction task, the classifier attained a micro-averaged F1-score of

0.762. The score was computed by aggregating true and false positives/negatives over a 10-fold

stratified cross-validation procedure [72]. For comparison with the literature, we also

trained the classifier for binary prediction (i.e. predicting simply whether a text snippet was

anti-vaxx or not). The accuracy on the binary case was 90.4±1.4% over a 10-fold stratified

cross-validation evaluation, an increase over what to our knowledge is state of the art perfor-

mance [46].

Looking qualitatively at the performance of the classifier, the tweets that were labeled with

high confidence demonstrate some capability of the classifier to recognize relatively subtle

indications of the correct label for the tweet, as shown in Table 1.

Table 1. Qualitative summary of classifier performance. The classifier correctly assigns a large probability of antivaxxness to text snippets the express conspiracist

notions about vaccines being part of a global scam. Similarly, texts highlighting the positive qualities of vaccinations are assigned a high probability of being provaxx. In

addition, text snippets concerning the band named The Vaccines are recognized as irrelevant. A text snippet expressing how much more expensive it is to kill, rather than

vaccinate, badgers is also categorized as irrelevant with a high certainty, despite containing negative words like ‘kill’.

Text Class

“January is Cervical Health Awareness Month.Join the HPV vaccine campaign to prevent cervical cancer” Provaxx

“Getting a flu shot will help prevent transmission to new babies who are too young to be vaccinated. #flukills” Provaxx

“things i love about the vaccines: they change their set list every gig but norgaard is always the last song they play” Neutral

“Hi hUSERi £7.3m to kill 1771 Badgers—£4100 per Badger—Vaccination looks cheap now? £662 per Badger?” Neutral

“Bill Gates Admits #Vaccines Are Used for Human #Depopulation” Antivaxx

“Lead Developer Of HPV Vaccines Comes Clean, Warns Parents & Young Girls It’s All A Giant Deadly Scam” Antivaxx

https://doi.org/10.1371/journal.pone.0263746.t001
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Categorization of Twitter profiles from tweets

For each user, we considered tweets containing vaccination-related keywords (see description

of Dataset 2 above). For each such tweet, we estimated the probability of the tweet expressing

sentiment that is pro-vaccine, anti-vaccine, or neutral/unrelated, using the machine learning

classification method described above. We then label profiles as anti/pro-vaxx if the classifier

assigns more than 50% of the profile’s tweets a probability of at least 50% of being anti/pro-

vaxx. Note that this leaves the majority of profiles not assigned to either of the two categories,

as illustrated in Fig 1. This strong criterion is intended to reduce the number of profiles falsely

assigned into either category.

Note on uncertainties and robustness

Most of the figures presented here are produced using a very large number of data points. For

this reason, some quantities, such as the tweet sentiment and user stance distributions pre-

sented in Fig 1, will have very small error bars that are difficult to meaningfully visualize.

Meanwhile, the distributions turn out to be more sensitive to changes in the arbitrary thresh-

old for labeling user stances from tweet sentiments, although this does not qualitatively alter

the results. In such cases, we have opted to present the figures without error bars in the main

paper, referring the reader to S1 Appendix for a more detailed overview of uncertainties, as

well as analyses of robustness to the aforementioned sentiment threshold.

Supporting information

S1 Appendix. Robustness and uncertainties. More details on uncertainties and robustness to

sentiment thresholds is provided in S1 Appendix.

(PDF)

S2 Appendix. Geographical analysis of tweets originating from the USA. A short analysis of

tweet sentiment by American state, of potential relevancy to researchers interested in the inter-

play between state policy/regulations and Twitter discourse, is presented in S2 Appendix.

(PDF)

S3 Appendix. Temporal evolution of link frequencies. S3 Appendix presents illustrations of

how the number of links posted to each external domain by changes over time.

(PDF)

S4 Appendix. Explorative analyses of user and neighborhood stances. S4 Appendix contains

some explorative visualizations on the interplay between user stance strength, the strength of

disagreement with the user neighborhood, and the neighborhood activity and number of

neighbors, for the data underlying Fig 4.

(PDF)
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