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Differentiation-state plasticity is a targetable
resistance mechanism in basal-like breast cancer
Tyler Risom1, Ellen M. Langer1, Margaret P. Chapman2, Juha Rantala3, Andrew J. Fields1, Christopher Boniface1,

Mariano J. Alvarez4, Nicholas D. Kendsersky1, Carl R. Pelz1, Katherine Johnson-Camacho1, Lacey E. Dobrolecki5,

Koei Chin6, Anil J. Aswani7, Nicholas J. Wang6, Andrea Califano4,8, Michael T. Lewis9, Claire J. Tomlin2,

Paul T. Spellman1,10, Andrew Adey1, Joe W. Gray 6,10 & Rosalie C. Sears1,6,10

Intratumoral heterogeneity in cancers arises from genomic instability and epigenomic plas-

ticity and is associated with resistance to cytotoxic and targeted therapies. We show here

that cell-state heterogeneity, defined by differentiation-state marker expression, is high in

triple-negative and basal-like breast cancer subtypes, and that drug tolerant persister (DTP)

cell populations with altered marker expression emerge during treatment with a wide range

of pathway-targeted therapeutic compounds. We show that MEK and PI3K/mTOR inhibitor-

driven DTP states arise through distinct cell-state transitions rather than by Darwinian

selection of preexisting subpopulations, and that these transitions involve dynamic remo-

deling of open chromatin architecture. Increased activity of many chromatin modifier

enzymes, including BRD4, is observed in DTP cells. Co-treatment with the PI3K/mTOR

inhibitor BEZ235 and the BET inhibitor JQ1 prevents changes to the open chromatin archi-

tecture, inhibits the acquisition of a DTP state, and results in robust cell death in vitro and

xenograft regression in vivo.
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The mammary gland contains a diverse repertoire of epi-
thelial cell states that rely on chromatin dynamics for
specification1,2. Throughout development, these states

include distinct fetal and adult stem cell states, lineage-restricted
luminal and myoepithelial progenitors, mature luminal and
myoepithelial states, and mesenchymal-transitioned cells3–7.
While DNA methylation plays a predominant role in early line-
age distinction in the maturing embryo8, cell differentiation from
stem cell states in the adult is primarily carried out through
dynamic changes in histone modifications at promoters and distal
regulatory elements2,9,10, altering the open chromatin archi-
tecture and providing enhanced expression of new lineage and
differentiation genes11,12. These chromatin dynamics are critical
for the specialized cell state heterogeneity that maintains normal
mammary gland function.

Tumors that arise from the complex epithelial compartment of
the mammary gland are also phenotypically diverse. Many breast
tumors display intratumoral phenotypic heterogeneity13–15 and
are populated with tumor cells in functionally distinct cell states.
Different cell states can possess distinct drug sensitivities15–19,
making cell-state heterogeneity a challenge for therapeutic man-
agement of breast tumors. An additional challenge to therapeutic
treatment is the inherent plasticity of tumor cell states20–22.
Cytotoxic and targeted therapies have been shown to drive cells
into drug tolerant persister (DTP) cell states that can survive drug
pressure in a low-proliferative state19,23,24, leading to incomplete
response and/or recurrence. Recent findings demonstrate that
dynamic chromatin remodeling processes, similar to those
employed in normal cell fate determination, can underlie these
transitions to drug-tolerant states24–26. While it is well established
that Darwinian selection of genetically diverse cellular
subpopulations27,28 can contribute to therapeutic resistance,
mounting evidence implicates chromatin remodeling as another
critical driver of resistance24–26,29. Understanding which breast
tumor subtypes have high cell state heterogeneity and propensity
for cell-state plasticity, whether specific therapeutics trigger DTP
transitions, and what targetable epigenomic processes underlie
these transitions will be critical steps to improving management
of heterogeneous breast tumors.

Here, we use an operational metric of differentiation-state
heterogeneity to identify breast tumor subtypes with high intra-
tumoral heterogeneity, and then use models of these subtypes to
investigate how cell-state heterogeneity and plasticity contribute
to the generation of DTP cell states. We identify multiple classes
of targeted therapeutics that steer initially heterogeneous cell
populations to more homogeneous but persisting states and use
gene expression profiling to identify upregulated signaling and
epigenetic pathway activity in the DTP cells. We show through
genome and epigenome analysis, as well as mathematical mod-
eling, that the development of drug persisting populations occurs
primarily through epigenomic transition and not Darwinian
selection of preexisting resistant subpopulations. Through ana-
lysis of transcriptional profiles of drug persisting populations, we
find BRD4 activity is upregulated in the DTP cells following
treatment with MEK or PI3K/mTOR targeted therapies. We
demonstrate that combination treatment with JQ1, an inhibitor of
bromodomain and extraterminal (BET) family proteins including
BRD4, can prevent the global change in open chromatin
architecture that accompanies DTP state formation during
PI3K/mTOR inhibitor response. Moreover, combination of
PI3K/mTOR and BET inhibitors drives complete cell kill of basal-
like breast cancer cell lines (BCCLs) in vitro, and tumor regres-
sion of orthotopic xenografts in vivo. Our study demonstrates
that triple-negative (TN) and basal-like breast cancers show high
cell-state heterogeneity and plasticity, and advances our under-
standing of how drug combinations targeting chromatin

dynamics can improve management of these aggressive subtypes
of breast cancer.

Results
Differentiation-state heterogeneity in breast cancer. We
examined the relationship between differentiation-state hetero-
geneity and breast tumor subtype in primary patient samples,
patient-derived xenografts (PDX), and BCCLs. We measured
single cell expression of Cytokeratin 19 (K19), Cytokeratin 14
(K14), and Vimentin (VIM) to define distinct differentiation
states, as these intermediate filament markers are preferentially
expressed in the luminal, myoepithelial (basal), and mesenchymal
cell states of the normal breast, respectively4,6,30,31. We first
profiled treatment-naïve tumors of varying hormone receptor
status, including “luminal” (ER+/PR+/HER2−), HER2+ (ER
+/−/PR−/HER2+) and triple-negative (TN, ER−/PR−/HER2−)
tumors, using immunofluorescent imaging and image cytometry
and examining multiple tumor regions if possible (Fig. 1a, Sup-
plementary Data 1). We identified single nuclei using a DNA
counterstain (DAPI) and assessed cytoplasmic expression of K19,
K14, and VIM in an expanded region around each nucleus
(Supplementary Fig. 1a, b). All epithelial marker positive cells
(K19+ or K14+) were considered to be tumor-derived, excluding
histologically determined normal structures and in situ lesions.
We determined the frequency of differentiation states within each
tumor region and calculated the diversity of these states using the
Shannon diversity index32. We found that luminal and HER2
+/ER+ tumors were almost exclusively composed of a K19+/K14
−/VIM− differentiation-state while a subpopulation of K19+/K14
+/VIM− cells was observed in some HER2+/ER− tumors
(Fig. 1b; Supplementary Fig. 1c; Supplementary Data 1). In
contrast, most TN tumors contained numerous K19, K14, and
VIM-defined differentiation states, including robust proportions
of epithelial tumor cells expressing more than one of these
differentiation-state markers. The mean Shannon diversity index
was, therefore, significantly higher in TNBC tumors than in non-
TN tumors (Fig. 1c). We next examined 31 molecularly-profiled
PDX breast tumors33 of varying hormone receptor status and
molecular subtype (Fig. 1d, e, Supplementary Fig. 1d, e, Supple-
mentary Data 1). We used human specific antibodies to identify
the additional tumor populations of K19−/K14−/VIM+ and K19
−/K14−/VIM− cells, and observed robust heterogeneity within
these PDX models (Fig. 1e). Consistent with our observations in
primary patient samples, the Shannon diversity index was sig-
nificantly higher in TN tumors compared to non-TN tumors
(Fig. 1f). Further, tumors of the basal-like molecular subtype had
significantly higher Shannon diversity indices than the HER2
molecular subtype tumors (Fig. 1g). Analysis of IF-stained BCCLs
(Fig. 1h, Supplementary Fig. 2a, b, c) supported our observations
in primary and PDX tumors: TN cell lines had significantly
higher diversity indices than non-TN lines, and both TN
molecular subtypes (basal-like and claudin-low) showed sig-
nificantly higher diversity indices compared to luminal B and
HER2 subtype BCCLs (Fig. 1i, j). Cell line heterogeneity was
maintained in 3-dimensional culture and orthotopic xenografts of
these cell lines (Supplementary Fig. 2d).

We examined the expression of luminal, basal, and mesench-
ymal markers in RNAseq data from BCCLs34. We focused on the
expression of 25-gene genesets for each lineage, including genes
specific to the luminal or myoepithelial differentiation states of
the normal breast, as well as 25 classic epithelial-to-mesenchymal
transition markers2,4–7,30,31,35,36. We performed unsupervised
clustering on 44 BCCLs using these 75 genes (Supplementary
Fig. 2e). Claudin-low lines clustered with dominant mesenchymal
gene expression. Luminal B lines, as well as the majority of HER2
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lines, clustered with dominant expression of luminal genes. Basal-
like lines expressed myoepithelial-specific (basal) genes, but also
showed high levels of luminal and mesenchymal gene expression
(Fig. 1k). We calculated the cumulative Z-score mean of, as well
as variance between, the luminal, myoepithelial, and
epithelial–mesenchymal transition (EMT) genesets to serve as
metrics of molecular differentiation-state heterogeneity. Basal-like

lines showed significantly higher cumulative Z-score means and
significantly lower variances between the genesets compared to all
other groups (Fig. 1l m, Supplementary Fig. 2f). Of note, there
was a biphasic distribution of the variance metric within HER2
cell lines, which correlated with a newer molecular classification
of these lines as L-HER2 and HER2E subtypes37,38 (Fig. 1n). The
metric of variance between genesets was inversely correlated with
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the Shannon diversity indices calculated from the cell line
imaging data (Supplementary Fig. 2g).

Together these data show that TN tumors, and more
specifically the basal-like molecular subtype, harbor the most
differentiation-state heterogeneity among breast tumors. Impor-
tantly, this heterogeneity was maintained in basal-like BCCLs,
suggesting these lines can serve as models of how phenotypic
heterogeneity affects therapeutic response.

Targeted therapies generate distinct DTP cell states. We
investigated the impact of targeted therapies in the heterogeneous
basal-like cell lines, HCC1143 and SUM149PT, following a 72 h
treatment with seven doses of each of 119 pathway-targeted
therapeutic compounds. We quantified changes in cell number
and single cell expression of K19, K14, and VIM by analysis of
immunofluorescent images (Fig. 2a, Supplementary Fig. 3, Sup-
plementary Data 2). Most drugs had incomplete cytotoxicity at
maximum doses and exhibited altered differentiation-state mar-
ker expression in the DTP cells. We used K-means clustering to
identify compounds that produced DTP cells with similar pat-
terns of K19/K14/VIM expression. Figure 2a shows six general
response groups in HCC1143 representing DTP cells with: (A)
increased K14 expression; (B) increased K19 and VIM expression;
(C) increased expression of all markers at high dose; (D)
increased expression of all markers across doses; (E) minimal
change in marker expression; or (F) variable, non-dose-
dependent response. Importantly, compounds with the same
molecular target or related pathway targets clustered together. For
example, inhibitors targeting MEK and BRAF grouped together
within the K14-enriched cluster (Group A), inhibitors targeting
mTOR and PI3K grouped within the K19/VIM-enriched cluster
(Group B), inhibitors targeting the ErbB receptors, Src family
kinases, or Aurora kinases increased expression of all markers
(Groups C and D), and inhibitors of Flt3 and other related
kinases had minimal influence on cell number or differentiation-
marker expression (Group E). Results in SUM149PT cells showed
a similar array of phenotypic responses, with drug targets clus-
tering into groups with similar marker expression as that seen in
HCC1143 (Supplementary Fig. 3, Supplementary Data 2).

We further analyzed compounds associated with the K14-
enriched and K19/VIM-enriched groups since these left cells in
distinct states. We evaluated responses of HCC1143 cells after 72
h treatment with escalating doses of two MEK inhibitors,

Trametinib and AZD6244 (K14-enriched cluster, Group A),
and two dual-specificity PI3K/mTOR inhibitors, BEZ235 and
PI103 (K19/VIM-enriched cluster, Group B). As observed in the
initial screen, these agents left DTP populations with distinct
differentiation marker expression (Fig. 2b). The MEK inhibitors
produced DTP cells with large cytoplasmic volume, high K19 and
K14 expression, and reduced VIM expression. Conversely, the
PI3K/mTOR inhibitors produced DTP cells with high K19 and
VIM expression and reduced K14 expression. The divergent
effects of MEK and PI3K/mTOR inhibition on DTP
differentiation-state were also observed in SUM149PT cells and
could be seen in both lines stained for additional basal
(Cytokeratin 5 (K5) and Cytokeratin 17 (K17)) and luminal
(Cytokeratin 8 (K8)) markers (Supplementary Fig. 4a, b). MEK
and PI3K/mTOR inhibitors both produced large DTP popula-
tions indicated by high projected maximal inhibition “Einf”
values and a plateau in the dose response curve (Fig. 2c,
Supplementary Fig. 5a). MEK inhibition drove dose-dependent
increases in cellular mean-fluorescent intensities (MFI) of K14
and K19, while PI3K/mTOR inhibitors caused mean cell MFI
reductions in K14 and increases in K19 and VIM. To determine
the conservation of these phenotypic responses to therapy, we
assayed eight basal-like cell lines with diverse genetic back-
grounds and different baseline differentiation-state heterogene-
ities (see Fig. 1h) for change in mean-cell MFI of K8, K19, K14,
K5, and VIM following treatment with low and high dose of
Trametinib and BEZ235 (Fig. 2d). Unsupervised clustering of
phenotypic responses to these agents showed that the majority of
these basal-like lines shared a similar phenotypic response:
Trametinib enriched a K19/K5/K14-high basoluminal state with
lower K8 and VIM levels, and BEZ235 enriched a state marked by
low basal cytokeratin expression and increased levels of K19
expression in most lines, and K8 in some lines. Assessment of the
phenotypic response to these drugs in luminal B and claudin-low
cell lines showed that Trametinib and BEZ235 affected cell
proliferation, but the cells remained in their respective K19+/K14
−/VIM− and K19−/K14−/VIM+ differentiation states following
treatment (Supplementary Fig. 5b).

We further assessed differentiation-state enrichments following
MEK or PI3K/mTOR inhibition by analyzing treated cell
populations using RNA-sequencing and geneset enrichment
analysis (GSEA) for 32 curated genesets relating to normal breast
cell states2,31,39, breast cancer subtypes40–43, and breast cancer

Fig. 1 Differentiation-state heterogeneity is enriched in the triple negative and basal-like subtypes. a Representative IF images of treatment-naïve primary
breast cancers: “luminal” (ER+/PR+/HER2−), HER2+ (ER+/−/PR−/HER2+), and triple negative (ER−/PR−/HER2−), scale bars= 100 μm. b The frequency
of six epithelial cell states is shown for each tumor region in a vertical scatterplot with accompanying Shannon diversity index and ER, PR, and HER2 status.
Luminal (L), HER2+ (H), and TN (T) tumor regions are arranged left to right by increasing Shannon index, regions of the same tumor denoted by “a, b, c”
e.g., L2a, L2b, L2c. c Graph comparing Shannon index between tumors of different hormone receptor subtype (multiple regions of individual tumors are
averaged if available), asterisks denote significance *P < 0.05, **P < 0.01. SEM shown. d IF images of PDX tumors with low (left panels) and high (right
panels) Shannon indices stained for DAPI (white), Ku80 (yellow), K19 (blue), K14 (green) and VIM (red), scale bars= 100 μm. e The frequency of eight
tumor cell states based on K19, K14, and VIM expression is shown for 31 PDX tumors in a vertical scatterplot with accompanying Shannon index. Patient
ER, PR, and HER2-receptor status and intrinsic molecular subtype is shown. Tumors arranged left to right by increasing Shannon index. f, g Graphs of
Shannon index, comparing tumors with differing receptor-positivity status and molecular subtype. *P < 0.05, ****P < 0.0001. SEM shown. h IF images of
BCCLs with differing molecular subtypes, scale bars= 100 μm. i The frequency of eight cell states based on K19, K14, and VIM expression is shown for
each BCCL in a vertical scatterplot with accompanying Shannon index, molecular subtype and Triple negative (TN) status is indicated (denoted by color,
marked by black squares). Cell lines are arranged left to right by increasing Shannon index. j Graph of Shannon index, comparing TN and non-TN BCCLs, as
well as different molecular subtypes. *P < 0.05, **P < 0.01, ***P < 0.001, ns= not significant, SEM shown. k Heatmap of BCCL gene expression of 25
luminal, 25 myoepithelial, and 25 EMT-correlated genes. BCCLs are arranged by unsupervised clustering. Cell line molecular subtype is denoted by color.
l Graph of the cumulative Z-score of the luminal, myoepithelial, and EMT genesets in BCCLs of different molecular subtype, basal-like (BL), claudin-low
(CL), HER2+ (H2), and Luminal B (LB), *P < 0.05, **P < 0.01, ****P < 0.0001, ns= not significant, SEM shown. m Graph of the variance between the mean
geneset expression of the luminal, myoepithelial, and EMT genesets in BCCLs of different molecular subtype, asterisks denote significant difference in
geneset variance, SEM shown. n Graph of the variance between HER2+ cell lines that are either of the L-HER2 or HER2E molecular subtypes
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proliferation40,44 (Supplementary Data 3 “Breast Phenotype
Genesets”). In Trametinib-treated cells, we observed significant
enrichment of genesets specific to the Basal A subtype of breast
cancer41, basal BCCLs42, and myoepithelial cells of the normal
breast31 (Fig. 2e, Supplementary Fig. 5c). These results are
consistent with the increased basal cytokeratin expression we
observed following Trametinib treatment. We also observed
enrichment of genesets specific to human luminal progenitor
cells39 and murine fetal mammary stem cells (fMASC)39, two
related progenitor/stem states that show dual expression of basal
and luminal markers3,4,39, consistent with the observed enrich-
ment of the K19hi/K14hi differentiation-state following Trameti-
nib treatment. In BEZ235 DTPs, we observed enrichment of
genesets relating to mesenchymal BCCLs42, the normal-like
subtype of breast cancer43 and adult mammary stroma39, in
addition to enrichment of the luminal progenitor geneset39. This

was consistent with the reduction of basal cytokeratin expression
and mixed expression of luminal and mesenchymal markers in
these cells (Supplementary Fig. 5d). Finally, both treatments
induced significant de-enrichment of proliferation genesets, and
BEZ235 treatment resulted in enrichment of apoptosis and cell
death genesets (Supplementary Data 3).

Cell state dynamics during therapy. We next explored the
dynamics of therapy-induced differentiation-state changes and the
roles of state-selective proliferation, state-selective cell death, and
cell-state transition in the phenotypic response to targeted ther-
apy. We defined four prominent differentiation states as (1) cells
that expressed high levels of K14, “K14hi”; (2) cells that express
high levels of VIM and low levels of K14, “VIMhi”; (3) cells that
express high levels of K19 and low levels of K14 and VIM, “K19hi”;
and (4) cells that express low levels of all markers, “K19low/
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VIMlow/K14low” (with “high” defined as a cell with MFI exceeding
the average MFI in DMSO wells and “low” as an MFI below the
DMSO average, Supplementary Fig. 6a). We measured the fre-
quency of these states every 12 h following treatment with Tra-
metinib or BEZ235 in HCC1143 cells. Trametinib induced a four-
fold increase in the frequency of the K14hi state (27–81%) while
significantly reducing the frequency of the other three states over
time compared to a DMSO control (Fig. 3a). Conversely, BEZ235
induced a significant increase in the K19hi state and a robust
reduction of the K14hi state over time. We tested whether dif-
ferential growth of pre-existing K14hi and K14low states under
drug pressure could explain the observed state enrichments. We
pulsed cells with 5-ethynyl-2′-deoxyuridine (EdU) prior to

fixation at each 12-h timepoint and found that both drugs had a
strong cytostatic influence, reducing EdU-incorporation to near
zero with Trametinib, and to one-third of control levels with
BEZ235 (Fig. 3b). Cells remained in this low proliferative state as
long as drug pressure was maintained (up to 21 days, Supple-
mentary Fig. 6b). Importantly, no significant differences in
S-phase frequency were observed between cells with high or low
expression of K14, K19, or VIM, except for VIMhi vs. VIMlow

rates 24 h post-Trametinib treatment, which we attributed to noise
due to the low frequency of this population under Trametinib
treatment (Fig. 3b, c). Mass cytometry experiments supported
these observations, showing only minimal differences in IdU
incorporation between cells with high and low expression of
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luminal and basal markers following Trametinib or BEZ235
treatments (Supplementary Fig. 6c-e). Since all differentia-
tion states appeared to have similar cytostatic responses to each
therapy, we investigated whether cell death contributed to
differentiation-state enrichments following Trametinib or BEZ235
treatments. We examined total cell death throughout the 72 h
treatment by measuring the incorporation of YO-PRO-1 into
treated cells and found that BEZ235 induced significant gains in
cell death beginning at 36 h while Trametinib only showed sig-
nificant gains in cell death compared to control at 48 and 72 h
(Fig. 3d). Notably, significant gains in cell death occurred after
significant changes in differentiation-state frequencies were
observed (see Fig. 3a). We were limited in our ability to examine
state-specific cell death due to non-specific antibody staining in
dying cells and the loss of adherent-cell morphology. As an
alternative approach, we tested the necessity of cell death for the
observed phenotypic outcomes by combining Trametinib or
BEZ235 with Z-VAD-FMK, an inhibitor of caspase-mediated
cell death. Z-VAD-FMK treatment significantly reduced cell death
in all conditions (Fig. 3e). However, the drug-induced differ-
entiation-state composition at 72 h for these cells was nearly
identical to that for cells treated with Trametinib or BEZ235 alone
(Fig. 3e, f).

We next examined whether genomic selection occurs in the
drug-induced differentiation-state enriched DTPs. We performed
whole exome sequencing on HCC1143 cells following exposure to
Trametinib, BEZ235, or DMSO. We first conducted a pair-wise
examination to identify single nucleotide variants (SNVs) as well
as insertions or deletions (indels) that differed between any of the
treatments (Supplementary Table 1). Despite robust phenotypic
enrichments following Trametinib and BEZ235 (Supplementary
Fig. 7a), and good overall sequencing coverage (Supplementary
Fig. 7b, c), we did not observe results consistent with Darwinian
selection. The variants and indels identified between treatment
conditions (annotated list in Supplementary Table 1, vcf files
available in Supplementary Data 4) had low variant allele
frequencies (VAF) (highest 26%, avg. 13%), substantially lower
than the fraction of cells showing the enriched phenotypes
(>70%) following Trametinib or BEZ235 treatment. All variants
(26/26) and the majority of indels (17/19) involved intronic,
intergenic, or non-coding genomic locations and were predicted
to have no functional impact on gene products. In addition, we
had low confidence in the majority of these calls due to technical
issues (Supplementary Table 1). We looked further into two indel
calls, one that identified a potential frameshift deletion in CD93,
present in both DMSO- and Trametinib-treated cells, and one
that identified a potential deletion in the 3′UTR of TRMT1L,
present in both BEZ235- and Trametinib-treated cells. Both of
these indel calls were located in highly repetitive genomic regions,
suggesting potential alignment artifacts. Further, gene expression
analysis revealed that CD93 was not expressed in this cell line and
TRMT1L showed no significant changes in gene expression
following treatment (Supplementary Fig. 7d). We next identified
tumor-specific SNVs and indels in our WES data through
comparison of each condition to a patient-matched normal
sample (HCC1143-BL) sequenced in a previous study34. We
identified ten variants and three deletions that were common to
all conditions with very similar VAFs between the three
treatments (annotated list in Supplementary Table 2, vcf files
available in Supplementary Data 4). Six SNVs were identified in
one or two conditions as compared to normal, but similar to the
pairwise comparison above, these were all in intronic or
intergenic regions not predicted to affect protein function and
all had low VAFs (highest 13%, avg. 10%). Finally, we also
performed low-pass whole genome sequencing (WGS) using the
same DNA from control, Trametinib, and BEZ235-treated

HCC1143 cells. The copy number profile of HCC1143 matched
that of a previously study45, and showed remarkable concordance
between the drug-treated groups (Supplementary Fig. 7e, seg-
mentation files available in Supplementary Data 4). Together
these results suggest that genomic selection plays a minimal role
in the observed differentiation-state enrichments by Trametinib
and BEZ235.

We also explored the potential for state-selective death or cell-
state transition to contribute to drug-induced differentiation-state
enrichment using a cell-state dynamical model of proliferation,
death, and transition between K14hi and K14low states (Fig. 3g,
Supplementary Methods). Cell-state proliferation rates were set to
be equal since that was measured directly with our EdU+ analysis
(see Fig. 3b). We modeled the impact of state-specific selection of
K14hi cells, by allowing cell death following Trametinib only from
the K14low state and not allowing cell-state transition. Conversely,
we modeled transition-mediated enrichment by allowing cell
death following Trametinib from both K14hi and K14low states
and permitting transitions between cell-states. The state-specific
selection model showed very little change in K14hi and K14low

subpopulations over time, which was inconsistent with our
experimental observations (Fig. 3h, left). However, the cell-state
transition model was consistent with the experimental observa-
tions following Trametinib treatment (Fig. 3h, right). In
simulations of BEZ235 response, the transition-mediated model
also was more consistent with the observed changes in K14hi and
K14low state frequencies (Supplementary Fig. 8a). Finally, if
enrichment of specific cell states occurred through state
transitions, we would expect that these therapy-induced states
would be reversible and cells would return to heterogeneity
following withdrawal of the drugs. Indeed, we observed control-
levels of heterogeneity within 17 days of drug withdrawal, and
also found these cells retained their pre-treatment sensitivity to
BEZ235 and Trametinib (Fig. 3i, Supplementary Fig. 8b-d). In
sum, our experimental data and mathematical models support
cell state transitions as the driver of DTP-state aggregation
following Trametinib and BEZ235 treatment rather than
Darwinian selection.

Drug combinations reduce therapeutic escape. We analyzed
DTP cells following BEZ235 and Trametinib treatment to deter-
mine whether cells in states enriched by these treatments rely on
specific pathways for survival. We measured gene expression pro-
files using RNA-seq in DTP cells after 6 days of treatment with
Trametinib or BEZ235 and used the Virtual Inference of Protein-
activity by Enriched Regulon (VIPER) algorithm46 to identify dif-
ferential activity of regulatory proteins between BEZ235- and
Trametinib-treated HCC1143 cells compared to a DMSO control.
We then mapped the VIPER-inferred protein activity signatures
onto multiple pathway-ontology databases using the DAVID
functional annotation tool47 (Supplementary Fig. 9a, Supplemen-
tary Data 5). These analyses suggested that cells remaining after
treatment with a PI3K/mTOR inhibitor had increased pathway
activities including MAPK, BCL-2, and NFkB, while those
remaining after treatment with a MEK inhibitor had increased
pathway activities including PI3K, integrin, FGF, and JNK (Sup-
plementary Fig. 9b). Both DTP populations shared enrichment of
JAK-STAT, Notch, TGF, and Ras pathway regulators. We identified
upregulated and targetable proteins in each of these pathways, and
evaluated the anti-proliferative synergy of drug combinations
designed to counter the upregulated pathways. BEZ235 was tested
in combination with ABT737 (BCL2 mimetic) and SCH772984
(ERKi), Trametinib was tested in combination with SP600125
(JNKi) and EHOP-16 (RACi), and both drugs were tested in
combination with TG101384 (JAK2i) and DAPT (γ-secretase
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inhibitor). Finally, we tested the combination of BEZ235 and Tra-
metinib. Drugs were scored as synergistic if they had combination
indices48 below 1 at 75% (CI75) and 90% (CI90) inhibitory doses in
HCC1143 and SUM149PT cells (Fig. 4a, Supplementary Fig. 9c-e).
Synergy was observed in most of the combinations predicted by
pathway activity. Direct combination of BEZ235 and Trametinib
resulted in the best combination indices, significantly increased cell
death (Fig. 4b), and significantly reduced S-phase as indicated by
reduced EdU-incorporation rates (Fig. 4c). Despite these encoura-
ging metrics of drug synergy, 100% cell death was never obtained,
except with EHOP-16, which showed high single agent toxicity
(Fig. 4d). We assessed the differentiation states of DTP cells treated

with the combination of Trametinib and BEZ235 in three basal-like
cell lines, HCC1143, SUM149PT, and HCC70, by immuno-
fluorescence staining for K19, K14, and VIM. These analyses
showed that all three cell lines were enriched for a K19hi state after
treatment with Trametinib+ BEZ235 (Fig. 4e, Supplementary
Fig. 10a). We measured the frequency of the four differentiation-
marker defined cell states (as in Fig. 3a) over time in response to
Trametinib+ BEZ235 in HCC1143 cells and found a significant
time-dependent increase in the K19hi state and decrease in the
VIMhi state. The K14hi state, which included K19hi/K14hi cells, did
not change over time (Fig. 4f). GSEA results showed that gene
expression changes following Trametinib+ BEZ235 were consistent
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with decreased proliferation and that genesets enriched by combi-
nation treatment were a mixture of those observed with either single
agent, with few genesets uniquely enriched by this treatment
(Fig. 4g, Supplementary Data 3 “Phenotype 6day COM-
BOvsDMSO”). The GSEA results along with the minimal change in
K14 expression suggest that the two drugs counteract their diver-
gent effects on the myoepithelial differentiation program and leave
cells in a state of reduced proliferation. In this DTP state, the
combination-treated cells showed decreased sensitivity to numerous
FDA-approved cytotoxic therapies (Supplementary Fig. 10b).
Similar to the single agent treatments, acquisition of this DTP state
did not involve state-selective cytostasis, cells could remain in this
DTP state with minimal proliferation for at least 3 weeks, and this
state was reversible following withdrawal of the drugs and sub-
sequent cultures regained combination sensitivity (Supplementary
Fig. 10c-f).

Inhibiting differentiation-state transitions with BET inhibi-
tion. Since we determined that the DTP states arise primarily

through state transitions but failed to find a targeted combination
that achieved 100% cell kill, we explored the possibility of inhi-
biting chromatin modifications as a therapeutic strategy to make
state-transition-inducing drugs more effective. We used GSEA to
assess the expression of genes associated with chromatin mod-
ification enzyme activity in Trametinib- or BEZ235-treated DTP
cells and found that genesets in DTP cells after both treatments
suggested increased BRD449,50, KDM5B51, and EZH214 activity
(Fig. 5a, Supplementary Data 3 “Chromatin 6day BEZvsDMSO”).
We tested the possibility that BET protein-mediated chromatin
regulation supports drug-induced transitions by combining the
BET inhibitor JQ1 with Trametinib and BEZ235. The combina-
tion of JQ1 and BEZ235 resulted in complete cell kill in all four
basal-like cell lines, preventing the formation of a DTP popula-
tion, although treatment with JQ1 or the kinase inhibitors as
single agents did not (Fig. 5b). Dose–response curves for JQ1+
BEZ235 treatment showed significant increases in maximal
inhibition (Emax) and negative projected maximal inhibition
(Einf) values for all basal-like lines tested (Fig. 5b, c), but not for
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Fig. 5 BET inhibitor combinations improve cell kill and suppress DTP transition. a GSEA results as a volcano plot of Normalized Enrichment Score (NES,
x-axis) vs. FDRq (−log, y-axis) examining 25 chromatin modifier enzyme activity-related genesets, enrichment compared between DMSO and 1 μM
BEZ235 (left), or DMSO and 1 μM Trametinib (right) in HCC1143 cells treated for 6 days. Select top-enriched genesets are labeled. b Dose–response
curves show the efficacy of BEZ235 alone (red), JQ1 alone (blue), or a combination of the two agents (purple, equimolar ratio) in four basal-like cell lines
using a colorimetric proliferation assay. E-infinity (Einf) values of single agent BEZ235 (red) and BEZ235+ JQ1 (purple) are displayed. n= 4–8 with SEM.
c Maximal inhibition (Emax) by the agents shown in (b) is displayed for each basal-like cell line, asterisks depict significant gains in Emax with JQ1+
BEZ235 compared to BEZ235 alone, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. d Graph showing combination indices for the BEZ235+ JQ1 drug
combination at 75% (CI75), and 90% (CI90) inhibitory doses for four basal-like and two luminal B BCCLs, n= 5 with SEM. e Graph showing the percent of
dying cells (YO-PRO-1+) in HCC1143 following the addition of 1 μM BEZ235, 1 μM Trametinib, 2 μM JQ1, the combinations of these agents, or a DMSO
control. Asterisks denote significant gains in percent cell death in combination-treated cells vs. single agent BEZ235 or Trametinib, n= 3 with SEM. f Graph
showing the percent of Ki67 positive HCC1143 cells following 72 h of DMSO, 2 μM JQ1, 1 μM Trametinib, 1 μM BEZ235, or combinations with JQ1. Asterisks
denote significant difference in Ki67+ frequency, n= 16 with SD. g IF images of HCC1143 cells following 72 h exposure to DMSO, 400 nM BEZ235,
400 nM Trametinib, 8 μM JQ1, or the combination of these agents, scale bars= 100 μm. h, i Graphs show total cell number and the frequency of K14hi cells
following the treatments outlined in (e). Asterisks denote significant change in the frequency of K14hi cells, or cell number, n= 27 with SD
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Luminal B cell lines (Supplementary Fig. 11a, b). Analyses of
these dose–response curves showed strong synergy between JQ1
and BEZ235 in all basal-like lines, resulting in CI75 and CI90
values <0.5, whereas these drugs had an antagonistic relationship
in Luminal B lines with CI75 and CI90 values near or above 1
(Fig. 5d). Trametinib+ JQ1 also produced synergistic CI values
and increases in Emax in basal-like cell lines, however, the
combination was not able to completely kill HCC1143 cells at
maximum dosing, lacked synergy at CI90, and had positive Einf
values, suggesting an inability to produce complete cell kill
(Supplementary Fig. 11c-e). The triple combination of Trameti-
nib, BEZ235, and JQ1 also produced complete cell kill and pre-
vented DTP formation in HCC1143 (Supplementary Fig. 11f).
This synergistic relationship between JQ1 and the MEK and
PI3K/mTOR inhibitors was also consistent with observed sig-
nificant gains in cell death (Fig. 5e) and significant reduction of
proliferation (Fig. 5f).

We also analyzed the influence of JQ1 on differentiation-state
marker expression in HCC1143 cells treated at sub-lethal doses
with Trametinib, BEZ235, JQ1, or combinations thereof. JQ1
combined with either Trametinib or BEZ235 significantly
suppressed differentiation-state transitions. JQ1+ Trametinib
maintained a significantly lower frequency of the K14hi cell state,
and JQ1+ BEZ235 maintained a significantly higher frequency of
the K14hi state as compared to the single treatment conditions
(Fig. 5g–i).

JQ1 prevents chromatin accessibility changes associated with
DTP generation. We used single cell combinatorial indexing
Assay for Transposase Accessible Chromatin sequencing (sciA-
TAC-seq52) to understand how BEZ235 and Trametinib affect the
open chromatin architecture to induce DTP states, and to
determine whether BET protein inhibition alters this process.
Latent semantic indexing followed by t-distributed Stochastic
Neighbor Embedding (t-SNE) was performed to visualize global
chromatin architecture differences at single cell resolution
between DMSO-, BEZ235-, and Trametinib-treated HCC1143
cells (Fig. 6a). This analysis revealed that BEZ235 and Trametinib
change the landscape of accessible chromatin regions sig-
nificantly, inducing distinct state-space enrichment in the t-SNE
plots. Interestingly, small subpopulations of DMSO cells occupy
the BEZ235 and Trametinib enriched regions, consistent with
therapeutic enrichment of a particular chromatin architecture
that can exist under normal growth conditions (Supplementary
Fig. 12a). We next examined transcription factor (TF) DNA-
binding-motif prominence within the open chromatin regions of
BEZ235- and Trametinib-DTP cells using chromVAR53 and
found that the drugs had profound effects on the accessibility of
specific TF motifs. BEZ235 DTPs showed enrichment of motifs
for AP1, ATF, and TCF as well as motifs for EMT-promoting TFs
ZEB1, TWIST1/2, SNAI1/2, and luminal lineage TFs ESR1, PGR
and GATA3 (Fig. 6b, Supplementary Data 6). This is consistent
with mixed luminal and mesenchymal gene expression programs
in those cells. Trametinib DTPs showed enrichment of motifs for
the SP/KLF family of TFs, Homeobox TFs, and the myoepithelial
lineage-specific TF EGR12 and other EGR family members
(Fig. 6b, Supplementary Data 6). NFkB and Rel motifs were
enriched in DTPs from both treatments.

We used sciATAC-seq to further assess how BET inhibition
with JQ1 suppresses DTP-state enrichment by BEZ235. Figure 6c
shows that BEZ235 enriches a distinct open-chromatin state
space as compared to DMSO and that combination with JQ1
inhibits this change, resulting in open chromatin architecture
equivalent to single agent JQ1 and highly overlapping with the
DMSO-treated population (Fig. 6c, Supplementary Fig. 12b). In

accordance with the inhibition of chromatin alterations, combi-
nation of JQ1 with BEZ235 brought open motif patterns back to
near-DMSO patterns (Fig. 6d, Supplementary Fig. 13a, b,
Supplementary Data 6). The prevention of changes to TF
accessibility with BEZ235+ JQ1 combinations was consistent
with reduced expression of TF-activity-related genesets as
measured by GSEA: decreases in AP1, SNAIL, GATA3, NFKB,
and TCF motif accessibility in BEZ235+ JQ1-treated cells relative
to BEZ235-treated cells correlates with de-enrichment of genesets
related to FRA154, SNAI155 and GATA356 overexpression in
mammary cancer cells, NFkB activity-related genesets, and a
WNT activity signature57 (Fig. 6e, Supplementary Data 3 “TF and
C6 3day BEZJQ1vsDMSO”). We further assessed GATA3
expression and found that BEZ235 drove increased GATA3
mRNA expression and increased nuclear GATA3 protein levels,
whereas Trametinib reduced these levels (Fig. 6f, Supplementary
Fig. 14a-d). In addition to the effects of JQ1 combination on
GATA3 motif accessibility, JQ1 prevented the increases in
GATA3 mRNA and protein expression when combined with
BEZ235 (Fig. 6g, Supplementary Fig. 14e, f). JQ1 combination
with BEZ235 also prevented the enrichment of breast phenotype
genesets associated with the BEZ235 DTP state (Fig. 6h, for
BEZ235-induced enrichments see Fig. 2e). Importantly, loss of
proliferation and increased apoptosis genesets did not reverse
with JQ1 combination, but were enriched in all drug-treated
conditions (Fig. 6h). The ability of JQ1 to prevent DTP-specific
geneset enrichment was also observed in combination with
Trametinib (Supplementary Fig. 14g, Supplementary Data 3
“Phenotype 3day TRAMJQ1vsDMSO”).

Since we found dramatic inhibition of BEZ235-induced state
changes by JQ1 along with synergistic gains in cell death and
reductions in proliferation, we tested the efficacy of the BEZ235
+ JQ1 combination in vivo in an orthotopic xenograft model
using the tumor-forming basal-like HCC70 cells that show
similar heterogeneity, DTP states, and JQ1 effects (see Figs. 1h,
2d, 5b–d). The BEZ235+ JQ1 combination significantly reduced
tumor volume compared to either single agent (Fig. 6i,
Supplementary Fig. 15a), consistent with the synergy observed
in vitro (Fig. 5b, d). Furthermore, immunofluorescent staining of
control and treated tumors showed that while BEZ235 treatment
alone decreased the number of K14 expressing cells, the
combination treatment of BEZ235+ JQ1 suppressed this pheno-
typic shift (Fig. 6j, Supplementary Fig. 15b). These results are
consistent with our observations in vitro (Fig. 5g–i), supporting
the ability of JQ1 to prevent BEZ235-induced DTP transitions.

Discussion
Our overall goal in this study was to develop therapeutic strate-
gies to more effectively treat breast tumors that exhibit intratu-
moral phenotypic heterogeneity and plasticity. We used
immunofluorescence staining for K14, K19, and VIM to oper-
ationally define differentiation-states and assessed their expres-
sion heterogeneity in primary breast cancers and PDX. We
demonstrate that TN breast cancers and the basal-like molecular
subtype harbor high levels of differentiation-state heterogeneity.
BCCLs model the differentiation-state heterogeneity observed in
their respective tumor subtypes, with basal-like cell lines being
populated by cells coexisting in numerous differentiation-states
with distinct luminal, basal, and mesenchymal gene expression.
Examination of the phenotypic response of these basal-like cell
lines to 119 pathway-targeted inhibitors revealed that most drugs
are ineffective at inducing complete cytotoxicity in these lines,
and leave residual cells with altered expression of differentiation-
state markers. Basal-like cell lines have been shown to have a high
propensity for differentiation-state transition under normal
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growth conditions20, and our work demonstrates that this
inherent plasticity is prominent upon therapeutic challenge. Our
observations also align with previous studies that show the gen-
eration of a low-proliferative, drug-tolerant persister “DTP” cell
state following treatment with various targeted agents24,25,58.
Indeed, we found that MEK and PI3K/mTOR inhibitors, as well
as the combination of these agents, drove basal-like cell lines into
DTP states that were marked by reduced proliferation, distinct

differentiation marker expression, and could persist for weeks
under high doses of therapy.

Contrary to a model of Darwinian selection, no differentiation-
state specific cytostasis was evident in our experiments and cell
death was not required for the observed phenotypic changes
following Trametinib and BEZ235. Genomic analyses also failed
to find evidence of significant genomic selection, indicating that
cell-state transitions are the major driver of DTP state acquisition.
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Consistent with previous observations of reversible drug
tolerance24,25,58, cells grown out of these DTP states after drug
withdrawal regained the differentiation-state heterogeneity and
drug sensitivity of treatment-naïve cells. Computational modeling
also supported state-transitions as the driving mechanism behind
generation of the observed DTP state aggregation by MEK and
PI3K/mTOR inhibitors.

We show evidence that these cell-state transitions are driven by
changes to the epigenome. We find that both Trametinib and
BEZ235 promote increases in gene expression signatures related
to epigenetic modifier enzyme activity, including BET family
epigenetic reader proteins, histone demethylase KDM5B, and
histone methyltransferase EZH2. Further, through the use of
single cell ATAC-seq, we demonstrate that profound chromatin
architecture changes underlie the phenotypic responses to MEK
and PI3K/mTOR inhibition. These chromatin level changes
greatly alter the transcription-factor accessibility landscape, evi-
denced by enrichment and depletion of known TF DNA binding
motifs in open chromatin sites. Altered binding site enrichments
included EGR1 in Trametinib DTPs, and AP1, ZEB1, SNAI1 and
GATA3 in BEZ235 DTPs, consistent with the role of these TFs in
basal or mesenchymal, and luminal differentiation, respectively,
in breast cells2,7,14,54,56. Importantly, combination of BET inhi-
bitors with the kinase-targeting agents suppressed chromatin
remodeling and prevented the induction of these TF transcrip-
tional programs, instead promoting robust growth inhibition and
cell death.

These findings align with studies that characterize compensa-
tory kinase upregulation in response to MEK and PI3K inhibi-
tors59–61. Recently, this Trametinib-induced “kinome
reprogramming” was shown to involve increased BRD4 associa-
tion with kinase gene enhancers62, allowing for the expression of
new kinases that circumvented the MEK signaling blockade.
Targeted BET inhibition was similarly shown to combat drug
tolerance in this study. Our findings indicate that BRD4 not only
supports drug tolerance by eliciting compensatory kinase gene
enhancement, but also by altering the chromatin accessibility of
pivotal TFs involved in both cell survival and differentiation
control.

The findings of this work and related studies demonstrate that
some cancers, such as TN and basal-like breast cancers, possess
enhanced phenotypic and epigenomic plasticity. This plasticity
enables rapid acquisition of a drug-tolerant state when these
cancers are treated with pathway-targeted agents, driven through
adaptive changes to their epigenome. The efficacy of small-
molecule kinase inhibitors in these epigenomically-plastic tumor
subtypes will therefore depend on our ability to combat these
adaptive epigenomic changes. We demonstrate here that combi-
nations using BET inhibitors paired with PI3K or MEK inhibitors

represents one successful strategy to combat this process, and to
elicit robust cell death and tumor regression in vivo. While BET
inhibitor combinations were successful in this setting, the efficacy
of targeting other epigenetic factors should be evaluated to best
improve our management of tumors with high phenotypic het-
erogeneity and plasticity.

Methods
Cell lines. All human cell lines were obtained from the American Type Culture
Collection (ATCC) other than JIMT1 (DSMZ), SUM149PT (Asterand), and
SUM159PT (Asterand). Cell lines were cultured according to supplier protocol
with supplemental 10 μg/ml penicillin and streptomycin (Thermo) and regularly
tested to ensure cultures were negative for mycoplasma. Cell line genotype was
confirmed by STR profiling to ensure accurate identity. All lines were maintained
at 37 °C in a 5% CO2 atmosphere and cultured at a cellular confluence below 80%.

Reagents. Primary antibodies: Cytokeratin 19 (Dako, Clone RCK108), Cytokeratin
14 (Abcam, Clone LL002), Vimentin (Cell Signaling, Clone D21H3), Cytokeratin 5
(Abcam, Clone EP1601Y), Cytokeratin 17 (Thermo, clone E3), Claudin 4 (R&D
Systems, Clone 382321), Cytokeratin 8 (K8, Abcam, Clone M20), Ku80 (Cell
Signaling, Clone C48E7), Ki67 (DAKO, Clone MIB-1), GATA3 (Cell Signaling,
Clone D13C9), Cytokeratin 18 (Cell Signaling, Clone DC10).

Secondary antibodies: (all LifeTech unless noted); goat-anti-mouseIgG1-
Alexa647, goat-anti-mouse IgG3-Alexa488, goat-anti-mouseIgG2a-Alexa488, goat-
anti-mouseIgG2b-Alexa488, donkey-anti-rabbit-Alexa568, donkey-anti-goat-
Alexa647, goat-anti-rabbit-dylight755 (Thermo).

Small molecule inhibitors: All drugs, unless otherwise noted, were purchased
from Selleckchem including (+)-JQ1 for in vitro experiments. BEZ235 was
purchased from LC Laboratories and (+)-JQ1 for in vivo studies was provided by
Jay Bradner at the Dana-Farber Institute of Harvard, Cambridge, MA. All in vitro
inhibitor stocks were solubilized in DMSO and stored as 10 mM stock solutions at
−80 °C.

Image cytometry of primary tumor samples. All samples were formalin-fixed,
paraffin-embedded sections of treatment-naïve primary breast tumor samples of
hormone-receptor-defined subtypes: luminal (ER+/PR+/HER2−, n= 6), HER2+
(ER−/PR−/HER2+, n= 3, ER+/PR+/HER2+, n= 1), and triple-negative (ER−/PR
−/HER2−, n= 9). Tumor specimens were obtained from three sources: Tumors
with multiple analyzed regions (L1-3, H1-3, T1-3) were from surgical blocks
obtained from the OHSU Knight BioLibrary, five samples were core biopsy spe-
cimens (L4-6, H4, T4) obtained from the OHSU Knight BioLibrary, and five
samples were from a tissue microarray of TN breast cancers surgical blocks created
under IRB-approved protocols with patient consent from the University of Cali-
fornia, San Francisco. With pathologist assistance, areas of high tumor cellularity
and low immune infiltrate or stromal density were identified for the focus of
immunofluorescent analysis. Cut sections of 5 μm were de-paraffinized in xylene
and passed through a series of graded alcohols. Antigen retrieval was performed in
a 0.1 M sodium citrate buffer pH 6 (Sigma) under heat and pressure, followed by
blocking with a 5% donkey serum (Sigma), 5% goat serum (Vector Laboratories),
1% BSA (Fisher) blocking buffer. Sections were incubated overnight at 4 °C with a
primary antibody solution against K19 (1:300), K14 (1:300), and VIM (1:200)
diluted in 1% BSA, 2.5% donkey serum, 2.5% goat serum. Sections were washed in
PBS with 0.1% Tween (Fisher) and secondary antibody staining was performed at
room temperature for 1 h with AlexaFluor secondary antibodies against primary
host species (1:200, LifeTech) in 1% BSA and 5% animal serum. 1 μg/ml 4′,6-
Diamidino-2-phenylindole nuclear counterstain (DAPI, LifeTech) was added to
secondary staining buffers. Surgical specimens were imaged on a Zeiss Axio

Fig. 6 Changes in open chromatin architecture underlie DTP transition and are inhibited by JQ1. a t-SNE plot of all cells following 72 h of 1 μM BEZ235, 1 μM
Trametinib, or a DMSO control in HCC1143, calculated from sciATAC-seq results. Single cells are colored based on treatment, BEZ235 (magenta),
Trametinib (cyan), DMSO (gray). b A dot plot showing enriched DNA-binding protein motifs in the open chromatin sites following BEZ235 or Trametinib
treatment, normalized to DMSO values. Select related transcription factor motifs are enlarged, colored, and labeled. c t-SNE plot of all cells following 72 h
of 1 μM JQ1 (yellow), 1 μM BEZ235 (magenta), JQ1+ BEZ235 (maroon), or a DMSO control (gray), calculated as in (a). d Line graph showing the level of
motif-enrichment for six groups of transcription factors is shown for DMSO, BEZ235, JQ1, and JQ1+ BEZ235 treatments. e Graph of GSEA results showing
transcription-factor activity-related genesets shown to be significantly enriched (P < 0.05) following 72 h of BEZ235 treatment. The NES in JQ1-treated, and
BEZ235+ JQ1-treated cells shown adjacently. f IF images showing K18, K14, and GATA3 expression in HCC1143 cells following 72 h treatment, scale bars
= 100 μm. g Graph showing the frequency of GATA3+ cells in HCC1143 following treatment, asterisks depict significant differences in GATA3+ frequency,
*P < 0.05, **P < 0.01, ****P < 0.001, n= 3 with SEM. h Graph of GSEA results showing the NES of breast phenotype genesets shown to be significantly
enriched (P < 0.05) following 72 h of BEZ235 treatment, with the subsequent NES of that geneset in JQ1-treated, and BEZ235+ JQ1-treated cells shown
adjacently. i A graph showing change in tumor volume in HCC70 xenografts treated with vehicle control (black), BEZ235 (red), JQ1 (blue), or BEZ235+
JQ1 (purple). Asterisks denote significant difference in tumor volume between combination-treated tumors and other groups, denoted by color, n= 8 with
SEM. j Graph showing the frequency of K14+ human (KU80+) tumor cells in each HCC70 xenograft following treatment with BEZ235, JQ1, the
combination of agents, or vehicle control, n= 8 with SEM
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Microscope capturing 3-by-3 tiled regions (9 images) at 20× magnification. Core
biopsies were imaged with single 10× regions, and the TMA was imaged on the
Zeiss AxioScan.Z1 platform using 5 × 5 tiled regions at 10× magnification. All tiled
images were stitched in ZenBlue software. TIFFs with original signal were exported
for analysis in Cell Profiler63 software. The Cell Profiler pipeline included: DAPI
smoothing using the Gaussian filter method, primary object identification from
smoothed DAPI using the adaptive thresholding Otsu method on default settings,
with clumped objects being distinguished and divided using the intensity setting.
Primary object area, shape, and DAPI intensity were measured. Primary objects
were then expanded a fixed pixel distance, and mean signal intensity for all other
channels was measured in this expanded cellular region. Cells touching the image
border were excluded from analysis. Spreadsheet outputs were then analyzed in
FlowJo software (FlowJo LLC). Single cells were gated by nuclear area and shape,
and single cell positivity for K19, K14, and VIM were determined by gating using
tumors negative for each marker as controls. Gate shape was optimized to mini-
mize false positivity from nonspecific channel bleed-through. Cell identity was then
mapped onto X vs. Y location dot plots called “state maps”, and these digital
reconstitutions of cellular phenotypes in the tumor were consistent with visually
called phenotypes in tumor images. Regions encompassing normal ductal struc-
tures, or in situ lesions, were identified with pathologist assistance and omitted
from analysis.

Image cytometry of patient-derived xenograft tumors. Tissue microarray slides
with 31 PDX and three normal breast tissue controls were provided by Mike
Lewis at Baylor College of Medicine, Houston, TX. Spots were approximately 4
mm × 4 mm and arranged across three slides. Tumors are described in detail in a
separate publication33 and at www.bcxenograft.org, including molecular subtype
and patient ER/PR/HER2 IHC status, mouse passage number for the tumors
ranged from 4–8 passages. Slides were prepared and stained as detailed above
(Image Cytometry of Primary Tumor Samples) with antibodies against K19
(1:300), K14 (1:300), VIM (1:200), and Ku80 (1:100). Secondary antibodies
included the addition of goat-anti-rabbit-dylight755 marking Ku80 nuclei, all
1:200. Slides were imaged on the Zeiss AxioScan.Z1 platform, where circular scan
areas were hand-drawn around all TMA spots and regions were imaged as 5 × 5
tiled regions at 10× magnification, stitched, and exported from ZenBlue software.
Images were analyzed in CellProfiler including: DAPI smoothing, primary object
identification from smoothed DAPI using the adaptive thresholding Otsu method
on default settings, with clumped objects being distinguished using the intensity
setting and divided using the propagation setting. Primary object area, shape,
mean DAPI intensity, and mean Ku80 intensity were measured in this nuclear
area. Primary objects were then expanded a fixed pixel distance, and mean signal
intensity for all other channels was quantified in this expanded cellular region.
Cells touching the image border were excluded from analysis. Spreadsheet out-
puts were then analyzed in FlowJo software. Single human tumor cells were gated
based on positivity for Ku80, and single cell positivity for K19, K14, and VIM
were determined by gating, using tumors negative for each marker as controls.
TMA regions with compromised tissue fidelity were omitted from the analysis.
HCC70 xenografts (Fig. 6) were imaged on the Zeiss Axio platform and analyzed
using this method.

Image cytometry of cancer cell lines. Cancer cell lines were plated in appropriate
media and allowed to adhere overnight, followed by various experimental treat-
ments. At endpoint, cells were fixed by adding equal volume of 4% paraf-
ormaldehyde (Electron Microscopy Sciences) solution with 1 mM MgCl2 (Sigma)
to the well media. Wells were then washed with PBS and permeabilized in a 0.3%
Triton-X100 solution (Thermo). Primary antibodies were diluted in PBS with 2%
BSA and incubated overnight at 4 °C. Cells were subsequently washed with PBS-
Tween and incubated 1 h at room temperature in a secondary labeling solution
including 1 μg/ml DAPI and combinations of secondary antibodies against primary
host species (1:300 in 2% BSA). Wells were then washed with PBS-Tween, filled
halfway with PBS, and either imaged immediately or stored at 4 °C. Cell imaging
for Figs. 1–4 was performed on the Olympus ScanR Platform at 10× magnification
capturing four images per well in 384-well plates, and nine images-per-well in 96-
well plates. Single-cell nuclear and cytoplasmic fluorescent intensities were calcu-
lated using the Olympus ScanR Analysis Software: the DAPI-positive region of
each cell was used as a boundary to quantitate nuclear signal, and a 10 pixel
annulus around the nucleus was used to quantitate cytoplasmic signal, omitting
nuclear signal. Cells touching the border of the image were removed from analysis.
Imaging for Figs. 2d, 5, and 6 was performed on the INCELL 6000 platform (GE
Biosciences) using the GE INCELL Analyzer analysis software to calculate cyto-
plasmic and nuclear signal in identical methodology as described above. FlowJo
analysis software was used to identify cell phenotype. Marker positivity was defined
using marker-negative controls, including VIM/K14-negative luminal B cell lines,
and K14/K19-negative claudin-low lines for cell line phenotyping (Fig. 1i). “High”
expression was defined as mean-cell mean-fluorescent-intensities exceeding the in
mean-cell MFI in DMSO wells. For image presentation in the figures, the same
image brightness and contrast settings were applied across all experimental samples
and conditions within an experiment.

Cell line gene expression analysis. Publicly available BCCL gene expression
data34 was queried for the expression of three sets of 25 genes including those
preferentially expressed in luminal and myoepithelial cells, identified by sorting
experiments in normal breast tissue2,4–6,30,31,35, as well as 25 mesenchymal/EMT-
transition genes7,36. Pearson coefficient clustering and heatmap generation were
performed using GENE-E software (Broad Institute). Cell line subtype was deter-
mined through previously described 4-class (Luminal B, Basal-like, Claudin-low,
HER2E) intrinsic subtyping18.

Calculating heterogeneity. The Shannon diversity index is used as a metric of
cell-state heterogeneity throughout this work. Cell state frequencies were calculated
using flow cytometry software (FlowJo) as described above. For each tumor, PDX,
or cell line, the proportion of each cell state (Pi) was calculated by dividing cell
state number by the total cell number in the population. The Shannon diversity
index (H′)32 was then calculated by multiplying Pi by the log2 of Pi, for each cell
state, then summing these numbers for the total number of states (S).

H′ ¼ �
XS

i¼1

Pi InPi

Therapeutic screening. Drug screening plates were designed and created as
previously described64. Briefly, 96-well master plates with 7-point dilutions of 119
inhibitors at 10× concentration were plated into three, 384-well plates at 5 µl drug
per well using the EP Motion automated dispensing system (Eppendorf). Control
wells with equal volumes of DMSO (Sigma) were also included. 384-well plates are
kept at −20 °C until use, at which point they were thawed for 1 h at 37 °C and spun
down at 800g. Cells were plated directly into warm drug plates using EP Motion
(Eppendorf) automated pipettor in 50 µl media. Plates were sealed with AeraSeal
(Excel Scientific) and incubated for 72 h at 37 °C in a 5% CO2 atmosphere. The
CellTiter 96 cell viability kit (Promega) was used to measure cell viability, calcu-
lated as a percent of proliferation comparing well signal to a negative control
(DMSO), after subtracting positive control signal (cell-free media). All drug
screening data from Fig. 2 is present in Supplementary Data 2. Maximal inhibition
(Emax) and the projected maximal inhibition (Einf) were both calculated using
GraphPad Prism software (V5, GraphPad Software Inc.). The FDA-approved
cytotoxic therapy screen (Supplementary Fig. 10b) was constructed as previously
described19, containing agents purchased from Cayman, Sigma and Selleckchem,
and analyzed as described above. Follow up experiments, including all other
dose–response curve generating experiments in this study, were performed in 384-
or 96-well plates using the CellTiter 96 kit, with each condition run in triplicate
wells, placed in distinct areas of the plates to normalize for edge effects. Combi-
nation indices (CI) were calculated from replicate, fixed-ratio, dose escalation
experiments using the Chou and Talalay method48 with Compusyn software
(Combosyn). CI values were reported at 75% and 90% inhibitory values (CI75 and
CI90, respectively).

RNA sequencing. Two RNAseq runs were analyzed in this manuscript and will be
detailed separately. RNA sequencing data presented in Figs. 2–5 was obtained as
follows: Total RNA was isolated with TRIzol (Invitrogen) from HCC1143 cells
following a 6-day treatment with 0.05% DMSO (Sigma), 1 μM Trametinib, 1 μM
BEZ235, or 1 μM of both agents in combination (1:1), with drug replenished at day
3. cDNA libraries were generated using the Agilent SureSelect Strand Specific RNA
kit (Agilent) using 150 ng total RNA input and following the manufacturers pro-
tocol. cDNA Libraries were sequenced on the Illumina HiSeq 2000 using 50 bp
single end reads, grouping eight samples per lane. Base calling was performed using
Illumina RTA (v1.13.48) and conversion to FASTQ was performed using CASAVA
(v1.8.2, Illumina). Reads were then trimmed to 44 bases, discarding the first 4
bases, the next 44 bases were kept. Trimmed reads were aligned to the hg19
genomes using Bowtie software (v1.0.0) allowing up to three mismatches and
require best unique matches. Custom R scripts were used to count tags that aligned
to the exons of UCSC RefSeq gene models to calculate RPKM values.

For the second RNAseq analysis presented in Fig. 6, HCC1143 cells were treated
in triplicate with 1 μM Trametinib, 0.5 μM BEZ235, 2 μM JQ1, Trametinib+ JQ1,
BEZ235+ JQ1, or a DMSO control for 72 h. Total RNA was isolated using the
QIAGEN RNeasy mini kit according to manufacturer instructions. RNA was run
on the Bioanalyzer (Agilent) to verify integrity. cDNA libraries were constructed
with the Illumina Trueseq Sample Prep Kit v2 according to manufacturer’s
instructions, using 150 ng of total RNA input. cDNA libraries were sequenced on
the NextSeq500 using 75 bp single-end reads, grouping nine samples per lane. Base
calling was performed using Illumina RTA (v2.4.11) and de-multiplexing and
conversion to FASTQ was performed using Bcl2fastq (v2.17.1.14, Illumina). Reads
were then trimmed to 44 bases, discarding the first 4 bases, the next 44 bases were
kept. Trimmed reads were aligned to the hg19 genomes using Bowtie65 software
(v1.0.0) allowing up to three mismatches and require best unique matches. Custom
R scripts were used to count tags that aligned to the exons of UCSC RefSeq gene
models to calculate RPKM values. All RNAseq FASTQ and RPKM.txt files can be
found on the GEO Omnibus under accession number GSE82032.
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Geneset generation. All genesets used in this study are presented in Supple-
mentary Data 3. Genesets present in the molecular signature database (MSigDB,
Broad Institute) were taken as is and are available at www.broadinstitute.org/gsea/
msigdb/collections.jsp, the original study that generated the geneset is cited when
discussed in our work. Genesets were also generated from studies not included in
the MsigDB. A collection of 32 breast phenotype-related genesets was compiled
and included genesets from study examining overlap in gene expression from
historical mammary gland population-sorting experiments39, a study examining
intrinsic subtypes of breast cancer41, a study profiling the claudin-low subtype of
breast cancer40, a study examining classical myoepithelial markers31, and a study
examining the epigenetic determinants of the human breast2. A second compila-
tion including 25 chromatin modifier enzyme activity-related genesets was com-
piled from MSigDB as well as a study examining BRD4 binding sites in basal-like
BCCLs50, a study examining gene expression changes following ectopic BRD4
expression in a mammary cancer line49, and a study examining gene expression
changes following ectopic expression or knockdown of EZH214. A final set of 13
transcription factor activity-related genesets was compiled from MSigDB genesets
and studies examining ectopic FRA1 expression in BCCLs, ectopic GATA3
expression in MDAMB231 cells, ZEB1 overexpression and knockdown in lung
cancer cell lines, and a study examining change with ectopic expression of SNAI1
in the transformed breast cell line MCF10A55. To reduce geneset size for optimal
GSEA results, genesets were compiled of the most statistically significant upregu-
lated or down-regulated genes, limiting size to 500 genes. Genesets generated from
Affymetrix DNA microarray experiments used the NetAffx Query tool for Affy-
metrix gene ID conversion (Affymetrix.com).

Geneset enrichment analyses. Geneset enrichment analysis57 was performed
using GSEA software (Broad Institute). Ranked lists of differential gene expression
(log2 Fold Change) between DMSO control cells and treated cells were created
from RPKM RNAseq data. Pre-ranked GSEA was performed with 1000 permu-
tations and default values for other parameters. Ranked lists were run against a
compilation of 32 breast phenotype genesets, a compilation of 25 chromatin
modifier activity-related genesets, and a compilation of 13 transcription factor
activity-related genesets, the latter was run with the C6_All oncogenic signature
database (www.broadinstitute.org/gsea/msigdb/collections.jsp) to obtain more data
and to reduce false positivity related to testing small geneset groups. All GSEA
results are available in Supplementary Data 3.

DNA sequencing, SNV and indel calling, and copy number analysis. Full details
of the whole exome and WGS analysis is available in Supplemental Methods.
Briefly, total DNA was collected from HCC1143 cells following a 6-day treatment
with 1 μM Trametinib, 1 μM BEZ235, or DMSO using the Qiagen DNAeasy Blood
and Tissue kit (Qiagen). Whole-exome DNA sequencing libraries were prepared in
triplicate from these gDNA extracts using KAPA Hyper-Prep Kit (KAPA Biosys-
tems) with Agilent SureSelect XT Target Enrichment System and Human All Exon
V5 capture baits (Agilent Technologies). Next-generation sequencing was carried
out using the Illumina HiSeq 2500 platform by the OHSU Massively Parallel
Sequencing Shared Resource (MPSSR) to an average depth of 100× per library
replicate. FastQ data files were aligned and processed using BWA MEM (0.7.12,
GATK, Broad Institute). Bam files for replicate libraries were merged and somatic
variants were called using MuTect (1.1.4, GATK, Broad Institute) between samples
in pairwise, all-against-all approach, as well as between treatments and previously
generated whole-exome data for the HCC1143-BL cell line, described by and
available from Daemen et al.34, which was used as a “matched normal” for calling
somatic variants in the above treatment libraries. Further insertion and deletion
(indel) calling was done on the bam files for treatment samples using GATK4
MuTect2 (2.1-beta, Broad Institute) pairwise between treatments and against the
HCC1143-BL line. Variant and indel calls were filtered by the presence in dbSNP
database (https://www.ncbi.nlm.nih.gov/projects/SNP/), as well by frequency and
depth, and were further scrutinized and hand-curated using various software tools
(see Supplementary Methods). All raw exome-seq files can be found in the
Sequence Read Archive (www.ncbi.nlm.nih.gov/sra) under the accession
SRP125560 (WES) and VCF files are available in Supplementary Data 4. For WGS,
the remaining aliquots of the HCC1143 pre-capture sequencing libraries were
pooled by treatment type, and indexing and pre-sequencing library amplification
PCR was carried out following Agilent SureSelect XT post-capture indexing pro-
tocol (omitting the capture and clean-up steps). The resulting WGS libraries were
sequenced to an average depth of 0.5× across the entire genome on the Illumina
NextSeq 500 by the OHSU MPSSR. FastQ data files containing paired-end
sequencing reads (75 bp) were aligned and processed as described above and copy-
number gain or loss was determined using ichorCNA software66 (https://github.
com/broadinstitute/ichorCNA/) and the panel of normals provided with the soft-
ware. Resulting log-2 ratios across the entire genome were compared between
treatments to identify possible differences in copy-number gain/loss. All raw WGS
files can be found in the Sequence Read Archive (www.ncbi.nlm.nih.gov/sra) under
the accession SRP144106 (LP-WGS) and segmentation files are available in Sup-
plementary Data 4.

Cell death assays. Cells were plated and allowed to adhere overnight. The next
morning cells were treated with inhibitors and incubated with 250 nM YOPRO1
dye (Thermo). Time course imaging was performed on the IncuCyte ZOOM Live
Cell Imaging System (Essen Bioscience), taking phase images and green channel
fluorescence images every 12 h throughout a 72 h treatment course. Green objects
per image were quantified in the Incucyte software. Total cells per image were
measured from phase images using a custom Cell Profiler pipeline. Briefly, this
pipeline included: Color to gray image conversion, edge enhancement using the
LoG method, image smoothing using a Gaussian filter setting, and primary object
(cell) identification using the automatic threshold strategy and distinguishing and
dividing clumped objects by intensity.

Cell cycle analyses. Cells were plated in six identical plates and allowed to adhere
overnight. The next morning all plates were treated identically with inhibitors, and
one plate was incubated with EdU (Sigma) for 12 h at a concentration of 10 μM. At
the 12-hour mark, this plate was fixed, and EdU was added to a second plate. Every
12 h a subsequent plate was fixed and another was pulsed with EdU to capture the
next timepoint. Cell fixation and permeabilization were carried out as described
above (Image Cytometry of Cancer Cell Lines). Wells were then treated with a
reaction buffer containing 2 mM CuSO4 (Sigma), 8 μM AlexaFluor Azide 647
(LifeTech), and 100 mM sodium ascorbate (Sigma) in PBS and incubated 1 h. After
washing with PBS, cells were stained for K19, K14, and VIM, imaged, and analyzed
as outlined above (Image Cytometry of Cancer Cell Lines) using nuclear detection
of 647-channel signal to quantify cellular EdU levels.

Mass cytometry. HCC1143 cells were treated with 1 μM BEZ235, 1 μM Trame-
tinib, or with 0.05% DMSO and incubated at 37 °C for 72 h. Cells were then washed
twice with PBS, trypsinized, and stained with 20 μM Cisplatin (Selleckchem) for 1
min at room temperature. Cells were fixed in 1.6% Paraformaldehyde (Electron
Microscopy Sciences), followed by permeabilization with a 0.3% Saponin buffer
(Sigma). Cytokeratin14, Cytokeratin17, and Claudin4 antibodies were conjugated
to lanthanide metals using the MAX PAR conjugation kit (Fluidigm/DVS Sci-
ences). 2 × 106 cells from each sample were incubated with the antibody panel
overnight at 4 °C in Saponin buffer. Cells were stained in 1:1000 Natural Iridium
(Fluidigm/DVS Sciences) in PFA buffer (1.6% PFA, 0.24% Saponin, PBS) for 20
min at room temperature. Approximately 500,000 cells were loaded into the
CyTOF mass cytometer and data was acquired for 5 min. Cell events in the range of
10–75 pushes were recorded in the FCS file, with an average of 100,000 cells
recorded for each sample. FCS data files were analyzed in Cytobank (Fluidigm/
DVS Sciences). Gates for high expression were defined by mean-cell marker signal
in DMSO wells.

Computational modeling. Models of drug-induced cell-state dynamics of
HCC1143 cells under two distinct hypotheses (Darwinian selection, transition-
mediated) were identified using measurements from 15 replicate wells taken every
12 h over a 72-hour horizon (Fig. 3a, b, d). These models assumed that each cell at
each instant could be either dead or alive, and if alive, expressed either K14hi or
K14low. Under each hypothesis, the number of K14hi live cells, K14low live cells,
and dead cells over time under drug treatment were estimated based on state-
selective death criteria. For example, for the K14hi Darwinian selection scenario,
the number of K14hi live cells under Trametinib was set to the measured K14hi cell
count, whereas the number of K14low live cells under Trametinib was set to the
measured K14low cell count minus the estimated dead cell count (Supplementary
Methods). The number of dead cells was estimated by multiplying measurements
of cell death proportion and population total (Supplementary Methods). Under
both hypotheses, the quantities of K14hi and K14low live cells over time under
DMSO were estimated by distributing death equally between the measured K14hi

and K14low cell counts (Supplementary Methods). The time course training data
for each hypothesis-agent pair (e.g., K14hi Darwinian selection and Trametinib)
were fed into a constrained l2-regularized least-squares program with alternating
minimization (as some measurements were illegible) to learn locally optimal
dynamics (CVX optimization package67). Linear time-invariance was assumed
because additional complexity was expected to overfit the data (Supplementary
Methods). Model parameters are time-averaged rates of division, death, and
transition of K14hi and K14low live cells; refer to Chapman et al.68 for details. In the
optimization program, these parameters were constrained according to hypothesis-
specific assumptions on cell-state transition and death. Under the K14hi Darwinian
selection scenario, for example, Trametinib-induced rates of cell-state transition
and K14hi death were set to zero (Supplementary Methods). Evolution of HCC1143
cell populations following drug treatment (or DMSO) was simulated by propa-
gating the hypothesis-specific models forward in time from appropriate initial
conditions. The initial condition for each drug treatment simulation was the
number of K14hi live cells, K14low live cells, and dead cells in each drug-treated well
estimated at time zero. The initial condition for the baseline simulation was the
average of such numbers over all DMSO wells. Change in subpopulation pro-
portion (vs. DMSO) was computed from the simulated evolution of HCC1143 cell
populations over time (Fig. 3h, Supplementary Fig. 18a, Supplementary Methods).
MATLAB software (MathWorks) was used for all computational modeling.
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VIPER analysis. The gene expression (raw counts) was normalized by the library
size (total number of reads mapped to transcripts) and transformed to stabilize the
variance by fitting the dispersion using a negative-binomial distribution as
implemented in the DESeq package from Bioconductor69. To reduce the impact of
systematic variability, affecting mainly low expressed genes, we focus our analysis
only on mid-to-high expressed genes. The threshold to identify low expressed
genes was defined by the data as follows: we fit a mixture of two Gaussian models
to the probability density of expression, and used them to compute the likelihood
ratio (LR) of high expression. Low expressed genes (LR < 1) were not considered
for further analysis. While this procedure trimmed the expression profile to 10,313
genes, it should not affect the quality of VIPER results, as we have previously
shown the analysis is strongly robust to partial signature representation46.
Gene expression signatures were computed by comparing each perturbed
sample vs. DMSO vehicle control. The VIPER algorithm, available from Bio-
conductor (http://bioconductor.org/packages/release/bioc/html/viper.html) was
then used to estimate the relative activity of 5087 regulatory proteins, including
transcription factors and signaling proteins. This analysis was based on a tran-
scriptional regulatory model assembled by the ARACNe algorithm70 from
1047 breast carcinoma tumors profiled by The Cancer Genome Atlas (TCGA).
The regulatory model is available from figshare (https://doi.org/10.6084/m9.
figshare.2750698). Top upregulated and down-regulated VIPER hits were analyzed
with DAVID pathway ontology analysis against the KEGG, BIOCARTA, REAC-
TOME, and PANTHER databases. All VIPER results are present in Supplementary
Data 5.

Single cell ATAC-seq library construction and analysis. Single cell combina-
torial indexing ATAC-seq libraries were prepared following the protocol described
in Cusanovich et al.52 using flow sorting at each stage of nuclei partitioning as
opposed to dilution. All treatments were multiplexed in the same transposase-
based indexing plate with the wells of the plate corresponding to each treatment
condition. Indexing at this level has the distinct advantage of preventing any
potential cell collisions from occurring between cells from two separate conditions
as the treatment condition is encoded in the transposase barcode prior to pooling
and redistribution. After combinatorial indexing library construction, all PCR wells
were pooled and assessed on a Bioanalyzer High Sensitivity DNA chip (Agilent)
prior to sequencing on an Illumina NextSeq 500 according to protocols outlined in
Amini et al.71. Sequence reads were demultiplexed using SCI-seq software provided
in Vitak et al.72 prior to alignment using bowtie265. PCR read duplicates were
removed on a cell-level basis, again using SCI-seq software. Index combinations
were then filtered to exclude background reads and to only retain those containing
at least 1000 uniquely aligned sequence reads with a mapping quality of at least 10.
The combined alignment file was then used for peak calling using MACS273 with
default parameters. Reads and peaks were then used to construct a counts matrix as
described in Cusanovich et al.52 and filtered to retain only cells with at least 1000
on-target reads, and sites that contain reads from at least 50 cells which was then
used to perform latent semantic indexing (LSI), retaining dimensions 1 through 15.
On the LSI matrix we then carried out t-SNE74. To compute transcription factor
deviation scores we used chromVAR53 using the transcription factor motif col-
lection provided by the tool and plotted deviation Z-scores on the respective LSI t-
SNE visualizations.

Animal studies. Mice were handled in accordance with the OHSU Institutional
Animal Care and Use Committee (IACUC). A total of 2 × 106 HCC70 cells in 50%
Matrigel (Corning)+ 50% RPMI1640 were bilaterally injected into the left and
right fourth mammary glands of 4–6-week-old nonobese-diabetic (NOD)/SCID/γ-
chain null (NSG) mice. Tumors were allowed to grow until they reached 100 mm3,
at which point all mice were randomized into treatment groups of four mice per
group, with a total of eight tumors per group. Based on other xenograft studies this
was sufficient to detect mean differences in tumor size between groups greater than
1 standard deviation at 5% significance (using two-tailed Student’s T-test) with
95% power. Following randomization, mice were treated once daily, for 21 days in
the following groups: (1) oral gavage (OG) control vehicle (10% 1-methyl-2-pyr-
rolidone/90% PEG300) and intraperitoneal injection (IP) vehicle (10% DMSO in 2-
hydroxypropyl-B-cyclodextrin, 10% w-v in water); (2) OG control vehicle+ 50 mg/
kg JQ1 IP; (3) IP vehicle+ 40 mg/kg NVP-BEZ235 by OG; or (4) a combination of
50 mg/kg JQ1 IP and 40 mg/kg NVP-BEZ235 by OG. Caliper measurements and
tumor volume calculations were performed every 2–3 days using the V= (L ×W2)/
2 equation. Mice were euthanized following the 21-day treatment period according
to IACUC protocol and tumors were harvested, formalin fixed, paraffin embedded,
sectioned and immunofluorescently interrogated (see image cytometry of PDX
tumors). Investigators were not blinded when assessing tumor volumes, but were
blinded during immunofluorescent analysis.

Statistical analysis. All statistical analyses were performed using GraphPad Prism
software. Data is presented as mean with standard error when showing averages
across biological replicates, or mean with standard deviation within representative
experiments, all experiments were repeated at least three independent times. The
number of replicates was chosen based on prior knowledge of specific experimental
variability. For determining significance, replicate data was first tested with the

D’Agostino & Pearson omnibus normality test. Normally distributed data was
compared with the two-tailed Student’s T-test, or paired Student’s T-test for paired
data. Non-normally distributed data was compared using the Mann–Whitney test,
or the Wilcoxon matched-pairs signed rank test for paired data.

Data availability. All analyzed tumor images (Fig. 1, Supplementary Fig. 1) and
associated image cytometry plots are shown in Supplementary Data 1. RNA
sequencing data are available at the GEO data repository with the accession code
GSE82032. Drug screen data (Fig. 2) is provided in Supplementary Data 2. Gen-
esets and GSEA results (Figs. 2, 4–6, Supplementary Fig. 5 and 14) are provided in
Supplementary Data 3. All raw DNA sequencing files and analyses (Supplementary
Fig. 7) can be found under the following Sequence Read Archive accessions (www.
ncbi.nlm.nih.gov/sra): SRP125560 for whole exome-seq files, SRP144106 for low-
pass WGS files. Vcf files for all MuTect analyses (Supplementary Table 1 and 2) are
included in Supplementary Data 4 along with .seg files from copy number analysis
(Supplementary Fig. 7). VIPER analysis results and pathway ontology results
(Fig. 4, Supplementary Fig. 9) are presented in Supplementary Data 5. Raw
sciATAC-seq motif enrichment results (Fig. 6, Supplementary Fig. 13) are pre-
sented in Supplementary Data 6. All cell profiler image analysis pipelines, tumor
images, and source data are available upon request.
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