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A B S T R A C T   

Coronavirus disease is a viral infection caused by a novel coronavirus (CoV) which was first identified in the city 
of Wuhan, China somewhere in the early December 2019. It affects the human respiratory system by causing 
respiratory infections with symptoms (mild to severe) like fever, cough, and weakness but can further lead to 
other serious diseases and has resulted in millions of deaths until now. Therefore, an accurate diagnosis for such 
types of diseases is highly needful for the current healthcare system. In this paper, a state of the art deep learning 
method is described. We propose COVDC-Net, a Deep Convolutional Network-based classification method which 
is capable of identifying SARS-CoV-2 infected amongst healthy and/or pneumonia patients from their chest X-ray 
images. The proposed method uses two modified pre-trained models (on ImageNet) namely MobileNetV2 and 
VGG16 without their classifier layers and fuses the two models using the Confidence fusion method to achieve 
better classification accuracy on the two currently publicly available datasets. 

It is observed through exhaustive experiments that the proposed method achieved an overall classification 
accuracy of 96.48% for 3-class (COVID-19, Normal and Pneumonia) classification tasks. For 4-class classification 
(COVID-19, Normal, Pneumonia Viral, and Pneumonia Bacterial) COVDC-Net method delivered 90.22% accu-
racy. The experimental results demonstrate that the proposed COVDC-Net method has shown better overall 
classification accuracy as compared to the existing deep learning methods proposed for the same task in the 
current COVID-19 pandemic.   

1. Introduction 

In December 2019, a novel type of coronavirus (CoV) namely SARS- 
CoV-2 or what is commonly referred to as COVID-19, was identified 
amidst a widespread pneumonia outbreak in local hospitals of Wuhan, 
Hubei province in China. COVID-19 is considered to be of natural animal 
origins that started in the bat population and later broke the species 
barrier to infect humans, who became the carriers for the virus. The 
virus is responsible for respiratory infections leading to symptoms like 
fever (mild/severe), cough, dyspnea, bilateral infiltrates in chest imag-
ing and other acute respiratory problems [1]. This virus has spread 
throughout the globe and has caused around 6 million deaths as of now 
since the start of the COVID-19 pandemic [2] in December 2019. This 
calls for new collaborations to accelerate the research and development 
of coronavirus vaccine and reliable, quick testing methods all across the 
world [3]. The World Health Organization (WHO) plays a critical role 
[4] in the on-going pandemic as many countries face shortages of testing 

kits, trained healthcare professionals, contact tracing protocols among 
other essentials and medical equipment. The new medical policies are 
designed for COVID-19 pandemic [5] which explore the medical facil-
ities provided to CoV patients. 

Many researchers have contributed to reduce the inefficiency in the 
current diagnosis of coronavirus. For further improving the diagnosis 
and better understanding of severe pediatric patients of COVID-19, au-
thors [6,7] provided the epidemiological, laboratory findings, imaging 
data and clinical treatments to all healthcare professionals of Wuhan 
city, China. Jiang et al. [8] provided the necessary clinical study about 
the symptoms, complications and treatments required by the COVID 
infected patients. Later on, Tolksdorf et al. [9] introduced the concept of 
using syndromic surveillance data to assess COVID-19 patients analo-
gous to influenza pneumonia patients for determining the condition of 
CoV affected patients. In [10], authors throw light towards the classi-
fication of pneumonia on the basis of chest radiology, rapid analysis of 
biological samples, severity scores and collection of other relevant 

* Corresponding authors. 
E-mail addresses: anubhav0399@gmail.com (A. Sharma), karamjeet.singh@thapar.edu (K. Singh), dkoundal@ddn.upes.ac.in (D. Koundal).  

Contents lists available at ScienceDirect 

Biomedical Signal Processing and Control 

journal homepage: www.elsevier.com/locate/bspc 

https://doi.org/10.1016/j.bspc.2022.103778 
Received 20 January 2022; Received in revised form 9 April 2022; Accepted 27 April 2022   

mailto:anubhav0399@gmail.com
mailto:karamjeet.singh@thapar.edu
mailto:dkoundal@ddn.upes.ac.in
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2022.103778
https://doi.org/10.1016/j.bspc.2022.103778
https://doi.org/10.1016/j.bspc.2022.103778
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2022.103778&domain=pdf


Biomedical Signal Processing and Control 77 (2022) 103778

2

clinical data. Wang et al. [11] investigated the spread of CoV through 
the respiratory tract and later on, Bernheim et al. [12] concluded that 
the frequency of CT findings was related to the infection time course. 
From all these studies, it can be observed that the CT and X-ray imaging 
system are two effective tools for preliminary, quick identification and 
quantification of positive CoV cases. Therefore, a large number of re-
searchers are working towards developing a quick, reliable and effective 
detection system for CoV disease from chest X-ray images by using 
modern computer science techniques like deep learning. This also has 
other advantages over traditional testing like easy scalability, safer 
sample collection, faster diagnosis. 

Before COVID-19, in the recent times we have seen many applica-
tions of technology and computers in the medical image and signal 
processing [52–59] which have aided the professionals in better diag-
nosis certain ailments. Jaiswal et al. [13] proposed a deep learning- 
based approach to get a better clarity about the presence of pneu-
monia in chest X-ray images. Later, Chouhan et al. [14] suggested a 
transfer learning-based approach for the same. The recent progress of 
deep learning applications in medical image analysis has proven to be an 
effective tool for diagnosis of various diseases like breast cancer and 
many other pulmonary disorders [60–62]. Y-D. Zhang et al. [63] 
describe MIDCAN, A multiple input deep convolutional attention 
network that can handle CCT and CXR images simultaneously. They 
fused CCT and CXR images in order to improve their individual per-
formance. S-H. Wang at el. [64] proposed a rank based average pooling 
module (NRAPM), which showed remarkable accuracy and precision 
values for COVID-19 diagnosis. COVID-Net [15] is a convolutional 
neural network (CNN)-based approach for detection of COVID-19 pa-
tients. The main goal is to provide an effective and reliable treatment to 
CoV patients which is achieved by patch-based convolutional neural 
network approach [16]. A similar approach [17] explores the different 
types of features and automatic detection of SARS-CoV-2 from chest X- 
ray images. Also, Ozturk et al. [18] have applied the existing DarkNet 
architecture for developing the DarkCovidNet model which achieves an 
accuracy of 98.08%, 87.02% for binary and multiclass classification 
tasks, respectively. Similarly, Ucar et al. [19] and Marques et al. [20] 
fine-tuned the Bayes SqueezeNet and EfficientNet models respectively, 
for providing automated diagnosis for SARS-CoV-2 patients. Rahimza-
deh and Attar [21] developed a modified deep convolutional network by 
fusing Xception and ResNet50V2 to achieve multiclass accuracy of 91% 
on two open-source datasets. Hemdan et al. [22] introduced a deep 
learning technique to detect COVID-19 from X-ray images. The proposed 
framework included seven pre-trained models VGG19, MobileNetV2, 
InceptionV3, ResNetV2, DenseNet201, Xception, and InceptionRes-
NetV2. Among these seven tested classifiers, VGG19 and DenseNet201 
achieved the highest accuracy of 90%. A plethora of works directed 
towards similar types of deep learning-based approaches are found in 
literature [23–28] and many other focus on transfer learning and com-
bination of existing models [29–39] have shown promising results for 
binary and multiclass classification tasks. A direct diagnosis from the X- 
ray images by using the aforementioned techniques are helpful for 
various medical professionals to distinguish between flu-pneumonia and 
coronavirus infected patients. Alakus and Turkoglu [40] extended deep 
learning applications in CoV detection by using laboratory findings 
rather than X-ray or CT-scan images of CoV patients. Later, Swapnar-
ekha et al. [41] provided a comparative performance analysis of various 
machine and deep learning-based models for predicting COVID-19 along 
with their applications. In addition to aforesaid approaches, Karthik 
et al. [42] developed a channel-shuffled dual-branched convolutional 
neural network that uniquely learns X-ray patterns from the chest X-ray 
images. Authors in [50,51] employed U-net architecture and a meta- 
heuristic-based feature selection for the diagnosis of COVID-19 using X- 
ray images. 

Our proposed methodology is a confidence fusion of VGG16 and 
MobileNetV2 which are pre-trained on ImageNet dataset in order to 
classify a sample chest X-ray image for 3-class and 4-class classification 

tasks. Various Models were tested, and the best performing models were 
selected for the process of fusion, hence creating a model that has the 
advantages from the unique feature selection process of both the ar-
chitectures. This makes better predictions and achieves better perfor-
mance than any single contributing model. Hybrid models also provide 
robustness and reduce the spread or dispersion of the predictions which 
might be an issue when using a single model. 

The main contributions of the proposed method are three-fold and 
described briefly as follows.  

• The proposed method tests various proven models like VGG16, 
VGG19, MobileNetV2, ResNet50, DenseNet to find the best per-
forming fusion and provides a detailed analysis on the prepared 
dataset of X-ray images for a better classification of COVID-19 
samples.  

• The proposed novel hybrid CNN architecture integrates the two 
different types of features obtained from separate CNN architectures 
with help of confidence fusion method with the aim of providing 
better assistance and diagnosis to COVID-19 patients. As seen in 
Table 3, The proposed model can improve upon the performance of 
the parent models significantly for the evaluated performance 
metrics.  

• The method was tested on multiple models and the best fusion model 
was selected for this study as described in Table 2.  

• The proposed work would help in building the foundation for 
inventing the hybrid CNN architectures which helps the radiologists 
to correctly identify and distinguish between the different types of 
pneumonia and COVID infections from chest X-ray images.  

• The proposed framework can be deployed as one of the useful 
techniques in the medical field for classification purposes. It also 
helps radiologists to diagnose and treat diseases at early stages. 

The remainder of the paper is organized as follows: Section 2 de-
scribes concepts of Convolutional Neural Network, confidence fusion 
method, dataset description, details of building and training of the 
proposed methodology with parameters and necessary information 
about the developed deep learning application. Section 3 presents the 
experimental results and evaluation criteria including accuracy, preci-
sion, recall and F-score. Finally, the conclusion is presented in Section 4. 

2. Materials and methodology 

2.1. Convolutional neural networks - CNN 

A Convolutional Neural Network is a deep learning algorithm that 
applies convolution, a mathematical operation as displayed in Fig. 1, 
between input data i.e., the image array and a set of learnable filters 
(kernels) to create feature maps that are able to extract local features 
like edges, sharp corners, shapes, gradients, etc. to solve various clas-
sification problems. As we move deeper into the network layers more 
complex feature maps are created. 

Let the input image I image matrix be of dimensions (Ih × Iw) and 
filters of size. Then the convolution operation on image I and filter F is 
given by Equation (1). 

Table 1 
Dataset analysis.  

DATASET Class Number Of Samples 

D1 COVID-19 1784 
Healthy 1755 
Pneumonia 1345 

D2 COVID-19 305 
Healthy 375 
Pneumonia Bacterial 379 
Pneumonia Viral 355  
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Conv = I*F (1) 

The dimensions of filters are generally taken as 3 × 3, 5 × 5, 7 × 7 
and filter (F) moves towards right with a certain stride (stride value 1) 
till it reaches the width of the image. For each stride the values of the 
kernel are multiplied by the original pixel values and summed to obtain 
a single value. These values are mapped onto an array thus obtaining a 
feature/activation map. The result is fed to an activation function which 
produces the output for a given node. Fig. 2.(a) and Fig. 2.(b) visually 
depict various phases of feature extraction for MobileNetV2 and VGG16 
respectively, which can be inspected to better understand how and what 
type of features are detected for a given input image. 

2.1.1. VGG16 
The architecture of VGG [48] was proposed by Simonyan and Zis-

serman and achieved 92.7% accuracy which was among the top-5 in 
ImageNet. The two variants namely VGG16 and VGG19 have been 
widely used since. The ‘16′ and ‘19′ refer to the count of weighted layers 
used in network configuration. In specific VGG16 consists of multiple 
kernels of size 3 × 3 and convolutional layers which enable the network 
to recognize and understand various complex features and patterns. The 
network also consists of average-pooling layers (2 × 2) and 3 fully 
connected layers. All the hidden layers use ReLU as the activation 
function and Softmax activation is used to achieve the normalized 
classification vector. In recent times, the VGG architecture is being 
employed in various transfer learning approaches. 

2.1.2. MobileNetV2 
MobileNet is a mobile architecture [43] which has considerable low 

complexity and size owing to the use of depth wise Separable Convo-
lution, which makes it suitable to run on devices with low computational 
power. MobileNetV2 expanded the feature extraction and introduced an 
inverted residual structure. The model architecture consists of a con-
volutional layer followed by a series of residual bottleneck layers. Kernel 
size for all spatial convolution operations is taken as ReLU6 is used as the 
non-linearity along with batch normalization and dropout during the 
training phase. Each bottleneck block consists of 3 layers, starting with a 
(1 × 1) convolutional layer followed by the aforementioned (3 × 3)
depthwise convolution layer and finally another (1 × 1) convolutional 
layer without ReLU6 activation. MobileNetV2 has wide applications in 
the current time due to its excellent feature extraction capabilities and 
small size. 

2.2. Confidence fusion 

Different layers of a convolutional neural network give different 
output. Outputs from multiple models at different stages can be used to 
produce a combined classification results which can often provide better 
results than the parent models. One such way is to fuse the output 
vectors [49] (categorical probability vectors) from the last Softmax 
classifier layer. Let pi be the output for a given CNN model and is rep-
resented as [pi,1, pi,2, ........, pi,n] where i represents the CNN under 
consideration and n represents the number of classification classes. The 
term pi,j represents the probability that the given sample is classified as 
jth class. Average value for each class is calculated as in Equation (2). 

tj =
∑I

i=1
pi,j (2)  

where I is the total number of models being fused. Out of n classes the 
final predicted class x is given by Equation (3). 

Table 2 
Comparative analysis of Models.  

METHOD AVG 
ACCURACY 

AVG 
PRECISION 

AVG 
RECAL 

AVG F- 
SCORE 

MobileNetV2 þ
VGG16  

0.9648  0.9657  0.9659  0.9657 

MobileNetV2 +
DenseNet  

0.9608  0.9618  0.9620  0.9619 

MobileNetV2 +
VGG19  

0.9584  0.9598  0.9598  0.9597 

MobileNetV2 +
Resnet50  

0.9479  0.9498  0.9499  0.9499 

VGG16 + DenseNet  0.9627  0.9641  0.9642  0.9641 
VGG16 + VGG19  0.9574  0.9588  0.9597  0.9597 
VGG16 + Resnet50  0.9477  0.9505  0.9489  0.9495 
VGG19 + DenseNet  0.9580  0.9598  0.9597  0.9596 
VGG19 + Resnet50  0.9277  0.9332  0.9305  0.9306  

Table 3 
represents the 3-Class Fold wise analysis.  

FOLD METHOD Precision Recall F-score Accuracy 

Fold 1 MobileNetV2  0.9525  0.9502  0.9512  0.9484 
VGG16  0.9527  0.9522  0.9523  0.9509 
Fusion  0.9677  0.9663  0.9668  0.9656 

Fold 2 MobileNetV2  0.9476  0.9501  0.9487  0.9476 
VGG16  0.9579  0.957  0.9572  0.9558 
Fusion  0.9658  0.9676  0.9666  0.9656 

Fold 3 MobileNetV2  0.9461  0.9454  0.9458  0.9443 
VGG16  0.9445  0.9412  0.9427  0.9410 
Fusion  0.9611  0.959  0.96  0.9590 

Fold 4 MobileNetV2  0.9379  0.9388  0.9383  0.9369 
VGG16  0.9537  0.9534  0.9535  0.9525 
Fusion  0.969  0.9699  0.9694  0.9689 

AVERAGE MobileNetV2  0.9460  0.9461  0.9460  0.9443 
VGG16  0.9522  0.95095  0.9514  0.9500 
Fusion  0.9659  0.9657  0.9657  0.9648  

Fig. 1. Convolution operation with stride 1.  
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x = argmaxtjwhere 1 ≤ j ≤ n (3)  

2.3. Dataset description 

To test our proposed method, we collected a total of 4883 images for 
the 3 classes and is referred to as Dataset-1 (D1) [65] from Kaggle 
COVID-19 radiology database [66]. The database consists of COVID-19 
X-ray images from padchest dataset [67], Italian Society of Medical and 
Interventional Radiology (SIRM) COVID-19 database [68], Germany 
medical school [69], and other publicly available databases available on 
github [70] well as images extracted from different publications. The 
Viral Pneumonia images are collected from Radiological Society of 
North America (RSNA) CXR dataset [71] and the Healthy images from 
Mendeley Data [72] and RSNA [71] datasets. For accurate evaluation of 
any deep learning model, an unbiased and balanced dataset is 

paramount. Hence, to counter the unbalanced dataset problem, we 
considered almost comparable number of samples for each class. 
Moreover, to make sure that the data did not contain similar samples/ 
images from the same source, the images for each class were collected 
randomly from the sources. The second database referred to as Dataset-2 
(D2) consists of 305 images for COVID-19 patients, 375 for healthy and 
379, 355 for bacterial and viral pneumonia, respectively. This data has 
been directly taken from the dataset provided by Khan et al. [73]. 

The use of two separately prepared datasets provides a better clarity 
about the effects of size and count of images on the performance of the 
proposed method. The description of the number of image samples used 
for both the datasets are provided in Table 1. The visualization of X-ray 
images for each class as shown in Fig. 3. 

Fig. 2. Activation map output plots of layers in increasing depth for (a) MobileNetV2, (b) VGG16.  

Fig. 3. Sample of the X-ray images used in our experiments.  
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2.4. Proposed methodology 

2.4.1. Experimental setup and development 
To evaluate the predictive performance, Precision, Recall and F-score 

of the proposed method, we have used Stratified K-Folds cross- 
validation (k = 4) technique. It also helps to avoid bias in the data se-
lection. Hence, 75% of samples are used for training purposes and the 
remaining 25 % of data is used for testing phase while preserving the 
percentage of samples for each class. This provides an efficient way of 
determining out of sample observations. For model building and eval-
uation, we have used Keras interface with a Tensorflow 2.0 backend 
with pre-trained models namely MobileNetV2 and VGG16. The models 
were executed and developed on Google Collaboratory Pro, using Goo-
gle’s cloud GPU enabled notebook with 25 GB RAM and Tesla P100 
GPU. The proposed framework was trained with Adam optimizer with 
loss function as the ‘Sparse_categorical_crossentropy’, learning rate of 
0.001, batch size 32. Tests were performed for various parameter values 
and the above-mentioned set of values provided the best results. VGG16 
was trained to 70 epochs and MobileNetV2 up to 25 epochs. Validation 
split value (Subset of training data taken for validation during training) 
was taken as 0.1. All the required session seed values were taken as 10. 

2.4.2. Model building and architecture 
In recent time’s deep learning algorithms, CNN models in particular 

have seen numerous breakthroughs. It is extremely expensive to train 
due to complex data models. Moreover, deep learning requires expen-
sive GPUs. Since computational constraints have relaxed, and better 
hardware is more readily available these limitations are no longer a 
barrier which is a big step forward. High performance models which are 
publicly available can be effectively tweaked and used as a base for 
classification of COVID-19 cases. We expanded this approach by modi-
fying the architecture of two models namely, MobileNetV2 and VGG16 
which are then used for classification based on confidence fusion. These. 
Exhaustive testing using various combination of models showed that the 
selected models had the best evaluation metrics. This shown in Table 2. 
The VGG16 and MobileNetV2 provided 2 very different architectures 
and unique feature extraction stages and show extremely promising 
results when compared with other models like VGG-19, ResNet. Upon 
fusion these shows quite significant improvement over the results of 
shown by either of its parent models for each of the evaluators. 

The VGG architecture is a simple one with 3 × 3 convolutional layers 
stacked on top of each other with occasional pooling layers for reducing 
data dimensionality. The MobileNetV2 has an elaborate architecture 

with a fully convolution layer with 32 filters followed by 19 bottleneck 
layers [43]. The framework and architecture of our proposed work is 
presented in Fig. 4 and Fig. 5, respectively. Both the models are capable 
of extensive feature extraction and take fixed input of 3-channel (RGB) 
images of size 224× 224. Hence, each image is resized to 224 × 224 
pixels followed by reshaping of the image vector to 224 × 224 × 3 and 
then, applying normalization operation. The fully connected output 
layers of the model used to make classifications are not loaded and the 
loaded layers are set as non-trainable. The extracted features vectors of 
size 7 × 7 × 1280 and 7 × 7 × 512 from MobileNetV2 and VGG16 are 
passed to a separate GlobalAveragePooling2D which reduces the vector 
dimensionality to 1, followed by two fully connected layers. 

The second fully connected layer supports Softmax activation func-
tion which outputs a vector of categorical probabilities for each class. 
The output vectors of both the models are used in the confidence fusion 
which is used to classify the image. The confidence vectors obtained for 
each passed sample by both the models are given by Equation (4) and 
Equation (5). 

pvgg = [pvgg,COVID− 19, pvgg,Healthy, pvgg,Pneumonia] (4)  

pmnv2 = [pmnv2,COVID− 19, pmnv2,Healthy, pmnv2,Pneumonia] (5) 

Equation (6) and finally Equation (7) are calculated for each given 
sample and x represents the predicted class for the given sample. This is 
shown in Fig. 5. 

tj = (pvgg,j + pmnv2,j)/2 (6)  

x = argmaxtj, j ∈ {COVID − 19,Healthy,Pneumonia} (7)  

2.5. Evaluation criteria 

For multiclass classification, each classification class is representa-
tive of three types of data namely True Positive (TP)/ False Positive (FP)
/ False Negative (FN). True positive indicates the images that were 
classified correctly. False Positive contains samples that were falsely 
classified to the class under consideration whereas False Negative in-
dicates the samples of the current class classified incorrectly to some 
other class. There are several performance metrics that provide different 
evaluations using the above mentioned characteristics. Following four 
metrics are considered to evaluate the performance of our proposed 
methods: 

Fig. 4. Framework for the proposed methodology.  
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(a) Precision: It is the fraction of True classification among all 
samples predicted to belong to a particular class. For example, 
precision for covid refers to the proportion of people who test 
positive among all those who actually are predicted have the 
disease. 

Precision = TP/(TP+FP) (8)    

(b) Recall: It refers to the proportion of actual positives identified 
correctly. Recall for covid is the fraction of people who are pre-
dicted to have the disease to the actual number who had it. 

Recall = TP/(TP+FN) (9)    

(c) F-Score/F-Measure: It is a metric used to balance both the 
concerns of precision and recall into one by providing a single 
number which is the weighted average of both. 

F − score = (2 × Precision × Recall)/(Precision+Recall) (10)    

(d) Accuracy: It is the fraction of samples classified correctly out of 
all the samples. For 3-class classification, accuracy is given as: 

Accuracy = (TCOVID− 19 + TNormal + TPneumonia)/(Totalsamples) (11)  

where TCOVID− 19 refers to true covid classifications and similarly for 
other classes. 

3. Comparative analysis of state-of-the-art deep learning 
methods 

The evaluation was performed using Stratified K-Folds cross- 
validation technique where 75% of the data was used for training pur-
pose and the remaining 25% was used for testing purpose. Plots of ac-
curacy and loss on the training and validation sets (10%) over training 
phase for Fold 2 are shown in Fig. 6. A good validation and testing ac-
curacy is observed which help check for overfitting issues. The Classi-
fication performance for 3-classes: COVID-19, Healthy and Pneumonia 
for each fold are evaluated using various performance measures pro-
vided in Table 2. Fig. 7 shows the corresponding confusion matrices for 
both base models and the fused model which helps to obtain an idea 
about the general perforations of the proposed method. It is observed 
that, out of 154 COVID-19 images, only two images were misclassified 
among all 4-folds. The fused results also show better true positives and 
lesser false positives, false negatives that both the base models. Perfor-
mance metrics for the proposed method, 4-fold Stratified K-Folds cross- 
validation technique and their average are tabulated in Table 3. 

A significant improvement in the performance measures used for 
evaluation was observed in each fold when the base models and the 
fusion model were compared. This is also reflected in the corresponding 

Fig. 5. Architecture and fusion representation.  

Fig. 6. Validation, training loss, validation accuracy curves obtained for fold-2 for (a) MobileNetV2 (b) VGG16.  
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table and also by the provided average accuracy of 0.9443, 0.9500, 
0.9648 for the base and fusion models, respectively. Similarly, average 
precision, recall, F-score obtained for the fusion models were 0.9659, 
0.9657, and 0.9657. Table 4 shows the class wise performance analysis 
of the proposed method. The performance for each class shows im-
provements and COVID-19 class shows an average precision value of 
0.9791 and recall 0.9591 for the fusion model over 4-folds. The per-
formance of the proposed method was also validated on the dataset [73] 
with slight adjustments to fit our purposes. D1 has some different 
sources and formatting and count from the one provided in D2. Upon 
evaluation, D2 shows similar trends as observed with D1, where the 
fusion method improves upon the performance of the base models by 
giving 4-class accuracy of 0.9022 and 3-class classification accuracy of 
0.9648. These results are shown in Table 5. This in turn helps validate 
the robustness of the proposed method. In this study, a deep convolu-
tional network-based method is proposed for the classification of 
COVID-19 cases using chest X-ray images. Prior to this, various authors 
[15,17,18,24] put forward their methods for binary and multiclass 
classification tasks. 

The proposed COVDC-Net method was tested on two different 
datasets and achieved an accuracy of 96.48% on 3-classes and 90.22% 
on 4-classes. This performance is superior in terms of precision, recall, F- 
score and accuracy as compared to existing deep learning-based ap-
proaches represented in Table 6. The ROC Curves for the used base 
models and the proposed fusion are shown in Fig. 8. 

Shilby et al. [44] came up with R-CNN, a deep learning architecture 
with 97.36% accuracy on 2-classes having 183 COVID-19 and 13,619 

(Normal + Pneumonia) images. Wang et al. [47] proposed a weakly 
supervised framework for COVID-19 classification and lesion localiza-
tion task and reported a 90% classification accuracy on a dataset with 
313 COVID-19 images and 229 Healthy/Normal chest X-rays. Later, 
Ozturk et al. [18] presented their model for binary and multiclass 
classification with 98.08% and 87.02% accuracy respectively on a 
dataset with 125, 500, 500 samples for COVID-19, Pneumonia and 
Normal classes respectively. Transfer learning uses previously proven 
models and expands gained knowledge to other areas. Apostolopoulous 
et al. [17] used this idea and used various previous models and achieved 
93.48% and 92.85% accuracy for VGG19 and MobileNetV2 respectively 
on a dataset of 224 COVID-19, 504 Healthy and 700 Pneumonia pa-
tients. Wang et al. [15] proposed a tailored convolutional network 
model which had an accuracy of 93.3% and a relatively small dataset of 
53, 179, 179 images of COVID-19, Normal and Pneumonia, respectively. 
In addition, Law and Lin [45] implemented Transfer learning on a 
dataset with 1200 images of COVID-19 patients and found that VGG-16 
gives superior performance metrics as compared to the other ResNet 
models. A Multi-model fusion study was performed by Cengil and Cinar 
[46], tested various models namely AlexNet, EfficientNet-b0, NASNet-
Large and Xception to find the best performing amalgamations. Khan 
et al. [24] used pre-trained Xception architecture to get 95% 3-class and 
89.6% 4-class accuracy on a dataset of 284 COVID-19, 310 healthy, 227 
Viral Pneumonia and 330 Bacterial Pneumonia samples. 

In this study, various X-ray samples collected from the aforemen-
tioned sources were analysed using the proposed COVDC-Net fusion 
method are investigated using 4 different metrics which are compared 
with other previous existing works. The important observations can be 

Fig. 7. Confusion Matrices for each fold for each model.  

Table 4 
Class wise analysis.  

METHOD CLASS Precision Recall F-score 

MobileNetV2 COVID-19  0.9474  0.9395  0.9434 
Normal  0.9258  0.9316  0.9286 
Pneumonia  0.9648  0.9673  0.9659 

VGG16 COVID-19  0.9584  0.94  0.9491 
Normal  0.9252  0.9515  0.9382 
Pneumonia  0.9730  0.9614  0.967 

Fusion COVID-19  0.9711  0.9591  0.965 
Normal  0.9495  0.9618  0.9556 
Pneumonia  0.9771  0.9762  0.9766  

Table 5 
Analysis of Dataset-2.  

Class METHOD OVERALL AVG 
ACCURACY 

4 Class 
(COVID-19, Healthy, Pneumonia 
Bacterial, Pneumonia Viral) 

MobileNetV2  0.8774 
VGG16  0.8739 
Fusion  0.9022 

3 Class 
(COVID-19,Healthy,Pneumonia(Viral +
Bacterial) 

MobileNetV2  0.9603 
VGG16  0.9567 
Fusion  0.9702  
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expressed as follows:  

• The dataset imbalance as observed in many of the works render their 
findings inaccurate and not suitable for reference for practical 
implementations. This is observed in Shibly et al. [43,44], Wang 
et al. [15]. Our method uses a relatively balanced dataset which is 
randomly selected so as to ensure random nature of the sample and is 
evaluated using Stratified 4-fold Cross Validation method, hence 
providing consistent results.  

• Considering various previous works, it is observed that many leave 
out certain metrics or present them vaguely. Hence these should not 
be used as a benchmark for practical purposes as it might have 
unanticipated repercussions. This can be seen in Apostolopoulos 
et al. [17] where performance metrics are not properly presented or 
missing for all the classes. We have presented the results for each 
class and for all the folds with meaningful results which are more 
suited to give a better understanding of how and where the im-
provements that are being observed. All the performance metrics can 
be seen in the Table 3 and show class wise results and improvement 
after the fusion of the parent models clearly.  

• Most of the existing works focus on 3-class and binary classification 
[15,17,18,45,46] tasks. Our study, extends the 3-class classification 
task to 4-class classification and continues to show significant im-
provements. It also performs better on comparison with, from where 
the dataset (D2) is borrowed which is used in the 4-class classifica-
tion tasks. 

• The model showed an improvement of 0.69% for 4-class classifica-
tion task and 2.13% in overall accuracy for 3 class classification task 
on the dataset D2 [73] over the method proposed by Khan et al. [24]. 

• It was observed that the proposed method showed the quite signifi-
cant improvements in accuracy, precision, recall for COVID-19 class 
(as seen in Table 3), which is paramount for this study as miss- 
classification of a COVID-19 case can have serious repercussions 
than other classes. 

Considering the current scenario there is a serious increase in the 
work density of radiologists. Manual diagnosis doesn’t take into 
consideration the expert’s tiredness may affect the error rate. Hence 
support systems can be a solution which can eliminate this problem and 
provide a more effective diagnosis. 

Table 6 
Comparison of the proposed system with existing systems in terms of accuracy.  

AUTHOR CLASSES TYPE MODEL ACCURACY PROS CONS 

Shibly et al. [44] 2 Class: 
(COVID-19: 183, Healthy: 13617) 

Chest X- 
Ray 

R–CNN 97.36% faster R–CNN 
10-folds cross-validation 

Limited data  
Data-set 

Wang et al. [47] 2 Class 
(COVID-19: 313, Healthy: 229) 

Chest 
CT 

DeCoVNet (UNet + 3D 
Deep Network) 

90.0% light-weight 3D CNN 
weakly-supervised lesion 
localization for COVID 
Detection. 

Limited data 

Ozturk et al. [18] 2 Class 
(COVID-19: 125, Healthy: 500) 

Chest X- 
Ray 

DarkCovidNet 98.08% The heatmaps produced by the 
model can be evaluated by an 
expert radiologist. 
High Binary Classification 
accuracy 

Limited data 
Relatively low Muti-class 
accuracy  

3 Class 
(COVID-19: 125, Healthy: 500, 
Pneumonia: 500)   

87.02%   

Apostolopoulos 
et al. [17] 

3 Class 
(COVID-19: 224, Healthy: 504, 
Pneumonia: 700) 

Chest X- 
Ray 

VGG-19 93.48% Multiple models used for testing 
Multiple datasets used for 
evaluation. 

Limited no of evaluation 
metrics  

3 Class 
(COVID-19: 224, Healthy: 504, 
Pneumonia: 700)  

MobileNet v2 92.85%   

Wang et al. [15] 3 Class 
(COVID-19: 53, Healthy: 8066, 
Pneumonia: 5526) 

Chest X- 
Ray 

COVID-Net 93.3% Low architectural complexity Data-set imbalance 

Law and Lin [45] 3 Class 
(COVID-19: 1200, Healthy: 1341, 
Pneumonia: 1345) 

Chest X- 
Ray 

VGG-16 94% Multiple Models used. 
Improved Transfer Learning 
accuracy using data 
augmentation 

Cant generalize results of 
data augmentation 

Cengil and Cinar 
[46] 

3 Class 
(COVID-19: 1525, Healthy: 1525, 
Pneumonia: 1525) 

Chest X- 
Ray 

AlexNet + EfficientNet- 
b0 + NASNetLarge +
Exception 

95.9% 3 different datasets used i.e. 
robust 
Hybrid Model  
High Performance metrics  

High model complexity 

Khan et al. [24] 3 Class 
(COVID-19: 284, Healthy: 310, 
Pneumonia: 657) 

Chest X- 
Ray 

Crornet 
(Xception) 

95% 4-Class Classification results 
High Accuracy for COVID-19 
class 

Limited data for COVID- 
19 Class  

4 Class 
(COVID-19: 284, Healthy: 310, 
Viral Pneumonia: 327, Bacterial 
Pneumonia: 330)   

89.6%   

Proposed 3 Class 
(COVID-19: 1784, Healthy: 
1755, Pneumonia: 1345) 

Chest 
X-Ray 

COVDC-Net 96.48% Balanced Dataset 
4-Class, 3-Class Classification 
High Performance Metrics 
Achieved  

Hybrid Methods are 
computationally 
expensive  

4 Class 
(COVID-19: 305, Healthy: 375, 
Viral Pneumonia: 379, 
Bacterial Pneumonia: 355)   

90.22%    
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4. Conclusion 

In this study, a deep convolutional network-based method was pro-
posed for efficient classification of the novel coronavirus from healthy 
and pneumonia infected patients. For which, we used pre-trained 
MobileNetV2 and VGG16 which have a very different architecture and 
feature selection process. On fusion of the models, after addition of some 
extra layers and considering several other crucial factors, the proposed 
method is able to benefit from various differentiating patterns and visual 
features for each pneumonia class. Therefore, the fusion performance 
observed was better than the individual performance of either of the 
models. These encouraging results show that such models can be used to 
diagnose other chest related diseases like tuberculosis and pneumonia. 
In real life scenarios, CNN is an effective method for detecting CoV- 
affected patients considering the sample collection is safer than a 
nasal swab and is much faster in terms of diagnosis. The proposed model 
provides a multiclass diagnosis with other pulmonary diseases which is a 
key factor as many of these might share the surprisingly similar symp-
toms and effects on the lungs. Other tests may get rendered useless in 
such cases and hence showing the supremacy of CNN models like 
COVDC-Net in practical applications in the coming time. Scaling these to 
existing hospitals and clinics with X-ray machines doesn’t require spe-
cial infrastructure and testing equipment and is quick, which is another 
benefit of AI-Aided methods for diagnosis. In future, we plan to evaluate 
the proposed model on other wider sets of pulmonary diseases and make 
the model more robust. With an even more in depth understanding of 
the SARS-CoV-2 virus and better data, the models can be improved 
further. 
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