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Abstract

Context: Hashimoto’s thyroiditis (HT) and Graves’ disease (GD), two autoimmune thyroid diseases (AITD), occur more
frequently in women than in men and show an increased incidence in the years following parturition. Persisting fetal cells
could play a role in the development of these diseases.

Objective: Aim of this study was to detect and characterize fetal cells in blood of postpartum women with and without an
AITD.

Participants: Eleven patients with an AITD and ten healthy volunteers, all given birth to a son maximum 5 years before
analysis, and three women who never had been pregnant, were included. None of them had any other disease of the
thyroid which could interfere with the results obtained.

Methods: Fluorescence in situ hybridization (FISH) and repeated FISH were used to count the number of male fetal cells.
Furthermore, the fetal cells were further characterized.

Results: In patients with HT, 7 to 11 fetal cells per 1.000.000 maternal cells were detected, compared to 14 to 29 fetal cells in
patients with GD (p = 0,0061). In patients with HT, mainly fetal CD8+ T cells were found, while in patients with GD, fetal B and
CD4+ T cells were detected. In healthy volunteers with son, 0 to 5 fetal cells were observed, which was significantly less than
the number observed in patients (p,0,05). In women who never had been pregnant, no male cells were detected.

Conclusion: This study shows a clear association between fetal microchimeric cells and autoimmune thyroid diseases.
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Introduction

Autoimmune diseases affect approximately 5–8% of the

population and of all the subjects with an autoimmune disease,

78% are women [1]. Many hypotheses have been proposed to

explain this gender bias: differences in cytokine and hormone

production in men and women, and/or differences in the degree

of immune response which tend to be more vigorous in females,

resulting in a higher antibody production and cell-mediated

immunity after immunization [2].

Another explanation might be found in the postpartum

presence of fetal cells in the maternal circulation and tissues.

During pregnancy, fetal cells cross the placenta into the maternal

circulation [3,4]. The immunological interaction between mater-

nal and fetal immune cells should at that point be minimal or

negligible [5]. Fetal cells can persist in the postpartum period,

which indicates insufficient elimination after delivery[6]. These

cells reside in maternal blood and tissues such as the skin and the

thyroid [7,8,9,10,11]: the mother becomes microchimeric. The

persistence of these fetal cells may result in the development of

autoimmune diseases that affect women postpartum, such as

autoimmune thyroid diseases (AITD) [12,13]. This assumption is

based on the higher incidence of these diseases in women in the

decades that follow parturition and on their similarities with graft-

versus-host disease after haematopoietic cell transplantation, an

iatrogenic form of chimerism [13,14].

Autoimmune thyroiditis and Graves’ disease are two autoim-

mune thyroid diseases, affecting 5–15% of women. In patients

with autoimmune thyroiditis, specific auto-antibodies in serum are

present, including anti-thyroid peroxidase antibodies (TPOAb),

anti-thyroglobulin antibodies (TgAb) and autoantibodies binding

to the TSH receptor (TSHRAb). Patients with hypothyroidism

and goiter have Hashimoto’s thyroiditis (HT). A variant of HT is

atrophic thyroiditis. These patients present with hypothyroidism
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and atrophic thyroid [15]. Patients with HT can also present with

euthyroidism. Graves’ disease (GD) is characterized by the

presence of circulating autoantibodies that bind and activate the

thyrotropine receptor (TSHRAb), stimulating follicular hypertro-

phy and increases in thyroid hormone production resulting in

hyperthyroidism [16,17]. These patients can also have TgAb and/

or TPOAb [18].

HT and GD are more prevalent in women between the ages of

30 and 50 years, with a ratio female:male of respectively 10:1 and

7:1, and are often detected in the years following parturition

[17,19,20]. Therefore, our study focused on these two autoim-

mune thyroid diseases.

It has been hypothesized that within the thyroid, the presence of

fetal cells may initiate an immune response resulting in an AITD

[5,19]. However, direct evidence for such an effect is lacking. To

our knowledge, no studies so far have described the presence of

fetal microchimeric cells in the maternal circulation of patients

with an AITD in the decades that follow parturition. Moreover, no

studies have examined which cell types represent the fetal cell

fraction in the blood of these patients. The aim of this study was to

compare the amount of fetal cells in peripheral blood of women

with and without an autoimmune thyroid disease, in the years that

follow parturition. Furthermore, the detected fetal cells were

characterized.

Methods

Ethics Statement
This study was approved by the Ethics Committee of the Ghent

University (B67020095877), Belgium, and written informed

consent was obtained from all participants.

Study participants
The diagnosis of Hashimoto’s thyroiditis was based on the

presence of thyroid antibodies (TgAb, TPOAb) and hypothyroid-

ism. The diagnosis of Graves’ disease was based on the presence of

hyperthyroidism, eventually diffuse goiter, and positive serum

TSH receptor antibodies. Peripheral blood (PB) was collected from

11 patients with an AITD, who had given birth to a son maximum

five years before analysis. Blood was also obtained from 10 healthy

volunteers who had given birth to a son maximum five years

before analysis and from 3 women who never had been pregnant

nor had a transfusion or transplantation. In addition, PB was

collected from two women who were pregnant during the course

of the study. Peripheral blood was taken just before birth of their

son, 1 week and 6 months postpartum. Extreme precautions were

taken to avoid external contamination. In particular, all samples

were handled by a female laboratory technician.

Fluorescence in situ hybridization (FISH)
Peripheral blood mononuclear cells (PBMCs) were isolated from

the patient’s EDTA blood samples by density gradient centrifu-

gation on Ficoll-Paque Plus (GE Healthcare, Diegem, Belgium)

according to the manufacturer’s instructions. From each sample,

1.000.000 PBMCs were cytospun on 4 glass slides as previously

described[21]. The slides were air dried and fixated for 5 minutes

in a Carnoy’s fixative (3:1 methanol (Fisher scientific, Leicester-

shire, UK): acetic acid (Sigma-Aldrich, Bornem, Belgium)).

Male fetal cells were distinguished from maternal cells by

fluorescence in situ hybridization (FISH) with CEP X Spectru-

mOrange/CEP Y SpectrumGreen DNA probes (Vysis, Abbott

Molecular, Illinois, US). Male cells showed one SpectrumGreen Y

FISH dot and one SpectrumOrange X-FISH dot, while female

cells contained two SpectrumOrange X FISH dots (Figure 1).

FISH was performed following the manufacturer’s instructions

with minor adjustments. Samples were incubated in a 0,01%

pepsin (Serva Electrophoresis, Heidelberg, Germany)/0,01M HCl

(Sigma-Aldrich)-solution during 30 minutes at 37uC and washed

with PBS (Invitrogen, Paisley, UK) and washing buffer (1x PBS,

0,5M MgCl2 (Sigma-Aldrich)). In the next step, cells were fixated

for 10 min in 1% formaldehyde (Acros Organics, Geel, Belgium),

rinsed with PBS, dehydrated for 3 minutes using an ethanol series

(70%, 90% and 99%, Merck, Darmstadt, Germany) and air-dried.

Afterwards, DNA was denatured by heating the slides in a

denaturation solution (70% formamide (Sigma-Aldrich), 2x SSC

(Vysis)) for 5 minutes at 73uC. Slides were dehydrated again for

1 min using an ethanol series (70%, 90% and 99%). Slides were

dried on a hot plate (50uC) and 5 ml of the pre-denatured probe-

mixture was added per slide. After applying a coverslip,

hybridization was performed at 42uC overnight. Subsequently,

slides were rinsed for 5 min with preheated 0,4x SSC/0,1% NP-

40 (Sigma-Aldrich) solution at 73uC and three times for 2 minutes

at room temperature (RT) with 2x SSC/0,1% NP-40. After air-

drying, the slides were mounted with antifade Vectashield

mounting solution (Vector Labs, Burlingame, CA, USA) contain-

ing 49,6-diamidino-2-phenylindole dihydrochloride (DAPI,

400 ng/ml, Sigma-Aldrich) to counterstain all nuclei on the slide.

A coverslip was applied.

Figure 1. FISH and Repeated FISH. A. FISH of female cells, showing
two SpectrumOrange X FISH spots and of a presumed male cell
indicated by an arrow, showing one SpectrumOrange X FISH and one
SpectrumGreen Y FISH spot; B. Repeated FISH of the female cells and
the presumed male cell, showing no SpectrumAqua Y FISH spots in the
female cells. In contrary, the male cell shows one SpectrumAqua Y FISH
signal on the exact same location as the SpectrumGreen Y FISH spot in
image A (indicated by an arrow), indicating this is a true male cell. C.
FISH of female cells and of one presumed male cell, indicated by an
arrow. D. Repeated FISH of a male cell (C) shows no SpectrumAqua Y
FISH spot. The SpectrumGreen Y FISH spot was probably caused by
cellular debris or dust particles. The SpectrumOrange X FISH spot of
that cell is larger than the other SpectrumOrange spots which may
indicate two SpectrumOrange X FISH spots lying very closely to each
other.
doi:10.1371/journal.pone.0029646.g001
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Fluorescence scanning
The scanning stage was controlled by the AxioVision 4.6.3

software (Carl Zeiss, München, Germany), using the MosaiX

module. Image acquisition was carried out with the AxioVision

multichannel fluorescence module and the AxioCam MRm camera

(Carl Zeiss). Cell nuclei were visualized using Zeiss filter set no. 49

(G 365 nm, FT 495, BP 445/50), Y chromosome spots with Zeiss

filter set no. 38 (BP 470/40, FT 495, BP 525/50) and X

chromosome spots with filter set no. 20 (BP 546/12, FT 560, BP

575–640). Slides were scanned at 20x magnification using a Carl

Zeiss short distance Plan-ApochromatH objective [21]. From every

slide, 582 images were acquired and were stored as separate tiff-files.

Segmentation and masking
For automatic detection of the male fetal cells, the image

processing AxioVision Commander module (Carl Zeiss) was used.

All steps of processing, analysis, and evaluation were stored in an

AxioVision Commander Script, which could be run automatically

on the stored images. This script was based on previously published

scripts with some specific modifications (Figure 2)[21,22]. Spec-

trumOrange X chromosome FISH signals were used as a visual

control. The validation of the script has been described earlier [21].

Repeated FISH
Results of FISH were confirmed using another CEP Y FISH probe

labelled with SpectrumAqua (Vysis). The repeated FISH protocol was

performed as described by Liu et al. with a few minor modifications

[23]. Cover slips applied after FISH were washed off in water. Slides

were incubated for 10 min in each solution of 60% formamide/2x

SSC solution; 2x SSC and 4x SSC/0,1% NP-40 solution at 50uC.

Slides were dehydrated for 1 min through an ethanol series (70%,

90% and 99%) at RT and air-dried. Denaturation, hybridization and

subsequent washing steps were performed as described above. Results

of the repeated FISH were visualised by using the Zeiss filter set no. 47

(BP 436/20, FT 455, BP 480/40) (Figure 1 B).

Phenotyping of the fetal microchimeric cells
For 6 patients with an AITD, phenotyping of the fetal

microchimeric cells was performed. After isolation of the PBMCs,

B, CD4+ T and CD8+ T cells were enriched using an EasySep

positive selection strategy (Stemcell Technologies, Vancouver,

Canada) according to manufacturer’s instructions. Purity of the

different fractions was determined with flow cytometry. Cells were

stained with monoclonal antibodies against CD3 (labelled with

PE-Cy5; 1:20), CD4 (FITC; 1:20), CD8 (PE-Cy7; 1:20) and CD19

(PE; 1:20) (eBiosciences) for 30 minutes on ice, in the dark [24]. All

analyses were performed on a Cytomics FC500 flow cytometer

(Beckman Coulter, Miami, Florida, US) and data analysis was

performed by CXP analysis software (Beckman Coulter). These

cell fractions were also cytospun on poly-L-lysine slides and

underwent FISH and repeated FISH as described above.

Statistical analysis
Levels of significance were calculated by SPSS (IBM, New York,

US) using Mann Withney (MW) test. p,0,05 was regarded as

significant.

Figure 2. AxioVision Commander script for the automatic detection of male fetal cells. A. Original image, split up in B. DAPI image and C.
SpectrumGreen image; D. Threshold interactive on the DAPI image: segmentation based on the definition of a brightness range. Pixels within the
defined gray level range are set to the maximum gray value 1 (pseudocolor blue); whilst pixels outside it are set to the minimum gray value 0 (black),
resulting in a binary image; E. Scrap of image D: removing all artefacts too small to be possibly originating from cell nuclei; F. Close: filling in gaps in
the contours of the nuclei; G. Dynamic Threshold of the SpectrumGreen image, resulting in a binary image showing the Y chromosome FISH spots; H.
Scrap of image G: all regions smaller than 10 pixels and larger than 65 pixels are removed; I. Masking of the binary images F and H: retaining only the
SpectrumGreen FISH signals lying in a nucleus. In the last step, to be included as a true FISH signal, the detected regions had to fulfil four
measurement parameter conditions with regard to area of the region, lowest and highest pixel density and standard deviation of the pixel density
(not shown).
doi:10.1371/journal.pone.0029646.g002
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Results

Study participants
A medical history concerning former pregnancies, transplan-

tations and blood transfusions which can influence the results of

microchimerism was available for patients (Table 1) and healthy

volunteers (Table 2). Patients with an AITD and healthy

volunteers, both with a son, were of similar age (mean 32,1 yr

(range 25–37) for patients and mean 31,1 yr (range 26–39) for

healthy volunteers; p = 0,41). Three healthy volunteers who never

were pregnant and two healthy volunteers who were pregnant at

the conduct of the study, were younger (mean 26,4 yr (range 25–

27 yr); p = 0,015). Patients and healthy volunteers with son, had

similar numbers of children (mean 1,4 (1–2) versus 1,5 (1–2);

p = 0,69) and similar number of boys (mean 1 versus 1,2 (1–2));

which were of similar ages (mean 32,4 months (10–68 months)

versus 36,3 months (3–91 months); p = 0,85). None of the patients

and healthy volunteers had any other disease of the thyroid.

There was no significant difference in the amount of isolated

PBMCs/ml PB between patients and healthy volunteers (data not

shown).

Fetal microchimerism in patients and healthy volunteers
The number of fetal cells detected in patients with HT or GD

and healthy volunteers is shown in Table 1 and 2 respectively. All

patients had detectable fetal microchimerism in their PB, ranging

from 14 to 29 fetal cells per million maternal cells for patients with

GD and from 7 to 11 fetal cells per million maternal cells for

patients with HT. In all healthy volunteers who gave birth to a

son, except for one, fetal microchimeric cells were found in PB and

ranged from 1 to 5 fetal cells per million maternal cells. There was

a statistically significant difference between patients with GD and

patients with HT compared to healthy controls (respectively

p = 0,002 and p = 0,0007, MW) (Figure 3). Moreover, patients with

GD had significant more fetal cells in their blood compared to

patients with HT (MW, p = 0,0061).

Blood obtained from two women pregnant of a boy, revealed

respectively 2 and 1 fetal cell(s) per million maternal cells. One

week postpartum, these women had the same amount of fetal cells

in their blood as before delivery (2 respectively 1). Blood was also

obtained 6 months postpartum and revealed in both women 1 fetal

cell per million maternal cells (Table 2).

As every woman had given birth to a son, the origin of the male

cells is likely to be fetal. However, persistent microchimerism

occurring after blood transfusion or transplantation has also been

described [25], and this possibility cannot be ruled out for patient

4 (GD) who had a blood transfusion 9 years ago. However, as the

results of this patient did not differ from the results of other

patients with Graves’ disease, and hence inclusion or exclusion

didn’t influence the results, this patient was included in our study

but results for this specific patient should be interpreted carefully.

The negative control group, consisting of three women who had

never been pregnant nor had a transfusion or abortion, was

consistently negative for male cells (Table 2).

Flow cytometry for determination of purity of EasySep
isolated cells

Purity of the EasySep isolated cells was assessed by flow

cytometry (Beckman Coulter Cytomic FC 500). For the isolation

of B cells, CD4+ T cells and CD8+ T cells, a purity of respectively

97,6%, 97,4% and 94,1% was obtained (data not shown).

Fetal microchimeric cells in PBMC subsets
All patients selected for our analysis were positive for male cells

in unsorted PBMCs. Table 3 shows the distribution of the fetal

cells in the different cell subtypes (CD4+ T, CD8+ T, B cells and

other cell types) for 6 patients with an AITD (patient 2, 7, 8, 9, 10

Table 1. Patients’ information possibly relevant to fetal microchimerism.

Patient AITD

Age
patient
(years)

Diagnosis
since birth
of youngest
son (months)

Age (months)*

and sexes
of the children Miscarriage Transfusion

Additional
information
considering
the thyroid

Fetal cells/
1.000.000
maternal
cells

1 HT 32 10 10; male - - - 11

3 HT 35 12 39; male,
16; female

36 very earlyin
pregnancy

- Aunt with thyroid
dysfunctions

8

5 HT 25 8 16; male - - - 8

6 HT 35 3 51; male,
87; female

5 yrs ago - - 7

7 HT 36 4 26; male - - Mother with
hypothyroid

7

9 HT 29 unknown 15; male - - - 9

11 HT 32 unknown 18; male 2 x, 1 and 3 years ago- Mother and
grandmother
with hypothyroid

10

2 GD 37 12 37; male 6,5 months old death
born son 4 yrs ago

- Aunt with
hyperthyroid

29

4 GD 32 4 25; male - 9 yrs ago - 15

8 GD 32 unknown 68; male,
8; female

- - - 14

10 GD 28 5 37; male,
123; female

- - - 21

*within the conduct of the study.
doi:10.1371/journal.pone.0029646.t001
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and 11). For patient 5, only fetal T cells were detected (9,3 fetal

cells per 1 million maternal T cells) and no subdivision into CD4+

and CD8+ T cells could be made, due to sample amount

limitation. No fetal B cells or other fetal cell types were detected in

this patient (data not shown in table 3).

In patients with GD, the majority of the fetal cells were found in

the B cell fraction and CD4+ T cell fraction while in patients with

HT, fetal cells were mainly CD8+ cytotoxic T cells.

Discussion

Hashimoto’s thyroiditis and Graves’ disease, two autoimmune

thyroid diseases, occur more often in women than in men and

show an increased incidence in the decades that follow parturition

[10,17,19,20]. It has been hypothesized that fetal microchimeric

cells play a role in the development of these diseases [5,26,27].

Although fetal microchimerism has already been shown in the

thyroids in 50% of these patients, no studies to date have detected

and characterized fetal cells in peripheral blood, although blood

from these patients is easier to obtain in contrast to thyroid tissue

[9,11,26,27]. Studies describing the presence of fetal cells in

thyroid glands, often do not mention the reason of removal of the

thyroid gland [9,27]. Srivatsa et al. analysed thyroid glands from

patients with HT removed because of follicular neoplasm or

papillary carcinoma [11]. The presence of tumor cells may

confound the analysis and the results [9,27,28]. Therefore, only

patients without any other disease of the thyroid were included in

our study. Our study focused only on women who had given birth

to a son since male fetal cells are easier to detect in contrast to

female fetal cells.

Table 2. Healthy volunteers’ information possibly relevant to fetal microchimerism.

Healthy
Volunteer

Age volunteer
(years)

Age (months)*

and sexes
of the children Miscarriage Transfusion

Additional
information
considering
the thyroid

Fetal cells/1.000.000
maternal cells

1 31 43; male 1.5 yr ago at 7 weeks - - 3

2 39 91; male, 59; male - - - 3

3 34 45; male, 20; male - - Sister with
possibly GD

3

4 26 6; male - - - 1

5 29 54; male - - - 1

6 29 33; male, 7; female 17m ago - - 1

7 32 32; male, 68; female - - - 5

8 31 50; male, 89; female - - - 1

9 33 3; male 2x; 2 and 1 yr ago - - 0

10 27 6; male - - - 1

Pregnant 1,
1 week before
delivery

27 - - - - 2

Pregnant 1,
1 week
postpartum

27 0; male - - - 2

Pregnant 1,
6 months
postpartum

28 6; male - - - 1

Pregnant 2,
1 week before
delivery

26 - - - - 1

Pregnant 2,
1 week
postpartum

26 0; male - - - 1

Pregnant 2,
6 months
postpartum

26 6; male - - - 1

Negative
control 1,
never pregnant

26 - - - - 0

Negative
control 2,
never pregnant

25 - - - - 0

Negative
control 3,
never pregnant

27 - - - - 0

*within the conduct of the study.
doi:10.1371/journal.pone.0029646.t002
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To examine the presence of fetal cells in autoimmune thyroid

diseases, blood from female patients with GD or HT who had

given birth to a son maximum five years before analysis, was

assessed in this study. Using FISH and repeated FISH as an

additional confirmation, the number of fetal cells in patients was

compared with that detected in healthy volunteers. All patients

with an autoimmune thyroid disease included in our study had

detectable fetal microchimerism in their blood. This is contrary to

results obtained in the thyroid glands where only 50% of the

patients had fetal microchimerism. The highest number of fetal

cells was observed in the unsorted PBMC fraction of patients with

GD (14 to 29 fetal cells per million maternal cells), followed by HT

(7 to 11) compared to the low number of fetal cells detected in

healthy volunteers (0 to 5). This indicates a higher degree of

microchimerism in AITD compared to healthy controls. More-

over, significant more fetal cells were detected in patients with GD

compared to patients with HT (p = 0,0061).

Two additional control groups were included in our study.

Analysis of the blood of two pregnant women revealed respectively

1 and 2 fetal cells per million maternal cells. This corresponds to

the number of fetal cells detected in our healthy group and the

amount detected by Bianchi et al. [6]. As a negative control group

for this study, blood from women who never were pregnant nor

had a transfusion or transplantation, was obtained. No male cells

were detected in their blood, which gives strong evidence of the

reliability of the techniques used in our study.

As a significant difference in fetal cells was found between

patients with HT and GD, it can be presumed that fetal cells have

Figure 3. Boxplot: fetal cells in patients with GD or HT, and healthy volunteers with son. Minimum and maximum numbers of detected
fetal cells are shown, as well as first quartile, median and third quartile. The number of fetal cells was significantly different between the three groups
(p ,0,05). Moreover, a significant difference between patients with GD and patients with HT was observed (MW, p = 0,0061).
doi:10.1371/journal.pone.0029646.g003

Table 3. Fetal cells in the sorted cell fractions in patients with HT (patient 7, 9 and 11) and GD (patient 2, 8 and 10).

Cell type Pat 7 (HT) Pat 9 (HT) Pat 11 (HT) Pat 2 (GD) Pat 8 (GD) Pat 10 (GD)

B cell CD19+ 0 3,4 1,2 4,0 4,0 9,0

T cell CD4+ 0 1,5 1 1,0 2,5 9,7

CD8+ 4,7 6,0 3,4 1,5 0,5 9,3

Other cell types 0 0 0 0 0 9,3

Data are represented as normalized counts of fetal cells per 1 million maternal cells. T cells were split up immediately into CD4+ and CD8+ T cells. B and T cells were
positively isolated with the EasySepH isolation kits. Cells not isolated with T or B cells, formed the cell population ‘other cell types’. B cells were counted in a range from
1.000.000 to 2.000.000 cells, CD4+ T cells ranged from 1.000.000 to 2.250.000 and CD8+ T cells from 1.500.000 to 2.000.000.
doi:10.1371/journal.pone.0029646.t003
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a different role in the pathogenesis of both diseases. Our study

focused on the presence of fetal B and T cells because these subsets

are more likely to initiate or be involved in immune response. In

patients with HT, mainly fetal CD8+ cytotoxic T cells were found.

In patient 5, only fetal T cells were detected (9,3 fetal cells per

million maternal cells). In patient 7, fetal cells were only detected

in the CD8+ T cell fraction (4,7 fetal cells per million maternal

cells). In patient 9 and 11, the majority of fetal cells was composed

of CD8+ T cells (respectively 6 and 3,4 fetal cells per million

maternal cells). The remaining fetal cells for these patients

consisted of CD4+ T cells (respectively 1,5 and 1 fetal cell(s) per

million maternal cells) and B cells (respectively 3,4 and 1,2 fetal

cells per million maternal cells). One might speculate that these

cytotoxic T cells could cause cell death leading to hypothyroid-

ism[29]. In GD however, the majority of fetal cells was found in

the B cell fraction (4 fetal cells per million maternal cells for patient

2 and patient 8). These B cells could possibly be activated by fetal

CD4+ T cells (1 fetal cell per million maternal cells and 2,5 fetal

cells per million maternal cells respectively for patient 2 and 8). In

one patient with GD (patient 10), more fetal T cells (9,7 fetal CD4+

T cells per million maternal cells and 9,3 fetal CD8+ T cells per

million maternal cells) than fetal B cells (9 fetal cells per million

maternal cells) were found, along with some other cell types (9,3

fetal cells per million maternal cells). These other cell types were

cells not isolated during selection of the T and B cells and are likely

to be natural killer (NK) cells or hematopoietic progenitor cells

capable of differentiating into immune competent cells[30]. One

might speculate that thyroid-reactive T cells could cause activation

of thyrotropin receptor (TSHR)-reactive B cells, secreting TSHR-

stimulating antibodies causing hyperthyroidism [29]. These

thyroid antibodies have already been described in blood [31].

Fetal microchimeric cells could play a role in the pathogenesis of

AITD in two ways: direct or indirect. In a direct manner, fetal

lymphoid cells migrating into the thyroid could initiate a graft

versus host reaction against maternal thyroid antigens resulting in

an autoimmune thyroid disease [5,13]. On the other hand,

intrathyroidal fetal cells, not necessarily of the lymphoid lineage,

could indirectly be involved in the pathogenesis of autoimmune

thyroid disease by activating intrathyroidal maternal T cells

against fetal antigens. Despite the fact that the fetal cells were only

characterized in a limited number of patient samples, an increase

in fetal lymphocytes was clearly shown, which provides support for

the first hypothesis.

In conclusion, our findings indicate a significant difference in

number of fetal cells in the maternal circulation of patients with an

AITD and healthy volunteers despite similar age, number and

gender of their children. In addition, a significant difference was

found between patients with GD and HT, where patients with GD

had more fetal cells in their blood circulation. Moreover, the fetal

cells were of a different cell type which might possibly correlate to

the pathogenesis of both diseases. Our study shows a clear

association between fetal microchimeric cells and autoimmune

thyroid diseases and indicate the value and need for further

research in this field.
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