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The tumor microenvironment (TME) exerts a high impact on tumor biology and
immunotherapy. The heterogeneous phenotypes and the clinical significance of CD8+ T
cells in TME have not been fully elucidated. Here, a comprehensive immunogenomic
analysis based on multi-omics data was performed to investigate the clinical significance
and tumor heterogeneity between CD8+ T cell-related molecular clusters. We identified
two distinct molecular clusters of ccRCC (C1 and C2) in TCGA and validated in E-MTAB-
1980 cohorts. The C1 cluster was characterized by unfavorable prognosis, increased
expression levels of CD8+ T cell exhaustion markers, high immune infiltration levels as well
as more immune escape mechanisms. The C2 cluster was featured by favorable
prognosis, elevated expression levels of CD8+ T cell effector markers, low load of copy
number loss and low frequency of 9p21.3 deletion. Moreover, the effect of molecular
classifications on Nivolumab therapeutic efficacy in the CheckMate 025 cohort was
examined, and the C2 cluster exhibited a better prognosis. Taken together, we
determine two CD8+ T cell-related molecular clusters in ccRCC, and provide new
insights for evaluating the functions of CD8+ T cells. Our molecular classification is a
potential strategy for prognostic prediction and immunotherapeutic guidance for
ccRCC patients.

Keywords: CD8+ T cells, immunogenomic analysis, immune checkpoint blockade therapy, clear cell renal cell
carcinoma, unsupervised cluster analysis
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INTRODUCTION

Globally, renal cell cancer (RCC) is the third most diagnosed
genitourinary malignancy (1). Clear cell renal cell carcinoma
(ccRCC) is the most common histological subtype of RCC
(accounting for about 70% of cases) (2). Although nephrectomy is
a good therapeutic option for controlling localized ccRCC, nearly
30% of patients subjected to nephrectomy experience recurrence or
distant metastasis (3–5). Metastatic RCC (mRCC) is almost always
fatal, with ten-year survival rates of less than 5% (6, 7). Targeted
therapy for mRCC is less likely to significantly change the clinical
outcomes (8). Invention of immune checkpoint blockade (ICB)
therapy targeting the programmed cell-death protein 1 (PD-1)/
programmed cell death 1 ligand 1 (PD-L1) axis and cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) has revolutionized RCC
treatment (9–12). However, studies have reported low ICB
therapeutic response rates among mRCC patients (13). Therefore,
there is an urgent need to identify novel markers for predicting the
prognosis and ICB therapeutic efficacy for ccRCC.

Tumor intrinsic features (14, 15) and TME characteristics are
involved in ICB therapeutic responses of solid tumors (16, 17).
Studies have aimed at developing strategies to overcome the
immunosuppressive TME, thereby, improving the efficacy of ICB
therapies (18). Among tumor-infiltrating immune cells, T cells
are highly correlated with the immunosuppressive characteristic
of ccRCC (19). T cell exhaustion in the TME may be the main
reason for the low ICB therapeutic response rates (10). Generally,
T cell exhaustion means that the state of CD8+ T cells is
converted from an anti-tumor status to an immune-
functionally impaired status due to long-term persistence of
tumor antigens and/or the suppressive TME (20). Therefore,
conversion of exhausted T cells back to the activated state will
have important clinical implications for ccRCC.

CD8+ T cells, one of the largest proportions of T cells in the
TME, which are major drivers of anti-tumor immunity (21). Unlike
many other solid tumors, high infiltration levels of CD8+ T cells has
been reported to be associated with poor prognosis in ccRCC (22,
23). The CD8+ T cells in the ccRCC TME exhibited elevated
expression levels of immune evasive biomarkers and enhanced
immunosuppressive cell infiltrations (24, 25). However, the
relationship between the degree of CD8+ T cell infiltration and
the ICB therapeutic responses in ccRCC remains unclear, perhaps
because CD8+ T cell infiltrated ccRCCs are enriched with 9p21.3
deletions and relatively depleted PBRM1 mutations (26). In
addition, a subpopulation of CD8+ T cells has been closely
associated with ICB therapeutic responses in ccRCC (27). These
above findings indicated that CD8+ T cells present highly
heterogeneous phenotypes in the TME of ccRCC. Thus, further
evaluation of biomarkers and molecular clusters associated with
CD8+ T cells is urgent needed, which would be helpful to identify
new prognostic markers to inform ICB therapy for ccRCC.
Abbreviations: ccRCC, Clear cell renal cell carcinoma; ICB, immune checkpoint
blockade; TCGA, The Cancer Genome Atlas; WGCNA, Weighted gene co-
expression network analysis; ssGSEA, Single sample Gene Set Enrichment
analysis; GSVA, Gene set variation analysis.
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In this study, we characterized CD8+ T cell-related molecular
clusters to identify potential biological functions of CD8+ T cells
in ccRCC. Firstly, WGCNA was performed to identify modules
associated with CD8+ T cells in ccRCC. Subsequently,
unsupervised cluster analysis was carried out to identify two
distinct CD8+ T cell- related molecular clusters with different
genomic alterations and clinical significance. Finally, a simple
gene classier was constructed to inform on the prognosis and
guide ICB therapy for ccRCC patients.
METHODS

Dataset Acquisition and Preparation
The RNA-sequencing data (HTSeq-Counts) for ccRCC (n = 539)
and normal (n = 72) tissue samples was downloaded from The
Cancer Genome Atlas (TCGA) website (https://portal.gdc.
cancer.gov/) while the corresponding clinical data of ccRCC
samples was downloaded from the cBioportal website (https://
www.cbioportal.org/datasets). Raw counts of RNA-sequencing
data were transformed into transcripts per million (TPM) values,
and were further log2- transformed (log2TPM) for subsequent
analyses. Matrix files of gene expression profiles and clinical
information of the E-MTAB-1980 cohort was downloaded from
the ArrayExpress website (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-1980/).

Normalized transcriptomic and clinical data of CheckMate
025 (CM-025) cohorts of ccRCC patients treated with
Nivolumab (anti-PD-1) therapy were obtained from the
published article (26). The inclusion criteria for ccRCC
samples were: i. Those with sequencing or array data; ii. Those
with survival data; iii. Those with a follow-up of ≥ 30 days; and
iv. Pathologically confirmed ccRCC cases. Samples from the CM-
025 cohorts that did not have information regarding ICB
therapeutic responses were excluded. Finally, 539 ccRCC and
72 normal tissue samples were used to identify differentially
expressed genes (DEGs). A total of 509 ccRCC samples from
TCGA, 101 from E-MTAB-1980 and 172 from CM-025 cohorts
were enrolled in this study.

Differential Analysis of
Immune-Related Genes
A total of 7399 immune-related genes were obtained from the
InnateDB website (https://www.innated b.com/redirect.do?go=
resourcesGeneLists). Then, the “edgeR” R package (version
3.30.0) was used to identify DEGs between ccRCC (n = 539)
and normal (n = 72) tissue samples in TCGA. The threshold for
statistically significant DEGs was set at |log2-fold change (FC)| >
1 and false discovery rate (FDR) < 0.05. Then, immune-related
genes were intersected with significant DEGs to obtain immune-
related differentially expressed genes (IRDEGs).

Acquisition and Survival
Analysis of Immune and
Non-Immune Cells in the TME
A total of 64 immune and non-immune cell types in the TME
were downloaded from xCell (http://xcell.ucsf.edu/). xCell is an
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enrichment algorithm with 6573 gene signatures of 64 immune
and non-immune cell types, including epithelial cells,
hematopoietic progenitors, extracellular matrix cells, adaptive
and innate immune cells. The xCell obtained the full cellular
landscape of 64 human cell type from various sources and
adopted an integrated approach combining the advantages of
gene set enrichment and deconvolution approaches to identify
cell types across data sources (28). Cox regression and Kaplan-
Meier analyses were performed to identify prognostic immune
and stroma cell types by “survival” R package. The “survminer” R
package was used to determine the best cutoff.

Weighted Correlation Network Analysis
(WGCNA) of IRDEGs
WGCNA was performed using the “WGCNA” R package to
identify IRDEGs associated with CD8+ T cells on the TCGA
cohort. The expression profile of IRDEGs with log2TPM
expression greater than 1 (n = 1339) derived from the above
analysis was used as the input file for WGCNA. The WGCNA is
a method for evaluating correlation patterns among genes across
samples and for visualizing co-expression networks (29).
Adjacency matrix was generated by Pearson’s correlation
between all pair-wise genes. The soft threshold power of b = 6
was selected to achieve scale-free topology of the adjacency
matrix. Then, the adjacency matrix was transformed into
topological overlap matrix (TOM). According to TOM‐based
dissimilarity measure with minimal module size as 30 and cut
height as 0.25, IRDEGs with similar expression patterns were
classified into the same gene module by average linkage
hierarchical clustering. Then, we evaluated the correlation
between module eigengenes (MEs) and clinical traits to
identify clinically significant modules.

Unsupervised Cluster Analysis
Kaplan-Meier and univariate Cox regression analyses were
performed using the “survival” R package to select genes from the
brown module, and genes with p < 0.01 were selected for
unsupervised cluster analysis. Then, we performed the
consensus non-negative matrix factorization (CNMF) algorithm
based on above genes and selected default parameters for
molecular classification of the TCGA cohort using the
“CancerSubtype” R package (30). The CNMF algorithm is a
classical dimension reduction method that extracts essential data
from high-dimensional data. Since the CNMF function of the
“CancerSubtype” R package is designed for multi-omics data
analysis, we randomly divided gene expression profiles into two
datasets, as two different omics. Silhouette coefficient, which ranged
from -1 to 1, was used to estimate the result of the cluster. Silhouette
coefficients near 1 indicate that the sample is distinguished from
neighboring clusters and was used to determine the best number of
clusters (31). The same classification procedure was performed for
the E-MTAB-1980 cohort to validate molecular classification.

Prognostic Analysis of Molecular Clusters
Cox regression analysis was performed to assess the prognostic
significance of molecular clusters in the TCGA cohort.
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Moreover, the independence of molecular classification based
on clinical characteristics (T stage, M stage, Stage and Grade) was
also evaluated. Then, time-dependent receiver operating
characteristic (ROC) analysis was compared with area under
the curve (AUC), concordance index (C-index) and decision
curve analysis (DCA) between molecular clusters and
ClearCode34 (32). Brooks et al. developed a model based on
34 gene expressions to classify ccRCC patients and to predict
patient survival outcomes (32). The “compare” function in
“timeROC” R package and the “cindex.comp” function in
“survcomp” R package were used to statistically test the
difference in AUC and C-index between different signatures,
respectively. Decision curve analysis (DCA) was performed to
evaluate the net benefits derived from the use of molecular
classification and ccA/ccB subtypes. Subsequently, the
associations between molecular clusters, clinical characteristics
and ClearCode34 were evaluated. The sankey diagram was used
to visualize relationships among molecular clusters, stage, grade,
survival status and ClearCode34.

Somatic Mutations and Copy-Number
Alterations (CNAs) Data
Data for somatic mutations and CNAs were downloaded from
the cBioportal website (https://www.cbioportal.org/datasets).
Genes with mutation rates greater than 2% were included in
this study. Copy-number alterations data were analyzed using
the GISTIC 2.0 online version (https://cloud.genepattern.org/gp/
pages/index.jsf). Threshold copy numbers at alteration peaks
(kirc.all_lesions.conf_90.txt file) were obtained by GISTIC
analysis. CNAs with occurrence rates greater than 2% were
also included in this study. CNAs were divided into focal and
arm levels by GISTIC according to the length of genome
mutation fragments. Focal CNAs were defined as shorter than
the chromosome arm and arm CNAs were defined as
chromosome-arm length or longer (33). The load of copy
number loss or gain was defined as the total number of CNAs
at focal and arm levels.

Acquisition of Immunogenomic Signatures
Immune-related features, including tumor mutation burden
(TMB), neoantigen load, homologous recombination defects
(HRD), CTA scores and intratumor heterogeneity (ITH) were
also retrieved (34). Immune scores for each TCGA sample
were downloaded from the ESTIMATE website (https://
bioinformatics.mdanderson.org/estimate/index.html). A total of
178 immunomodulators and chemokines were obtained from
the TISIDB website (http://cis.hku.hk/TISIDB/index.php), while
44 immunomodulators and chemokines without corresponding
expression profiles were excluded.

Single Sample Gene Set Enrichment
Analysis (ssGSEA)
The immune suppression score signature (CD274, IDO1,
FASLG, CTLA4, PDCD1, LAG3, HAVCR2, PDCD1LG2, IL10,
TGFB1, PTGS2) (35, 36) and the signatures of 10 oncogenic
pathways were obtained from a previously published study (37).
December 2021 | Volume 12 | Article 745945

https://www.cbioportal.org/datasets
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://bioinformatics.mdanderson.org/estimate/index.html
https://bioinformatics.mdanderson.org/estimate/index.html
http://cis.hku.hk/TISIDB/index.php
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. Novel Molecular Clusters in ccRCC
ssGSEA algorithm of “GSVA” R package would rank-normalized
gene expression values for each ccRCC sample, and a normalized
enrichment scores (NES) of each ccRCC sample was generated
using the Empirical Cumulative Distribution Functions of the
genes and the remaining genes in each signature (38, 39). The
NES represented the degree of absolute enrichment of a gene
signature in each ccRCC sample, which can reflect the activity of
a signature or a pathway. Subsequently, NES were compared
among different clusters.

Functional Enrichment Analysis
Annotated gene sets c2.cp.kegg.v7.2.entrez.gmt, c5.go.v7.2.
entrez.gmt, c6.all.v7.2.entrez.gmt, c7.all.v7.2.entrez.gmt,
c8.all.v7.2.entrez.gmt and h.all.v7.4.entrez.gmt were downloaded
from the GSEA website (http://www.gsea-msigdb.org/gsea/
downloads.jsp). Comprehensive functional enrichment analyses,
including GO enrichment analysis, KEGG enrichment analysis,
oncogenic signature, immune signature, cell type signature and
“hallmark” signature were performed using “clusterprofiler” R
package. Hallmark pools specific well-defined biological states or
processes and demonstrates coherent expression, which was
extensively utilized in medical studies (40–44). FDR < 0.05 was
considered statistically significant.

Gene Set Variation Analysis (GSVA)
GSVA, a non-parametric estimation method, is commonly used
for variation analyses of biological pathways between different
molecular clusters. By using the “c2.cp.kegg.v6.2.symbols” gene
set as the reference gene set, we performed GSVA to identify
differences in KEGG pathways among different clusters and
selected default parameters using the “GSVA” R package. The
FDR < 0.05 and t value > 2 were set as the cut‐off criteria.

Construction and Validation of the
Gene Classifier
Based on the top 30 up-regulated DEGs in each cluster, we
constructed a simple gene classifier to predict the molecular
clusters using nearest template prediction (NTP) function of
“CMScaller” R package. The NTP algorithm provides a
convenient method for cluster prediction in a testing dataset
using a list of signature genes of each cluster, which can be used
to single-patient, multi-cluster and cross-platform predictions
(45). This method has been successfully applied to clinical
classification and prognosis prediction based on gene
expression (46, 47). Therefore, this method was suitable for
this study to establish a convenient gene classifier for clinical
application. Then, the gene classifier was validated in E-MTAB-
1980 and CM-025 cohorts and was compared with previous
molecular classifications based on the CNMF algorithm. Sankey
diagram was used to visualize the relationships between
molecular classification and the gene classifier.

Statistical Analyses
R software (https://www.r-project.org/) was used for all
computational and statistical analyses. Cluster quality measure-
“in-group proportion (IGP)” analysis was performed to evaluate
reproducibility of the molecular clusters, and IGP close to 100%
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meant credible reproducibility of the clusters (48). Expression
data of different datasets were normalized by Z-scores prior to
IGP analysis. Determination of statistically significant DEGs
between two TCGA clusters using the “limma” package were
defined as |log2FC| > 1 and FDR < 0.05. The Hazard Ratio (HR)
and 95% confidence interval (CI) were generated by Kaplan-
Meier and Cox regression analyses. Statistical significance of the
comparisons between two groups for continuous variables and
categorical variables was estimated by the Student’s T test or
Mann-Whitney U test and Chi-square test or Fisher’s exact tests,
respectively. Correlations between variables were assessed by
Spearman correlation analysis. Two-tailed p ≤ 0.05 was
considered statistically significant.
RESULTS

Identification of IRDEGs in ccRCC
The flowchart of this study was shown in Figure S1A. We
compared the RNA expression levels between ccRCC (n = 539)
and normal tissues (n = 72) in the TCGA cohort (|log2FC| > 1,
FDR < 0.05), and obtained a total of 5640 DEGs (3726
upregulated and 1914 downregulated) (Supplement Table 1).
The volcano plot showed the distribution of all DEGs in TCGA
(Figure S1B). We obtained a total of 1399 IRDEGs with the
expression greater than log2TPM 1 through the intersection of
DEGs and InnateDB immune-related genes (Figure S1C and
Supplement Table 2).

Survival Analysis of 64 Immune and
Non-Immune Cell Types
Kaplan-Meier and Cox regression analyses showed that out of 64
immune and non-immune cells, 21 cell types were associated
with overall survival of ccRCC. (Figure S2 and Supplement
Table 3). Multiple lymphoids were associated with poor
prognosis, including CD8+ T cells, B-cells, Th1 cells, effector
memory CD8+ T cell (CD8+ Tem), natural killer T cells (NKT),
Plasma cells and Th2 cells (Figure 1A and Figure S2). In
myeloid cells, eosinophils and conventional dendritic cells
(cDC) were associated with good prognosis whereas basophils,
mesangial cells, M1 Macrophages and monocytes were
associated with poor prognosis. High abundance of CD8+ T
cells was associated with worse prognosis, which consistent with
previous studies (22, 23).

Weighted Gene Correlation Network
Analysis of IRDEGs
The abundance of CD8+ T cells was extracted from the xCell
website (http://xcell.ucsf.edu/). To identify key modules that
were significantly correlated with the abundance of CD8+ T
cells, we performed WGCNA on the TCGA-ccRCC dataset after
incorporating the 1399 IRDEGs derived from the above analysis
(Figure 1). Clustering dendrograms of IRDEGs was shown in
Figure 1B and color intensity varies were positively with
abundance of CD8+ T cells. In terms of survival status, red
means dead and white indicates live (Figure 1B). Analysis of
December 2021 | Volume 12 | Article 745945
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scale-free fit index and mean connectivity for various soft-
thresholding powers was shown in Figures 1C, D, respectively.
By setting the cut height = 0.25, the brown and turquoise module
eigengenes were combined (Figures 1E, F). Figure 1F also show
the dendrogram of robust IRDEGs clustered based on a
dissimilarity measure. By setting the cut height = 0.25 and b =
6 (scale-free R2 = 0.85), 1399 IRDEGs were divided into eight
independent co-expression modules (Figure 1G). As shown in
the relative diagram of module-trait relationship, the brown
module including 648 IRDEGs was most significantly
correlated with the abundance of CD8+ T cells (Figures 1G, H
and Supplement Table 4).

Heterogenous Phenotypes of CD8+ T Cells
To evaluate the potential biological mechanisms of CD8+ T cells, we
performed comprehensive functional enrichment analysis of CD8+

T cell related genes using the “cluster profiler” R package. Figure 2A
Frontiers in Immunology | www.frontiersin.org 5
and Supplement Table 5 showed that immune-related KEGG
pathways, such as chemokine signaling pathway, natural killer cell
mediated cytotoxicity, primary immunodeficiency, cytokine-
cytokine receptor interaction and hematopoietic cell lineage were
enriched. The GO term, including leukocyte proliferation, leukocyte
cell-cell adhesion, regulation of T cell activation, positive regulation
of cytokine production and T cell activation were mostly associated
with CD8+ T cell related genes. “Hallmark” gene signatures analysis
revealed that CD8+ T cells could be involved in multiple biological
states or processes, such as complement, IL6 Janus kinase (JAK)-
signal transducer and activator of transcription (STAT) signaling
(signaling, interferon Gamma (INFg) responses, inflammatory
responses, and allograft rejection. Furthermore, based on the
cutoff identified by the “survminer” R package, we divided the
TCGA cohorts into two groups, high CD8+ T cell- infiltration and
low CD8+ T cell- infiltration groups. The results from GSVA
analysis revealed that the low CD8+ T cell- infiltration group was
A B

D

E

F

G H

C

FIGURE 1 | Identification of CD8+ T cell related genes. (A) Kaplan-Meier analysis of CD8+ T cells. (B) Clustering dendrograms of immune-related differentially expressed
genes (IRDEGs). Color intensity varies positively with abundance of CD8+ T cells. In terms of survival status, red means dead and white indicates live. (C, D) Analysis of
scale-free fit index (C) and mean connectivity (D) for various soft-thresholding powers. (E) Clustering of module eigengenes. The red line shows cut height (0.25).
(F) Dendrogram of robust IRDEGs clustered based on a dissimilarity measure (1-TOM). (G) Heatmap of the correlation between module eigengenes and clinical traits of
ccRCC. Each cell contains p-value and the correlation coefficient. (H) Scatter plot of module eigengenes related to abundance of CD8+ T cells in the brown module.
December 2021 | Volume 12 | Article 745945
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enriched with more metabolism-related processes (e.g., tyrosine
metabolism, selenoamino acid metabolism, purine metabolism,
butanoate metabolism and propanoate metabolism et al), as well
as WNT signaling and transforming growth factor (TGF)-b
signaling pathways (Figure 2B and Supplement Table 6). High
CD8+ T cell- infiltration group were related to many immune-
related biological pathways, such as intestinal immune network for
IGA production, antigen processing and presentation, T cell
receptor signaling pathway, natural killer cell mediated
cytotoxicity and cytokine receptor interactions et al, but more
related to immunosuppressive pathways, such as primary
immunodeficiency, vascular endothelial growth factor (VEGF)
signaling, hedgehog signaling, p53 signaling, JAK-STAT signaling,
and Toll like receptor signaling (Figure 2B). Meanwhile, the
abundance of CD8+ T cells was positively correlated with
immune suppression scores and expression of critical immune
checkpoint genes (CTLA4, TIGIT, PDCD1, LAG3 and CD274)
(Figures S3B–F). However, it was negatively correlated with the
Frontiers in Immunology | www.frontiersin.org 6
expression of CD107a (T cell degranulation related factors) (Figure
S3G). The TMB or neoantigen load of ccRCC was not correlated
with the abundance of CD8+ T cells (Figures S3H, I). The high
CD8+ T cell- infiltration group exhibited elevated expression levels
of critical immune checkpoint genes (Figure 2C). Previous studies
reported that the TMB, neoantigen load and immune checkpoint
gene expression might not be better indicators for ICB therapeutic
efficacy in ccRCC, when compared to other solid tumor types (10,
49). Various subpopulations of CD8+ T cells were associated with
ICB therapeutic responses in ccRCC (27, 50, 51). However, the
above findings suggested that the CD8+ T cells and immune
checkpoint gene expression, but not mutation or neoantigen
loads, might be ideal predictors for ICB therapy. In addition, the
high CD8+ T cell- infiltration group exhibited lower expression
levels of CD107a and elevated immune suppression scores and
abundance of immunosuppressive cells (M2 macrophages and Th2
cells) (Figures 2C–E), which may explain why ccRCC tumors
progress despite high T cell infiltration. Overall, through
A B

D

E

C

FIGURE 2 | Potential biological functions of CD8+ T cells. (A) Comprehensive functional enrichment analysis of CD8+ T cell related genes. (B) Gene set variation
analysis (GSVA) between high CD8+ T cell- infiltration and low CD8+ T cell- infiltration groups. (C, D) Differences of immune-related signatures between high CD8+

T cell- infiltration and low CD8+ T cell- infiltration groups. (E) The abundance of each immunosuppressive cell in high CD8+ T cell- infiltration and low CD8+ T cell-
infiltration groups. (****P < 0.0001; **P < 0.01).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. Novel Molecular Clusters in ccRCC
functional enrichment analysis of CD8+ T cell- related genes, new
insights can be provided for evaluating the heterogenous
phenotypes of CD8+ T cells.

Construction and Clinical
Significance Analysis of
Molecular Classification
To retrieve key genes that were significantly associated with OS,
univariate cox regression analysis was used to screen out the
prognosis-related brown genes (pCox < 0.01). Then, the
prognosis-related brown genes obtained from univariate cox
regression analysis were further screen by Kaplan-Meier
analysis (pKM < 0.01, Supplement Table 7). Using the 84-gene
panel, we performed molecular classification using the CNMF
algorithm to characterize two distinct ccRCC molecular clusters;
C1 cluster (N= 176 samples) and C2 cluster (N= 333 samples)
(Figure 3). The C2 cluster exhibited a better OS than the C1
cluster (Log rank p < 0.001, Figure 3A). In addition, we
attempted to divide ccRCC patients of TCGA cohort into 2, 3,
4 and 5 clusters, and found that the silhouette coefficients near
1were the largest when they were divided into two clusters
(Figure 3B and Figures S4A–C). Therefore, we choose two
clusters as the best clusters. Differential expression tested the
expression difference between two clusters (Figure 3C). The C1
cluster was correlated a higher histological grade, T stage, N
status, M stage and stage as shown in the heatmap (Figure 3D
and Table 1). The heatmap showed that 84 prognostic genes
were correlated with the abundance of CD8+ T cells in the TCGA
cohort (Figure S4D).

To evaluate the independence of molecular classification
from clinical characteristics, a total of 475 ccRCC patients
(Supplement Table 8) with complete clinical data, including
T stage, M stage, stage, and grade, were selected for
Cox regression analysis. After the adjustment of clinical
characteristics (T stage, M stage, Stage and Grade), molecular
classification was found to be an independent prognostic factor
for OS outcomes of ccRCC (Figures 3E, F). The 5-year AUC
and 5-year C-index of molecular classification were somewhat
higher than those of ClearCode34 (5-year AUC: 0.65 vs. 0.64; 5-
year C-index: 0.64 vs. 0.61), but no statistical significance
(p>0.05; Figures S4E, F). Moreover, the DCA for 5-year OS
prediction showed that the net benefit across 0% to 50%
threshold probabilities of molecular classification was higher
than that of ClearCode34 (Figure 3G). Sankey diagram was
used to visualize the relationships among molecular clusters,
ClearCode34 subtypes and clinical characteristics (Figure 3H).
Overall, we successfully construct two CD8+ T cell-based
molecular classifications to predict the OS for ccRCC. The
molecular classification in this study was of greater
significance for the prediction of clinical prognosis.

Validation of Molecular Classification in
the E-MTAB-1980 Cohort
The same classification pipeline was performed on the E-MTAB-
1980 cohort to validate the stability of molecular classification,
and the result of Kaplan-Meier analysis was consistent with that
Frontiers in Immunology | www.frontiersin.org 7
of the TCGA cohort (Figures S5A–C). Furthermore, we
attempted to divide ccRCC patients of E-MTAB-1980 cohort
into 2, 3, 4 and 5 clusters, and found that the silhouette
coefficients of two clusters were the largest. Therefore, we
choose two clusters as the best clusters. The IGP values were
89.5% and 98.4% for C1 and C2 clusters, respectively, indicating
that the two molecular clusters have a high degree of
reproducibility in E-MTAB-1980 cohort.

Differences in Biological Mechanisms
Between Two Molecular Clusters
To investigate differences in biological mechanisms between
molecular clusters, GSVA was performed in the TCGA cohort.
The results showed that both of two molecular clusters were
notably enriched in metabolism related pathways (Figure S6A
and Supplement Table 9). Strikingly, gene sets related to primary
immunodeficiency, nucleotide metabolism, JAK-STAT signaling,
Toll like receptor signaling, vascular endothelial growth factor
(VEGF) signaling, hedgehog signaling, p53 signaling and cell
cycle/apoptosis related pathways were significantly elevated in
the C1 cluster. In terms of the C2 cluster, it was dramatically
enriched in amino acid metabolism (e.g tyrosine and glutamate
metabolism), mammalian target of rapamycin (mTOR)
signaling, transforming growth factor (TGF)-b signaling,
insulin signaling, peroxisome proliferators-activated receptors
(PPARs) signaling and tight junction pathways. It has been
reported that these pathways might modify the cancer-related
immune microenvironment. For example, previous studies have
revealed that VEGF had direct or indirect effects on components
of the immune system, including suppressing DCmaturation and
CD8+ T cell proliferation and regulating ICAM1 to suppress NK
cell and T cell trafficking, resulting in immunosuppressive
outcomes (52). Therefore, it could be deduced that the C1
cluster might develop cancer immune escape through multiple
immunosuppressive pathways.

Existing of High Immune Infiltration
but Extrinsic Immune Escape
Mechanisms in C1 Cluster
To investigate the mechanisms associated with clinical
phenotypic heterogeneity between molecular clusters, we
analyzed differences in extrinsic immune escape mechanisms
between them. Extrinsic immune escape mechanisms involve
four aspects: presence of immunosuppressive cells, lack of
immune cells, more fibrosis, and high concentrations of
immunosuppressive cytokines, which imply that non-tumor
cell components in the TME lead to immune escape of tumor
cells (37, 53, 54). Figures 4A, B showed that the C1 cluster had
higher immune infiltration and immune suppression scores.
Expression level of TMEM173 (STING), a signature of
spontaneous initiation of innate immunity (37), was higher in
the C1 cluster than in the C2 cluster (Figure 4C), which were
consistent in the E-MTAB-1980 cohort (Figure S6B). The C1
cluster exhibited higher infiltrations of immune cells, such as
CD8+ T-cells, CD4+ T-cells, Th1 cells, dendritic cells (DC), and B
cells as well as higher infiltrations of immunosuppressive cells,
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such as Th2 cells, and stromal cells, including fibroblasts and
endothelial cells (Figure 4D and Supplement Table 10). We
found that the abundance of Th2 cells of C1 cluster was also
higher than that of C2 cluster in the E-MTAB-1980 cohort
(Figure S6C). Interestingly, the C1 cluster exhibited higher
expression levels of chemokines, such as CXCL10, CXCL9 and
CCL4, which could attract CD8+ T cells and DC (37)
(Supplement Table 11). Furthermore, immunosuppressive
cytokines were upregulated in the C1 cluster, including IL-10
pathway- and TGF-b signaling pathway-related genes
(Figure 4C), which were basically consistent in the E-MTAB-
1980 cohort (Figure S6B) (35). In contrast, the GZMB/CD8A
ratio, a signature of anti-tumor immunity efficacy (55), was
significantly higher in the C2 cluster (Figure 4E). Thorsson
Frontiers in Immunology | www.frontiersin.org 8
et al. identified six immune subtypes (C1–C6) encompassing 30
cancer types based on the pan-cancer immunogenomics analyses
and reveal that the immune subtype C3 was enriched in most
ccRCC patients, which characterized by immune equilibrium
and a better prognosis than the other immune subtypes (34).
Notably, they identified two distinct CD8+ T cell-related
molecular clusters, which had distinct proportions of the
immune subtype C3, of which C1 cluster-immune subtype C3
accounted for 75.0% and C2 cluster-immune subtype C3
accounted for 92.3% (p<0.001) (Figure 4F). Consist with
previously reports, our results demonstrated that although less
immune cell infiltration, anti-tumor immune components and
immune escape components might achieve a balance in the C2
cluster. Overall, although the C1 cluster has a higher immune
A B D
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FIGURE 3 | Construction and clinical significance analysis of molecular classification in TCGA cohort. (A) Kaplan-Meier analysis showed the Cluster1 patients had
significantly poorer prognosis than Cluster2 patients. (B) Silhouette coefficients near 1 indicate that the sample is distinguished from neighboring clusters and
determine that the best number of clusters was two. (C) Differential expression tested the expression difference between two clusters. (D) Heatmap of the specific
cluster-associated genes. Forrest plot of univariate (E) and multivariate (F) Cox regression analysis in the TCGA cohort. (G) DCA for 5-year OS prediction shows that
the molecular cluster (Cluster) has higher net benefit across 0% to 50% threshold probabilities than ClearCode34 classification (Classification). (H) A Sankey plot was
used to reveal the correlation between molecular cluster, ClearCode34 classification, and clinical characteristics. (DCA, decision curve analysis; TCGA, The Cancer
Genome Atlas; OS, overall survival).
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infiltration level, there are multiple extrinsic immune escape
mechanisms that result in worse prognostic outcomes. C2 cluster
may represent immune equilibrium and a better prognosis.

Intrinsic Immune Escape Mechanisms in
Molecular Clusters
We further evaluated intrinsic immune escape mechanisms
between molecular clusters. It has been reported that there are
at least two factors that mediate intrinsic immune escape,
including immunomodulators and tumor immunogenicity (37,
54). Potential signatures determining tumor immunogenicity were
compared between the two clusters: TMB (Figure 5A), neoantigen
load (Figure 5B), HRD (Figure 5C), CTA score (Figure 5D), ITH
(Figure 5E), and MHC-related antigen-presenting capability
(Figure 5G). The C1 cluster had a higher TMB, neoantigen
load, HRD, CTA score, and ITH, indicating that it had more
sources of tumor antigens. However, when compared to the C2
cluster, the C1 cluster had low expression levels of MHC I- related
antigen-presenting genes (Figure 5G and Supplement Table 11),
which contribute to suppressed antigen presentation on tumor
surfaces and lower immunogenicity (56, 57). We also found that
the expression levels of MHC I- related antigen-presenting genes
of C1 cluster was lower than that of C2 cluster in the E-MTAB-
1980 cohort (Figure S6D). Immunomodulators are involved in
other intrinsic immune escape mechanisms and play an essential
role in cancer ICB therapy (58). The C1 cluster exhibited elevated
expression levels of CD8+ T cell exhaustion markers (59),
Frontiers in Immunology | www.frontiersin.org 9
including CTLA4, TIGIT, PDCD1 and LAG3, and suppressed
levels of degranulation markers (CD107a) (50) when compared to
the C2 cluster (Figure 5F and Supplement Table 11), which were
basically consistent in the E-MTAB-1980 cohort (Figure S6E). In
addition, we confirmed a closely correlation between the
expression levels of most immune checkpoint genes and tumor
immunogenicity in ccRCC (Figure S7). Overall, the C1 cluster
exhibits intrinsic immune escape mechanisms that lead to poor
prognostic outcomes.

Genomic Alterations of Molecular Clusters
Tumoral genomic alterations play a pivotal role in cancer
initiation, promotion, progression, and therapy. We assessed
differences in genomic alterations between two molecular
clusters in the TCGA cohort. First, we compared the NES of 10
oncogenic pathways generated by ssGSEA among the molecular
clusters. Cell cycle and TP53- related pathways were highly
enriched in the C1 cluster while the Hippo, NRF2, PI3K, RAS
and TGF-b- related pathways were enriched in the C2 cluster
(Figure S8A and Supplement Table 12). Subsequently, we
identified different frequencies of somatic mutations between the
C1 and C2 clusters. Mutations of BAP1, SETD2, TACC2, MTUS2,
POLR2A, ZZEF1, APOB, MEGF10, RELN, NOTCH2, USH2A,
and PTEN in the C1 cluster were more frequent than in the C2
cluster (Figure 6A and Supplement Table 13). Loss of PTEN, a
tumor suppressor and a member of PI3K-AKT pathway,
upregulates the expression of immunosuppressive cytokines and
TABLE 1 | Clinicopathological characteristics of ccRCC patients in the TCGA cohort.

Characteristics All Patients Cluster1 Cluster2 p-value

Patients, no. (%) 509 (100) 176 (34.6) 333 (65.4)
T stage, no. (%) <0.001
T1 261 (51.3) 58 (33.0) 203 (61.0)
T2 68 (13.3) 23 (13.1) 45 (13.5)
T3 170 (33.4) 87 (49.4) 83 (24.9)
T4 10 (2.0) 8 (4.5) 2 (0.6)

N status, no. (%) 0.005
N0 227 (44.6) 78 (44.3) 149 (44.7)
N1 15 (2.9) 11 (6.3) 4 (1.2)
Unknown 267 (52.5) 87 (49.4) 180 (54.1)

M stage, no. (%) <0.001
M0 406 (79.8) 125 (71.0) 281 (84.4)
M1 76 (14.9) 46 (26.1) 30 (9.0)
Unknown 27 (5.3) 5 (2.9) 22 (6.6)

Stage, no. (%) <0.001
Stage I 255 (50.1) 54 (30.7) 201 (60.4)
Stage II 56 (11.0) 19 (10.8) 37 (11.1)
Stage III 115 (22.6) 54 (30.7) 61 (18.3)
Stage IV 83 (16.3) 49 (27.8) 34 (10.2)

Grade, no. (%) <0.001
1 12 (2.4) 1 (0.6) 11 (3.3)
2 217 (42.6) 45 (25.6) 172 (51.7)
3 200 (39.3) 72 (40.9) 128 (38.4)
4 72 (14.1) 56 (31.8) 16 (4.8)
Unknown 8 (1.6) 2 (1.1) 6 (1.8)

Survival status, no. (%) <0.001
Alive 343 (67.4) 83 (47.2) 260 (78.1)
Dead 166 (32.6) 93 (52.8) 73 (21.9)

Survival time <0.001
Median months (range) 45.8 (1-149.0) 38.8 (1-133.6) 49.5 (37.5-149.0)
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downregulates the expression of IFNG to inhibit T-cell mediated
infiltration (56, 60). In addition, PTEN mutation was associated
with acquired ICB therapeutic resistance (56, 60). Low expression
level of SETD2 is associated with resistance to tyrosine kinase
inhibitors (TKIs) in ccRCC patients (61). Our cluster-specific
CNAs analysis revealed that chromosomal deletions and
amplifications, for example, 9p21.3 deletions were more frequent
in the C1 cluster (Figure 6A and Supplement Table 14). Deletion
of 9p21.3 is more enriched in tumors with high immune
infiltrations and is associated with worse prognostic outcomes in
ccRCC after anti-PD-1 therapy (26), indicating that ICB
therapeutic efficacy in the C2 cluster might be higher than in
the C1 cluster. Furthermore, we found significantly higher gain
and loss of CNAs load in the C1 cluster than in the C2 cluster
(Figure S8B). High CNAs load has been associated with a more
aggressive phenotype of ccRCC (62) and ICB therapeutic
resistance (63). Based on these above analyses of genomic
Frontiers in Immunology | www.frontiersin.org 10
alterations, we postulate that poor prognostic outcome of the C1
cluster might be correlated with genomic alterations, and that the
C1 cluster might be resistant to ICB therapy.

Validation of Molecular Classification in
the CM-025 Cohort
ICB therapy (e.g., anti-PD-1/PD-L1 therapy) has highly enhanced
ccRCC treatment. In the CM-025 cohort the same classification
procedure as TCGA and E-MTAB-1980 cohorts was performed to
validate molecular classification (Figures 6B–D). In addition, IGP
values were 84.5% and 82.7% for C1 and C2 clusters, respectively,
indicating the high reproducibility of molecular classification in
the CM-025 cohort. Kaplan-Meier analysis revealed that the C2
cluster exhibited better OS outcomes (Figure 6B) and tended to
have higher ICB therapeutic response rates than the C1 cluster
(Figure 6E), indicating that the C2 cluster is more likely to benefit
from anti-PD-1 therapy. The genomic differences between the two
A B
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FIGURE 4 | Exploration of extrinsic immune escape mechanisms among molecular clusters. Differences of immune score (A) and immune suppression score
(B) between two molecular clusters. (C) Differences of the expression of TMEM173 (STING), IL10, IL10RA, TGFB3 and TGFBI between molecular clusters.
(D) The relationship between molecular clusters and immune and non-immune cells in the tumor microenvironment. (E) The GZMB/CD8A ratio among molecular
clusters. (F) A Sankey plot was used to reveal the correlation between molecular cluster and immune subtype. (****P < 0.0001; ***P < 0.001; *P < 0.05).
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clusters in the CM-025 cohort were analyzed (Figure S9 and
Supplement Tables 15, 16). We found that the difference results
of 9p21.3 deletion, 9q34.3 deletion and 14q32.33 deletion were
consistent with the results of TCGA cohort (Figure 6F and Figure
S9). The VHL and PBRM1 mutations of the C2 cluster were more
frequent than those of the C1 cluster (Figure 6G and Figure S9). It
has been proven that the PBRM1 mutations is associated with ICB
therapeutic efficacy in ccRCC (26). Overall, we confirm that
molecular classification in the CM-025 cohort and the C2
cluster could be used to identify ccRCC patients who are more
suitable for anti-PD-1 therapy.

Construction and Validation of a
Gene Classifier
To facilitate the clinical application, the NTP algorithm was used
to generate the PIE classifier (PIE classifier: prognosis and ICB
therapeutic efficacy of the ccRCC classifier) and to predict
Frontiers in Immunology | www.frontiersin.org 11
molecular classification (Figure 7A and Supplement Table 17)
based on the top 30 up-regulated genes in each molecular cluster
of TCGA. The PIE classifier was used to predict molecular
clusters in TCGA, E-MTAB-1980 and CM-025 cohorts
(Figures 7B–D). There was a high degree of concordance
between prediction results of the PIE classifier and molecular
classification, implying that the PIE classifier could simply and
reproducibly characterize molecular classification. We also
performed Kaplan-Meier analysis of the gene classifier and
the results were consistent with the original classification
(Figure S10).
DISCUSSION

ccRCC is an immunogenic tumor type which immunologic
TME characteristics are relatively unique among solid tumor
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FIGURE 5 | Exploration of intrinsic immune escape mechanisms among molecular clusters. Comparison of tumor mutation burden (TMB) (A), neoantigen
load (B), homologous recombination defects (HRD) (C), CTA scores (D), and intratumor heterogeneity (ITH) (E) among the two clusters. (F) Comparison of
immunomodulators among the two molecular clusters. (G) Heatmap displaying gene clusters of immunomodulators in the two clusters. (****P < 0.0001).
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types (10, 49, 59). There is a high infiltration of CD8+ T cells in
the TME (22), which are closely associated with the prognosis
(59) and ICB therapeutic efficacy of ccRCC (26, 27). However,
the infiltrated CD8+ T cells exhibit distinct functional status
and heterogeneity (27). A lack of patient selection based on
CD8+ T cell infiltration might be a major reason for low ICB
therapeutic efficacy in a considerable proportion of ccRCC
patients. In this study, we evaluated the heterogeneous
phenotypes of CD8+ T cells in ccRCC to enhance the
understanding of TME and provide prognostic prediction and
ICB therapeutic guidance for ccRCC patients.

Based on CD8+ T cell-related genes, two CD8+ T cell-related
molecular clusters were divided with heterogeneous TME
phenotypes and clinical significance. The C1 cluster was
characterized by high expression levels of CD8+ T cell
exhaustion markers, high immune infiltration, and inferior
prognosis, as well as more immune escape mechanisms. The
Frontiers in Immunology | www.frontiersin.org 12
C2 cluster was characterized by high expression levels of CD8+ T
cell effector markers, favorable prognosis, low load of copy
number loss, low frequency of 9p21.3 deletion and a high
frequency of PBRM1 mutations. Moreover, the C2 cluster
exhibited better prognostic outcomes in the CM-025 cohort
treated with Nivolumab. Finally, the PIE classifier was
generated to predict molecular classification and to facilitate
clinical applications. To the best of our knowledge, this study is
the first to use multi-omics data to analyze differences in clinical
significance and immunogenomic landscape of CD8+ T-related
molecular patterns.

This study lays the foundation for evaluating potential novel
biological functions and mechanisms of CD8+ T cells in ccRCC.
The mechanisms of blocking the generation of anti-tumor
immune responses are quietly complex, theory that have
received the most attention is the expression of key receptors
on the surface of CD8+ T cells that prevent full CD8+ T cell
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FIGURE 6 | Associations between molecular clusters and immune checkpoint blockade therapy. (A) Distribution of driver genes mutation, copy number alterations
(CNAs) among the two molecular clusters. (B-D) Identification and validation of molecular clusters according to the CD8+ T cell-related genes in the Check-mate 025
cohort. (B) Kaplan-Meier analysis showed the Cluster1 patients had significantly poorer prognosis than Cluster2 patients. (C) Silhouette coefficients indicate that the
sample is distinguished from neighboring clusters. (D) Differential expression tested the expression difference between two clusters. (E) The proportion of patients
with response to Nivolumab immunotherapy in C1 and C2 cluster. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.
(F) The proportion of patients with Deletions of 9p21.3 in C1 and C2 cluster. (G) The proportion of patients with PBRM1 mutations in C1 and C2 cluster.
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activation (59). However, few studies have focused on specific
role of CD8+ T cell related genes in ccRCC immunology. We
performed functional enrichment analysis of CD8+ T cell
related genes and found that CD8+ T cells were implicated in
multiple biological states or processes, such as chemokine
signaling pathway, natural killer cell mediated cytotoxicity,
primary immunodeficiency, cytokine-cytokine receptor
interaction and hematopoietic cell lineage. Fewer pathways
were enriched in the high CD8+ T cell- infiltration group
than in the low CD8+ T cell- infiltration group, implying that
more CD8+ T cells in the TME of ccRCC were in a state of T cell
exhaustion. It has been reported that intratumoral specific
CD8+ T cell biomarkers can determine the prognosis and
immunoevasive outcomes in ccRCC patients, which is a
probable explanation for why ccRCC tumors progress despite
a robust CD8+ T cell infiltration (23, 50, 51). However, the
randomly selected markers might not reflect the heterogeneity
of CD8+ T cells (50, 51, 64). In this study, WGCNA was used to
identify CD8+ T cell related module genes, while the
unsupervised clustering method was used to better identify
Frontiers in Immunology | www.frontiersin.org 13
novel CD8+ T cell-related molecular patterns. The TMB,
neoantigen load and immune checkpoint gene expression
might not be significantly associated with ICB therapeutic
efficacy for ccRCC (10, 49), but were closely associated with
CD8+T cells (27, 50, 51). Notably, according to the association
between CD8+ T cells and TMB, neoantigen load and immune
checkpoint gene expression, we found that the CD8+ T cells and
checkpoint molecule expression, but not mutation or
neoantigen loads, might be better predictors for ICB therapy.
The high CD8+ T cell- infiltration group exhibited lower
expression level of CD207a and higher expression levels of
critical immune checkpoint genes, immune suppression scores
and an abundance of immunosuppressive cells (M2
macrophages and Th2 cells), which may explain the poor
prognosis of ccRCC with high CD8+ T cell infiltration (22,
23). Previous studies have also proved that high infiltration
levels of CD8+ T cells in ccRCC were associated with
elevated expression levels of immune evasive biomarkers and
enhanced immunosuppressive cell infiltrations (24, 25).
Overall, infiltrating CD8+ T cells in ccRCC exhibit an
A
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FIGURE 7 | Identification of a simple gene classifier. (A) Heatmap of the expression level of the PIE classifier (PIE classifier: prognosis and ICB therapeutic efficacy of
the ccRCC classifier). Concordance of molecular clusters prediction in TCGA (B), E-MTAB-1980 (C) Check-mate 025 (D) cohorts between the PIE classifier and
molecular classification based on CNMF algorithm.
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immunosuppressed phenotype, which is a probable explanation
for why ccRCC tumors progress despi te robust T
cell infiltrations.

Our study has practical clinical implications for prognostic
prediction of ccRCC patients. We used the CNMF algorithm,
based on CD8+ T cell-related genes, to identify two distinct
molecular clusters. The OS outcomes of the C2 cluster were
significantly better than those of the C1 cluster. Furthermore,
molecular classification was shown to better predict OS
outcomes for ccRCC. Previous studies identified ccRCC
clusters based on genomic profiling (32, 65, 66), thereby
improving the ability of clinicians to make personalized
treatment decisions. Samira et al. constructed a ClearCode34
classifier to stratify ccRCC patients into good risk (ccA) and poor
risk (ccB) subtypes (32). Compared to their classifications, our
molecular classification exhibited higher AUC and C-index, but
were not significantly different. Moreover, the DCA for 5-year
OS prediction revealed that the net benefit of molecular
classification was higher than that of ClearCode34. Finally, we
validated molecular classification in the E-MTAB-1980 cohort,
and found that the two molecular clusters had a high degree of
consistency between the two cohorts.

To evaluate the mechanisms that contribute to different
prognostic phenotypes of CD8+ T cell-related molecular
clusters, we performed immunogenomic landscape analyses.
The C1 cluster exhibited elevated immune infiltrations and
more extrinsic and intrinsic immune escape mechanisms than
the C2 cluster. Heterogeneities of the TME phenotypes led to
different clusters of ccRCC, with distinct tumor immune escape
mechanisms. Based on the immunoediting theory, it has been
shown that a lack of immune cells, presence of immune-
inhibitory cells, high concentrations of immune-inhibitory
cytokines, and fibrosis might be attributed to extrinsic immune
escape mechanisms of tumors (37, 53, 54). The C1 cluster
exhibited not only more infiltrations of anti-tumor immune
cells, but also more infiltrations of immunosuppressive cells
and stromal cells including fibroblasts and endothelial cells.
From the perspective of prognosis, it was speculated that
immunosuppressive cells were dominant in C1 cluster, leading
to a worse prognosis. In the C2, although less immune cell
infiltration, but the dominant position in the anti-tumor
immune cells, which may account for the better prognosis.
Based on comparisons with immune subtypes proposed by
Thorsson et al. (34), we further speculate that the C2 cluster
may represent immune equilibrium. In addition, we also
analyzed deeply differences of the other TME signatures (e.g
metabolic reprograming, immunogenicity related signatures,
somatic mutation and copy number variation) between the two
clusters, and revealed that a deeply relationship between them.
However, the specific mechanisms involved in alterations of these
microenvironment components should be further investigated.

Tumor cells adapt their metabolism to support increased
bioenergetic needs and biosynthesis requirements of
proliferation and invasiveness. Metabolic reprograming is a
pivotal mechanism for immune escape in several human
malignancies, resulting in poor prognosis and low ICB
Frontiers in Immunology | www.frontiersin.org 14
therapeutic responses (67–69). Metabolic alterations in the
TME lead to competition for nutrients and oxygen of
immune and cancer cells. Furthermore, cancer cells and
surrounding cells infiltrated in the tumor secrete metabolites
and inhibitory cytokines that interfere with the targeting of
immune cells to eliminate tumor cells. Ultimately, tumor
cells create a favorable environment for their growth and
development while evading and suppressing the immune
response (70) . For example , high leve ls of serum
metabolite (e.g hypoxanthine and histidine) were associated
with improved progression-free survival and may serve as
predictive biomarkers of response to PD-1 blockade therapy
in advanced NSCLC patients (71). Lipid accumulation was
correlated with elevated expression of CD36, a scavenger
receptor for oxidized lipids, on CD8+ TILs, which also
correlated with progressive T cell dysfunction (72).
Consistent with these reports, the GESA showed that both of
two CD8+ T cell-based molecular clusters were correlated with
metabolism related pathways. The C1 cluster type was enriched
in immunosuppressive hallmarks including JAK/STAT3
signaling, Toll like receptor signaling, VEGF signaling,
hedgehog signaling and p53 pathways. These results suggest
that the C1 cluster might develop cancer immune escape related
to immunosuppression in TME and multiple malignancy
hallmarks, resulting in adverse clinical outcomes and poor
immune responses. The C2 cluster was correlated with amino
acid metabolism which would enable early identification of
ccRCC patients who may benefit from PD-1 blockade therapy.
Based on the above results, we postulate that the enriched lipids
metabolism promotes intratumoral CD8+ T cell dysfunction
and may serve as a therapeutic avenue for immunotherapies.

This study may contribute to the selection of ccRCC patients
who are suitable for immunotherapy. Based on comparisons
with immune subtypes proposed by Thorsson et al. (34),
we further speculate that the C2 cluster may represent
immune equilibrium. The C2 cluster exhibited a lower
immunogenicity and elevated MHC I- related antigen-
presenting gene expression than the C1 cluster, implying that
the C2 cluster is suitable for immunotherapy (57). Through the
analysis of genomic alterations of molecular clusters, we
further found that the C2 cluster was more suitable for
immunotherapy. The C2 cluster was characterized by a lower
load of copy number loss and low frequencies of 9p21.3
deletion in the TCGA cohort, which might be correlated with
improved ICB therapeutic efficacy (26, 63). In addition, the C2
cluster of the CM-025 cohort exhibited a low frequency of
9p21.3 deletions while PBRM1 mutations in the C2 cluster were
more frequent than those of the C1 cluster. Moreover, the C2
cluster exhibited favorable OS outcomes in the CM-025 cohort.
A series of biomarkers, including PD1/PD-L1 expression, TMB,
and microsatellite instability (MSI) are potential prognostic
indicators for solid tumor ICB therapeutic outcomes (73, 74).
However, there was no clear correlation between these markers
and the efficacy of immunotherapy for ccRCC (10, 73). We
found that molecular classification could provide ICB
therapeutic guidance for ccRCC patients as well as a basis for
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clinical trials. To facilitate clinical applications, we established a
simple gene classifier, the PIE classifier, to predict molecular
classification. The gene classifier needs to be further optimized
to increase or decrease the number of up-regulated genes of
clusters, so as to achieve more accurate prediction of
molecular classification.

There are some limitations in our research. First, in the
retrospective cohort, the sample size was not large enough,
although more cohorts were included for validation. In
addition, CD8+ T cell abundance was estimated based on bulk
sequencing, and CD8+ T cell-related genes were not verified by
single cell RNA sequencing. Immunogenomic analysis between
molecular clusters could not directly reflect causality, which
should be verified by relevant experiments.

In summary, we evaluate the potential biological functions of
CD8+ T cells in ccRCC to enhance our understanding of TME.
The TME phenotypes of ccRCC could be classified into two
CD8+ T-cell related molecular clusters with heterogeneous
immunogenomic landscapes and clinical significance.
Molecular classification can be used for prognostic prediction
and ICB therapeutic guidance of ccRCC patients.
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Supplementary Figure 4 | (A–C) Silhouette coefficients indicate that the sample
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between abundance of CD8+ T cells and expression of 84 prognostic genes. The
comparison of area under the curve (AUC) (E) and concordance index (C-index) (F)
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Supplementary Figure 5 | Identification and validation of molecular clusters
according to the CD8+ T cell-related genes in the E-MTAB-1980 cohort. (A).
Kaplan-Meier analysis showed the Cluster1 patients had significantly poorer
prognosis than Cluster2 patients. (B). Silhouette coefficients near 1 indicate that the
sample is distinguished from neighboring clusters and determine that the best
number of clusters was two. (C). Differential expression tested the expression
difference between two clusters. (D–F) Silhouette coefficients indicate that the
sample is distinguished from neighboring clusters.

Supplementary Figure 6 | (A). Gene set variation analysis (GSVA) between C1
cluster and C2 cluster in TCGA cohort. (B) Differences of the expression of
TMEM173 (STING), IL10, IL10RA, TGFB3 and TGFBI between molecular clusters in
E-MTAB-1980 cohort. (C) Differences of abundance of Th2 cells between
molecular clusters in TCGA cohort. (D) The expression levels of MHC I- related
antigen-presenting genes of C1 cluster was lower than that of C2 cluster in the E-
MTAB-1980 cohort. (E) Differences of the expression of CD107a, CTLA4, LAG3,
PDCD1 and TIGIT between molecular clusters in E-MTAB-1980 cohort. (****, P <
0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05).

Supplementary Figure 7 | Correlations between expression levels of immune
checkpoint genes and immunogenicity.

Supplementary Figure 8 | Differences of ssGSEA score of 10 oncogenic
pathways among molecular clusters in TCGA cohort. (B) Comparison of gain and
loss of copy-number alterations load among two molecular clusters. (****, P <
0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05) (ssGSEA: Single sample Gene Set
Enrichment analysis).

Supplementary Figure 9 | Distribution of copy number alterations (CNAs) (A)
and driver genes mutation (B) among the two molecular clusters in the
CM-025 cohort.

Supplementary Figure 10 | Kaplan-Meier analysis of the PIE classifier of TCGA
(A), E-MTAB-1980 (B) and CM-025 (C) cohorts. (PIE classifier: prognosis and ICB
therapeutic efficacy of the ccRCC classifier).
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