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Introduction

The mechanical properties of breast tissue are greatly 
dependent on the health of the tissue. In particulars, the 
stiffness of cancerous breast tumors increases proportionally 
with the severity of cancer.[1] This difference in stiffness 
has led to the development of elastography, a noninvasive, 
image-based technique to determine the stiffness distribution 
within tissue.[2,3] Most often, the imaging modalities used for 
elastography are ultrasound and magnetic resonance imaging.[4]

Digital Image Correlation Elastography (DICE) is an 
elastography technique where the mechanical properties 
are reconstructed through the use of three-dimensional (3D) 
calibrated digital images of the breast surface under actuation. 
A digital image correlation (DIC) procedure is applied to these 
images in order to obtain the surface displacement of the 
breast.[4,5] These displacement measurements then serve as an 
objective against which model-based displacement calculations 
are optimized to reconstruct the internal stiffness distribution 
within the breast.[6]

In previous work, the so-called Digital Image Elasto-
Tomography (DIET) method has been presented, based 
on stochastic minimization of the displacement objective 

function.[7] While initial in vivo results based on the DIET 
method showed promising results in detecting and localizing 
breast tumors,[6] the genetic algorithm that formed the base 
of the DIET reconstruction approach was computationally 
expensive and impractical for a clinical imaging modality.[7,8] 
Recent work in more direct surface-based image reconstruction 
approaches for the elastography method has shown that with 
surface data of sufficient quality, model-based reconstruction 
methods can directly detect the internal stiffness distributions 
of elastic media.[9] In addition, vastly improved data acquisition 
capabilities for the imaging prototype developed in the authors’ 
laboratory has provided sufficient data to look toward more 
direct, gradient-based image reconstruction methods.[10] In 
this article, we present a Conjugate Gradient (CG) based 
reconstruction algorithm applied to simulated data and DIC 
data from the surface of a tissue-mimicking silicon phantom.

Methods

The phantoms used in this study were made from a platinum-
catalyzed soft silicone gel from Factor II Inc. (A-341) mixed 
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with silicon fluid (Factor II-V40104) to reduce its rigidity to 
physiological levels.

Experimental setup
The phantoms were placed in the DICE prototype, which consists 
of an actuator and four pairs of stereoscopic cameras (Grasshopper 
2 from Point Grey®). The 3D time-harmonic motion field of the 
surface was acquired using Vic-Snap and Vic-3D (from Correlated 
Solutions®), a DIC system allowing precise measurement of the 
surface displacement. The actuator is a model 2025E voice coil 
driver (The Modal Shop®). Generally, the DIC subset size was 
a square of 31 × 31 pixels with a step size (distance between two 
consecutive evaluation points) of 7 pixels. These parameters allow 
the capture of around 25,000–30,000 displacement measurements 
covering the entire surface of the phantom, with a resolution of 
1 µm. The acquisition of the displacement was made after a startup 
period at the start to eliminate the transient effect. The thermal 
effects are small enough at the low damping rate of our phantom 
that it can be ignored.[11]

Digital image correlation elastography data processing
The measured displacements acquired with via Vic-3D were 
processed with a Python script to extract the x, y, and z 
positions and the u, v, and w displacements for each of the 
measurement points. The resulting point cloud was then 
processed by Hoppe’s surface reconstruction method.[10] 
This triangulated surface is then converted into a 3D linear 
tetrahedral finite element (FE) mesh using the CGAL.[12] The 
measured data points are then projected onto the surface of the 
mesh at the closest surface element to serve as control points 
for the material property reconstruction. For each point, the 
FFT of the displacement time-series was calculated using the 
FFTpack algorithm implemented in the Scipy Python library.

Digital image correlation elastography gradient 
reconstruction
The forward problem is defined as: Given
1.	 The material properties: The Lamé parameters, λ and µ 

(µ being the shear modulus), and the density (ρ) in the 
spatial domain Ω

2.	 The displacement boundary conditions on the boundary 
ΓD

3.	 The traction vector on the boundary ΓN.

Find the displacement field u that satisfies the equilibrium 
equation for the given material model. Using a FE formulation, 
this equation can be written as:

K u f( ) { },�� � � � (1)

where K(θ) is the stiffness matrix defined for materials 
properties θ = (λ, µ. ρ), and f is the forcing vector. The 
equilibrium equations for a viscoelastic isotropic compressible 
solid under time-harmonic motion are:

� (2)

Where E is the Cauchy stress tensor for the body, ω is the 
actuation pulsation, u the complex time-harmonic displacement 
field, u0 the prescribed displacement field, n the surface normal 
and f the traction vector. The weak form of (2) is:
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To reconstruct the mechanical properties of the phantom, 
we use a nonlinear inversion technique based on the (CG) 
method.[13] This nonlinear technique involves a computational 
model of the time-harmonic response of materials under 
external excitation (the forward problem) and estimates the 
spatially distributed material properties by minimizing an 
error function. This motion error objective function, Φ(), 
is defined as:
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Where um are the measured displacements, uc() are the 
corresponding displacements calculated by FE solution (1) for 
the current set of mechanical properties,  , T is a linear operator 
used to transform the calculated displacements to the 3D-DIC 
measurement space and * is the complex scalar product. For 
this study, the mechanical properties,  , consist of µR and µI, 
respectively, the shear modulus (G’) and the loss modulus 
(G’’). In order to minimize this function, the CG method is 
used. Starting from an initial estimate of  , the CG update 
of the mechanical properties at the n-th iteration is given by:

� (8)

Where pn is the search direction and αn is a step length 
minimizing the objective function, Φ(). For the nonlinear 
CG method used here, the search direction at the n-th iteration 
is given by:

p g pk kk k� �� �� 1 � (9)

where βk is given by the Polak-Ribère formula and gk is the 
gradient vector. Normally, the gradient is calculated as (9):

g J T u uT
c m� � �� � �( )� � (10)

where JT is the transpose of the Jacobian matrix of uc. Each 
column of J is calculated by resolving:
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where K is the stiffness matrix of the forward problem. For 
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M unknown material properties, this leads to M + 1 solutions 
of the forward problem to obtain the gradient vector, which is 
computationally expensive. The adjoint method proposed by 
Oberai et al.[14] uses a Lagrangian formulation to obtain a set 
of equations that allow the calculation of the gradient vector 
with only two solutions of the forward problem.

The adjoint gradient formulation begins by defining the 
following Lagrangian L:

L U W T u u T u u

A W U b W

C m C m( , ; ) ( [ ( )] ) ( [ ( )] )

( , ; ) ( )
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The differential of L is:

� � � ���L D L W D L U D Lw U� � � � � � � (13)

Where D denotes the partial derivative operator. Setting 
DwL·W = 0, gives:

A � � �W U W, ;� � � � �b � (14)

Which is easily verified using (3). Setting DU L·U = 0 gives:

A uW U T T u uc m, ; , ( )� � � �� � � � � � � � �� �� � � (15)

Combining (7) with (13), (14) and (15), we now have:

� � ���� � � �L D L � (16)

Since Φ= g· , we can calculate g as:

g W U� � �D A� �, ; � (17)

Adjoint forcing in the digital image correlation elastography 
system
In the DICE problem, uc are displacements calculated in the 
FE solution space and um are displacements measured in the 
3D-DIC imaging space. In general, these measurements are 
not located at the nodes of the FE calculation, nor do they 
occur at a well-distributed set of points that allow for easy 
interpolation to the FE space. Therefore, the linear operator, 
T, is used to transform the calculated displacements to the 
3D-DIC measurement space. To do this, each measurement 
point, xi, is projected onto the FE surface mesh [Figure 1].

This projection provides the weighting coefficients for each node 
of the FE surface element containing the measurement point, 
which allows interpolation of the calculated displacements to 
the projected measurement point, u x T i uc i

T
c� � � ( ,:) .

The NM x NN transformation matrix, T, is generated once 
during the initialization phase of the algorithm, where NM is 
the number of measurement points and NN are the number of 
nodes in the FE space. Once T is calculated, all the necessary 
elements to calculate the adjoint forcing vector from (15), 
� � � � �� ��� ��� ��T u T uc� �, um , are in place. For the jth element 

of the calculated displacement field, ucj, the first term in this 
inner product, T ( uc j ), represents the jth column of T, such 
that the adjoint state solution, W, can be calculated simply as:

A uT
c� � �U W T T um, ;� � � � � ��� �� �� � � (18)

By taking advantage of the self-adjoint nature of the 
viscoelastic bilinear operator, A.

Multi-frequency
To improve the quality of the reconstruction, we use a multi-
frequency reconstruction as it introduces more information to 
the poorly posed inverse problem.[15] This brings a few changes 
to the DICE reconstruction process. First, the data are obtained 
directly from a multi-frequency periodic actuation signal, 
usually a sum of sine waves. We then compute the FFT to 
isolate each individual actuation frequency. Second, the multi-
frequency reconstruction algorithm works by calculating the 
gradient for each individual frequency, as described previously, 
and linearly combining them to obtain a full multi-frequency 
gradient. Moreover, the shear modulus is now reconstructed 
as a power-law, in the form of:

µ µ� 0�
� � (19)

Where µ0 and α are the parameters being reconstructed, rather 
than µ itself. The gradient formulation then becomes:
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The gradient terms for the loss modulus are calculated using 
the same process.

Regularization
Given the poorly posed nature of the DICE inverse problem, 

Figure 1: Projection of the point P on the surface triangle composed of 
node 1, 2, and 3
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where internal parameters are estimated based on purely 
surface-based measurements, regularization terms are added 
to the objective function, (7), to penalize elastic property 
distributions with sharp variations and unreasonably high or 
low values. This regularization also helps avoid artifacts due 
to model-data mismatch around the complex, friction contact 
region of the actuator.

Total variation regularization
To help reduce the spatial variation of the reconstructed 
property distributions,  , we introduce a total variation (TV) 
regularization. In our case, the TV of a parameter is defined as 
the integral of its squared gradient over the imaging domain.[16] 
This term is then added to the objective function, Φ(). This 
regularization term modifies the gradient calculation shown in 
Eq. 17 through the addition of the corresponding TV gradient. 
For the gradient term corresponding to the nth material property 
value,  n,we have:
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Where αTV is the regularization weighting, δ is a term used 
to ensure the differentiability of the TV operator when the 
property gradient is close to zero and n is the FE shape 
function that supports the nth material property value.

Tikhonov regularization
Tikhonov regularization penalizes large changes in the 
mechanical property values from one iteration to the next, 
in effect limiting the size of pn in Eq.(8). In the DICE 
reconstruction problem, parameter estimates near the center 
of the phantom are least sensitive to the surface-based 
displacement measurements, so the Tikhonov regularization 
term is scaled by the square of the distance from the central 
axis of the phantom (independent of the axial position) to 
ensure that elastic properties at the center of the phantom are 
only adjusted in the case of strong evidence from the surface 
displacement data. For the gradient term corresponding to the 
nth material property value,  n, we have:

gTK n_ ��
�
�

� � � �
�

� � ��

n
TK ndist d� � (23)

Where αTK is the regularization weighting, dθn is equal to θn-
θ0, β is a user-defined exponent, 2 in this case, and dist is the 
distance from the central axis of the phantom.

Spatial filtering
To promote smooth property distributions, we apply a Gaussian 
spatial filtering to the parameter distribution, θ, at each 
iteration. The window for this filter is set as a 5 × 5 × 5 grid 
surrounding each material property node.

Results

Choice of the total variation coefficient

In order to correctly choose the TV weighting coefficient, 
TV , the change in the motion error, as calculated by (7), is 
plotted as a function of the value of the TV coefficient, as 
shown in Figure 2. The optimal TV weighting corresponds to 
the lowest possible coefficient, which still shows the effect of 
the regularization, corresponding to the first point along the 
horizontal axis of Figure 2 where the motion error increases.

As shown in Figure 2, both for simulated and phantom data, 
the optimal TV coefficient lies between 10−14 and 10−12. For 
this study, a value of 5.10−13 was chosen for αTV.

Simulation results
To validate the DICE reconstruction method, displacement 
fields for homogenous and heterogeneous breast-shaped 
geometries were calculated by FE methods. In each case, the 
material properties were calculated for each frequency using 
a power-law in the form of Equation 19, with µ0 set to 500, 
and α equal to 0.45 for the shear modulus and 0.32 for the loss 
modulus, reflecting values measured in.[10]

For the homogeneous geometry, the properties at 60  Hz 
were 7.2 kPa for µR and 3.3 kPa for µI. The mono-frequency 
reconstruction gives a mean value of 6.1 kPa for µR 
(min: 5.6 kPa, max: 6.9 kPa) and 2.4 kPa for µI (min 2.2 kPa, 
max: 3.2 kPa), representing 84% and 72% of the true value, 
respectively. The multi-frequency reconstruction give a mean 
value of 7.2 kPa for µR (min: 6.9 kPa, max: 7.6 kPa) and 3.6 kPa 
for µI (min 3.3 kPa, max: 3.8 kPa), representing 100.5% and 
108% of the simulated value, respectively.

For the heterogeneous geometry, the shear modulus of 
the inclusion was set as 20 X stiffer than the surrounding 
material. All other properties were identical between the 
two materials. While the properties of the surrounding tissue 
were quite accurately reconstructed (103% and 104% of 
the simulated value), the properties of the inclusion were 
incorrect, although the location of the inclusion is correctly 
identified. Figure  3 shows the result for mono-frequency 

Figure 2: Variation of the error in function of the total variation coefficient, 
for a simulation and for an experiment
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(at 60  Hz) and multi-frequency reconstructions of the 
heterogeneous geometry.

Experimental results
The main objective of the DICE method is to detect and 
localize stiff inclusions within the imaging volume. To validate 
the method using measurement data, two silicon phantoms 
(one homogeneous and one heterogeneous) were constructed. 
The heterogeneous phantom consisted of a half-ellipsoid with 
half axes of 6.5 cm, 6.5 cm, and 7.5 cm with two inclusions 
(1 cm and 2 cm diameter) located at 120° from each other. 
The inclusions are located at a depth of 4 cm and located 1 cm 
and 2 cm from the phantom surface for the small inclusion 
and large inclusion, respectively. The two inclusions were 
3D printed from ABS plastic, and as they were hollow, were 
visible within a standard T1 magnetic resonance image (MRI). 
The density of the silicon phantom material was measured at 
roughly 900 kg/m3 and for the reconstruction; the λ modulus 
was set at 150 kPa, which corresponds to a Poisson’s ratio of 
0.48 at a shear modulus of 6.25 kPa.

The DICE reconstruction for the homogenous phantom is 
shown in Figure 4. As can be seen, the stiffness distribution is 
largely homogeneous, with a slightly stiffer region toward the 
center of the phantom, where the influence of the surface-based 
measurements is minimal.

Figures 5 and 6 show the result of the reconstruction for the 
heterogeneous phantom. Figure  6 shows the comparison 
between the T1 MRI within a slice containing both inclusions 
and the corresponding slice of the multi-frequency DICE 
reconstruction.

Comparison with the sweep reconstruction
The material properties for the homogeneous phantom can 
be compared with results obtained from a brute force sweep 
analysis. The sweep analysis is done by calculating the value 
of a motion error objective function Φ, defined as:

� � � �� � � � � � � � � �
�
�
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nm

m
i

c
i

m
i

c
iu u u u

1

{ ][ [ ]} � (24)

Where ui
m are the measured displacements, ui

c(θ ) are the 
corresponding displacements calculated by FE solution for 
the current set of mechanical parameters, θ, nm is the number 
of measurements and * is the complex scalar product. For 

this study, the mechanical parameters, θ, consist of G’ and 
G”. The parameter sweep was performed over a range from 
4150 Pa to 11,500 Pa for the storage modulus and 2000 Pa to 
5000 Pa for the loss modulus. The sweep analysis yields, for 
the multifrequency parameters, log10(θ) and α, 3.8 and 0.42 
for the shear modulus, 3.77 and 0.35 for the loss modulus. 
The gradient reconstruction yield 3.01 and 0.35 for the shear 
modulus and 3.04 and 0.36 for the loss modulus. The two 
reconstruction methods thus give similar values.

Exact measures of viscoelastic properties in very soft gels such 
as those used in these experiments are hard to obtain using 
traditional rheometers due to resonance effects. However, 
the property values obtained here are in good agreement 
with values obtained in previous, simplified homogeneous 
experiments[17] as well as phantoms studies run in other 
laboratories using similar gels.[11]

Second phantom
To investigate the robustness of the DICE method, we 
performed the same experiment previously described on a 
second heterogeneous phantom. This phantom was smaller 
in size than the first, with half axes of 4.5 cm, 4.5 cm, and 

Figure 4: Multi-frequency reconstruction of the homogeneous phantom. 
Shown is the Shear modulus at 60 Hz

Figure 3: Shear modulus reconstructions for the heterogeneous geometry simulation (left), mono-frequency reconstruction (center), and multi-
frequency reconstruction (right)
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6.5 cm, and contained two inclusions located at 90° to each 
other. The inclusions are located at mid-height, near the 
phantom surface. Both inclusions are roughly oval shaped, 
made from cut, rigid silicone gel. Figure  7 shows their 
location within the phantom and the corresponding slice of 
the DICE reconstruction.

The reconstruction was performed using the same algorithm 
and parameters described for the 1st heterogeneous phantom 
[Figure 8].

While the inclusions in the reconstruction seem to appear 
near the bottom of the phantom, in real life, they are located 
at roughly mid-height. The difference is because about 1.5 cm 
of the phantom is not covered by the finite element method 
mesh, due to a lack of spatial information on this region from 
the 3D DIC data.

Discussion

For the homogeneous phantom, the adjoint gradient method 
does not find a purely homogeneous material, as the shear 
modulus varies from around 7 kPa in the center to around 
4.3 kPa on edge. However, the change is progressive with no 
abrupt variation, as it is the case when inclusion is present.

For the first heterogeneous phantom, we were able to 
successfully identify the presence and location of the stiff 
inclusions, as we can see from Figure 6. However, the material 
properties values (shear and loss modulus) of the inclusions 
are not accurately identified. The inclusion, being made in 
plastic, is considered to have an extremely high shear modulus 
compared to the surrounding medium. This high rigidity 
corresponds to extremely long mechanical wavelengths, which 
cannot be accurately characterized in the small size of these 
inclusions.

For the second heterogeneous phantom, inclusions are well 
located by the reconstruction algorithm. However, an artifact 
from the reconstruction is present on the second line of the 
layer. It appears as a stiff inclusion. This is believed to be 
due to the actuator. Tests with a ring actuator have led to the 
creation of a circular pattern at the same place. It is believed 
that it is the compression resulting from the actuation behind 
the actuator that creates this pattern.

Figure 5: Multi-frequency reconstruction of the heterogeneous phantom. 
Shown is the Shear Modulus at 60 Hz

Figure 6: T1 magnetic resonance image localization of the inclusions 
(left), and the corresponding slice of the digital image correlation 
elastography reconstruction (right), showing the Shear modulus at 
60 Hz. The resolution of the magnetic resonance image is 0.8 mm 
per pixel, the digital image correlation elastography resolution is 
3 mm per pixel

Figure 8: A montage of the different slices of the 2nd phantom elasticity 
reconstruction

Figure 7: (a) Location of the inclusions within the phantom. Inclusion 1 
is the stiffer of the two. (b) The corresponding slice of the digital image 
correlation elastography reconstruction showing the location and relative 
stiffness of the two inclusions

aa
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Overall, the DICE method has been proven successful to locate 
inclusions in two different phantoms.

Conclusion

We were able to successfully and accurately reconstruct the 
material properties using simulated displacement fields for 
both cases, validating the code and the model used. Using 
real measurements, we were able to discriminate between the 
homogeneous and heterogeneous cases. Moreover, for the 
heterogeneous phantoms, we were able to adequately locate 
the two inclusions. More tests need to be done to determine 
optimal regularization levels and to assess the robustness of 
the DICE method.
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