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Liver transplantation is an effective therapy for end-stage liver disease. However, most
postoperative patients must take immunosuppressive drugs to prevent organ rejection.
Interestingly, some transplant recipients have normal liver function and do not experience
organ rejection after the withdrawal of immunosuppressive agents. This phenomenon,
called immune tolerance, is the ultimate goal in clinical transplantation. Costimulatory
molecules play important roles in T cell-mediated immune responses and the
maintenance of T cell tolerance. Blocking costimulatory pathways can alter T cell
responses and prolong graft survival. Better understanding of the roles of costimulatory
molecules has facilitated the use of costimulatory blockade to effectively induce immune
tolerance in animal transplantation models. In this article, we review the state of the art in
costimulatory pathway blockade for the induction of immune tolerance in transplantation
and its potential application prospects for liver transplantation.
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INTRODUCTION

Liver transplantation is the most effective treatment for end-stage liver disease. However, graft
rejection seriously restricts graft function and recipient quality of life. The emergence of
immunosuppressive agents has reduced the occurrence of rejection and improved transplant
outcomes. However, most recipients require lifelong immunosuppression, which is expensive and
increases the risk of infection; additionally, for hepatocellular carcinoma patients,
immunosuppressants increase the risk of tumor recurrence after transplantation. As an
“immune-privileged organ,” the liver has a lower probability and degree of rejection after
transplantation than many solid organs (1). Indeed, in the clinical setting, some transplant
recipients develop liver graft immune tolerance-normal liver graft function in the absence of
graft rejection after the withdrawal of immunosuppression. The induction of immune tolerance is
the ultimate goal for transplant doctors, as it is the best way to avoid graft rejection and the toxic side
effects caused by immunosuppressive agents.

Earlier studies found that approximately 20% of liver transplant patients developed immune
tolerance after they stopped taking immunosuppressants (2) among those who could not successfully
stop taking the drugs, some patients were able to take lower doses of their immunosuppressants. In
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2012, Feng et al. (3) conducted an immunosuppressive drug
withdrawal test on 20 pediatric patients who had received
related-living-donor liver transplants. They found that up to 60%
of the recipients successfully stopped taking immunosuppressants
completely and achieved liver transplantation immune tolerance.
Moreover, the later the time of drug withdrawal after surgery, the
higher the probability of the recipient achieving immune tolerance.
In an international multicenter study of 102 adult liver transplant
patients, 41.8% of those followed for more than 5 years successfully
stopped taking immunosuppressants (4). In another study of adult
liver transplant patients, up to 63% successfully stopped taking
immunosuppressants and achieved immune tolerance (5). Liver
transplantation recipients typically achieve immune tolerance late
after transplantation, whereas they mainly experience adverse
reactions to immunosuppressive agents in the early period after
transplantation. Therefore, it is critical to intervene early after
transplant to help recipients develop immune tolerance and avoid
the deleterious effects of immunosuppressive drugs. The
mechanism of liver transplantation immune tolerance has not
been fully elucidated, so most methods for inducing immune
tolerance are still in preclinical or clinical stages of experimentation.
THE ROLES AND MECHANISMS OF
T CELLS IN IMMUNE TOLERANCE

Immune tolerance is divided into central and peripheral immune
tolerance. Central immune tolerance is the tolerance to
autoantigens generated by exposure to those antigens during
embryonic development and the development of T and B cells.
Peripheral immune tolerance occurs when mature T cells and B
cells are exposed to endogenous or exogenous antigens in the
absence of the signals that lead to an immune response. The liver
has excellent immune regulation abilities that ensure local and
systemic immune tolerance to self and foreign antigens, as well as the
effective immune response to pathogens, and immune tolerance is a
dynamic, self-replicating state, which requires the host to recognize
the graft antigen to form a stable regulatory environment (6). Liver
transplant rejection is the core content of transplantation immunity
research, and it is an adaptive immune response that involves the
activation of T and B lymphocytes. T cells play an important role in
immune responses to allografts, the activation of T cells can lead to
rejection of allografts, but sometimes it will weaken in the process of
liver transplantation, which can promote the acceptance of
transplanted liver and even immune tolerance. The mechanism
of induction and maintenance of tolerance has been the main
focus of transplant immunology researchers.

After the body recognition of “non-self” antigens, immune
cells can be activated and generate appropriate immune
responses through a series of cell responses, including
proliferation and differentiation (7). However, the immune
cells showed low or no response when faced self-antigens, and
this non-responsive situation or state can be considered as
immune tolerance. The formation and maintenance of
immune tolerance are affected by multiple immune cells, and
T cells act as the most important role, which are the major player
Frontiers in Immunology | www.frontiersin.org 2
of the adaptive immune system. T cells can be divided into
different subgroups according to their function, mainly including
CD4+T cells (helper T cells, Th), CD8+T cells (cytotoxic T cells,
Tc), suppressor T cells, etc. CD4 + cells have affinity for MHC class
II, while CD8 + cells have affinity for MHC class I. Th cells can be
divided into Th1 and Th2 subsets, in normal conditions, Th1/Th2 is
in dynamic balance. Th1 cells mainly secrete interleukin-2 (IL-2),
interferon-g (IFN-g), tumor necrosis factor-b (TNF-b) and other
cytokines, they can activate Tc to induce delayed type
hypersensitivity, and can also activate macrophages and natural
killer (NK) cells to specifically kill the antigen of the grafts, and
participate in the cellular immune response. Th2 cells mainly secrete
cytokines such as IL-4, IL-5, IL-10 and IL-13, which participate in
humoral immune responses. Meanwhile, they can also induce
specific cellular immune responses through other pathways. Th1
and Th2 cells restrict each other. IL-10 can inhibit the synthesis of
Th1 cytokines, especially IFN-g, while IFN-g can selectively inhibit
the proliferation of Th2 cells. Th1 cells play an important role in the
development of acute rejection after liver transplantation, while Th2
is mainly related to the formation of tolerance, and the deviation
fromTh1 to Th2 is considered to be one of the mechanisms of
transplantation tolerance.

Tolerance can be defined as the graft receptor cannot express
the destructive immune response of the graft, which can be
described as a complex process, balancing the reactivity against
foreign antigens and autoantigens. T cell tolerance is an
unresponsive state of T cells to self-antigens to prevent the
occurrence of autoimmune diseases. Under the stimulation of
T cell receptor (TCR) signal, the tolerant T cells could not
effectively proliferate and secrete cytokines. There are two
different mechanisms for the T cells tolerance occurs. The first
is the exhaustion of self-reactive T cells during their maturation
in the thymus and the other is to inhibit and/or elimination of
self-reactive mature T cells in the periphery (8). T cells need to
undergo negative selection and positive selection during their
maturation in the thymus gland, and eventually become mature
CD4+ and CD8+T cells. After negative and positive selection,
mature T cells (CD4+and CD8+) are released from the thymus
into the peripheral circulation and secondary lymphoid organs.
Most self-reactive T cells are eliminated in the thymus by
negative selection, however, it is incomplete and a certain
number of self-reactive T cells that escape negative selection
and migrate to the periphery. These escaped self-reactive T cells
can be eliminated in the periphery through a series of tolerance
mechanisms, including the induction of anergy (unresponsiveness),
suppression by other immunologically active cells (Tregs) and
deletion. T cells activation or tolerance is regulated by a series of
costimulatory signals, on one hand, such as CD28 and inducible
costimulator (ICOS) are important costimulatory molecules
required for T cells activation and function, and inhibit or
deficiencies in both them can lead to T cells tolerance. On the
other hand, many inhibitory costimulatory molecules such as
CTLA-4, PD-1, Lag-3, Tigit, B7-H3,BTLA and B7S1 can also
regulate T cells activation or tolerance (9, 10). When T cells are
stimulated by TCR and receive a large amount of inhibitory
costimulatory signals and lack of positive costimulatory signals, it
February 2021 | Volume 12 | Article 537079
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will lead to T cell tolerance, which is mainly manifested as limited
cell expansion and impaired effector function (11, 12).
T-CELL ACTIVATION AND
COSTIMULATORY MOLECULAR
PATHWAYS

The activation of T cells is a complex process, which three signals
are typically required to fully activate T cells. The first signal is
specific binding of the TCR on the surface of the initial T cell to
an antigen peptide: major histocompatibility complex on the
surface of an antigen-presenting cell (APC) (13). The second
signal is the interaction of a costimulatory receptor on the T cell
membrane with its ligand on the surface of the APC; these
costimulatory pairs include CD28/B7 ligands (B7-1 and B7-2),
CD40/CD40 ligand (also known as CD154), tumor necrosis
factor (TNF) receptor superfamily member 4 (also known as
OX40)/TNF superfamily member 4 (also known as OX40L), and
ICOS/ICOS ligand (ICOSLG). The balance of signals from
costimulatory and coinhibitory receptors on the surface of a T
cell determines the functional result of TCR signal transduction
(14). TCR stimulation in the absence of the second signal can
result in anergy, immune tolerance, or even programmed cell
death (Figure 1). When the costimulatory signal exceeds the
coinhibitory signal, transcription factors are activated that trigger
the production of IL-2 and other proinflammatory factors,
thereby promoting T cell proliferation and differentiation.

Based on their structures, costimulatory molecules can be
roughly divided into 4 groups: the immunoglobulin (Ig)-related
family, the TNF-related family, the hepatitis A virus cellular
receptor 2 (also known as T-cell immunoglobulin mucin family
member 3 [TIM]) family, and the adhesion factor family. In
general, the Ig-related superfamily and TNF-related super
families are particularly important for adaptive immune
responses (15). These costimulatory molecular pathways play
important roles in the recognition of antigens and the activation
of T cells.

The inhibition of costimulatory molecules is essential for the
establishment and maintenance of peripheral immune tolerance.
Frontiers in Immunology | www.frontiersin.org 3
In the absence of appropriate costimulation, the recognition of
an antigen by a TCR makes the T cell non-responsive to the
antigen, thereby inducing peripheral tolerance (16). Multiple
mechanisms contribute to the formation of transplant tolerance,
including ignorance, deletion, anergy, exhaustion, and immune
regulation; nearly all of these mechanisms involve alloreactive T
cells. As blocking these second signals can prevent T cell
activation and acute rejection, costimulatory blockade is
currently one of the most active areas of research in
transplantation immunity. Studies have shown that blocking
the activation of T cells can prolong graft survival time (17).
So, blocking costimulatory pathways during liver transplantation
may change anti-allograft immune responses and weaken
rejection, and it is may be a strategy to induce immune
tolerance in transplant recipients, thereby limiting toxicity
from immunosuppressive drugs after transplantation (18). So,
we review the current state of costimulatory pathway blockade
for the induction of immune tolerance in transplantation
(summarized in Table 1).
IG-RELATED SUPERFAMILY
COSTIMULATORY PATHWAYS

CD28/B7 Costimulatory Pathway
CD28/B7 is the most important and bes t-s tudied
costimulatory pathway in transplantation. CD28, the most
important costimulatory molecule in the T cell membrane, is a
homodimeric cell surface glycoprotein that belongs to the Ig
transmembrane superfamily (38). CD80 (also known as B7-1)
and CD86 (also known as B7-2), the ligands of CD28, are also
members of the Ig superfamily. B7-1 exists as a dimer on the
cell surface, whereas B7-2 is a monomer. CD28 binding to B7-
1 and B7-2 on APCs activates CD28 signal transduction to
enhance T cell responses to antigens. This signal promotes T
cell proliferation through the transcription of cytokines such
as IL-2 and enhances T cell survival through the transcription
of Bcl2-Bclx (39). After the activation of T cells, they can
express cytotoxic T-lymphocyte associated antigen 4
(CTLA4), which also binds B7-1 and B7-2. Unlike CD28,
FIGURE 1 | Major costimulatory molecular pathways and their interplay.
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CTLA4 is a negative regulatory factor that sends inhibitory
signals to T cells, thereby limiting the T cell responses. CTLA4
shares sequence similarity with CD28, for which it is a
structural analog. CTLA4 competitively binds to B7-1/
B7-2 with higher affinity than CD28, thereby blocking
costimulatory signals.

CTLA4Ig (belatacept) is a soluble fusion protein that was
approved by the Food and Drug Administration in 2011 for use
in renal transplantation patients. It blocks the CD28/B7 pathway
in T cells, inhibits T cell activation, and promotes graft tolerance.
In vivo experiments have shown that CTLA4Ig suppresses T cell-
dependent immune responses and prolongs the long-term
survival of xenografts and allografts (19–21). CTLA4Ig can
markedly prolong the survival of allografts in non-human
primates (NHPs) (22). Two phase III clinical trials found that
the overall survival and graft survival rates of renal transplant
recipients on belatacept were similar to those of cyclosporine-
treated recipients over 3 years, but with statistically better renal
function and cardiovascular/metabolic disease risk status (40–
44). Schwarz et al. (45) conducted a trial of belatacept for liver
transplantation in 15 patients, which was terminated due to graft
dysfunction with acute rejection at approximately 10 weeks.
Interestingly, in another study, belatacept was reportedly safe
and effective in hepatitis C-positive patients with renal
insufficiency and for use as a bridge to renal rehabilitation
(46). In rat liver transplantation models, CTLA4 signaling is
essential for inducing immune tolerance (23). However, in a
phase II clinical trial of adult liver transplantation, belatacept
treatment resulted in a higher incidence of acute rejection and
graft loss (24). Perhaps the “benefits” of belatacept in liver
transplantation will be shown in appropriate patient selection
and trial design.
Frontiers in Immunology | www.frontiersin.org 4
ICOS/ICOSLG Costimulatory Pathway
ICOS is an inducible T cell costimulatory molecule of the Ig
superfamily with strong structural similarity to CD28 and
CTLA4 (47). It is expressed on activated T cells and its
expression persists in effector and memory T cells. The B7
family member ICOSLG is structurally related to B7-1/B7-2. It
is expressed on B cells, macrophages and dendritic cells; its
expression can also be induced on non-lymphoid cells, including
endothelial and pulmonary epithelial cells (48). ICOS binds only
with ICOSLG, but not B7-1 or B7-2 (49, 50). The ICOS/ICOSLG
pathway is critical for T cell-dependent B cell responses (51, 52).
ICOS costimulation can enhances T-cells activation,
proliferation, differentiation and effector functions. Treatment
with anti-ICOS antibodies can prolong the survival of cardiac
allografts (53). The timing of ICOS blockade is a key factor; only
delayed blockade can inhibit the production of CD8+ T cells and
statistically prolong the survival time of allografts (54).
Treatment with anti-ICOS antibodies in combination with
anti-CD154 antibodies or CTLA4Ig can prolong the survival of
heart allografts and prevent chronic rejection (55). Some studies
have shown that the survival of rat liver allografts can be
prolonged by injecting anti-ICOS antibody after surgery (25).
When combined with FK506, an anti-ICOS antibody
synergistically prevents rejection after liver transplantation and
induces graft tolerance (26). In addition, activation of the ICOS
pathway can be inhibited by RNA interference, which prevents
acute rejection and prolongs the survival of grafts by promoting
T cell apoptosis and suppressing the production of cytokines by
T lymphocytes (27). Considering that ICOS appears to work
independently of CD28, blocking the ICOS/ICOSLG pathway in
combination with the CD28/B7 pathway may be as a potential
therapeutic strategy, but the ICOS/ICOSLG blocking drugs or
TABLE 1 | The roles of costimulatory pathways in liver transplantation.

Costimulatory
Signal

Ligand Strategies to
target

Outcome (Effects on liver transplantation immune tolerance) References

CD28 B7 CTLA-4Ig Suppress T cell dependent immune response and prolong the long-term survival of xenografts and
allografts.

(19–22)

(belatacept) Animal Trials: Successfully induced immune tolerance. (23)
Clinical Trials: Phase II showed acute rejection and graft loss. (24)

ICOS ICOSL anti- ICOS mAb Prolong the survival of rat liver allografts and prevent acute rejection, and the combination with FK506
can induce grafts tolerance.

(25)
(26)

RNAi- ICOS Prevents acute rejection and prolongs the survival of grafts. (27)
CD40 CD154 anti-CD40 mAb

(ASKP1240)
Animal Trials: The non-human primates showed good tolerance and increased the survival rate of liver
grafts.

(28)

The anti-CD40 mAb can prolong the survival of xenografts. (29)
OX40 OX40L OX40Ig Inhibit the rejection of allografts and induce immune tolerance by reducing IL-2 expression. (30)
4-1BB 4-1BBL anti-4-1BB mAb Prolong the allograft survival time and prevent allograft rejection. (31)

RNAi-4-1BB Inhibiting or alleviating acute rejection of liver transplantation in rats. (32, 33)
GITR GITRL Still to be explored in liver transplantation.
Tim-1 anti-Tim-1 mAb 3B3: Promote T cell proliferation and block allograft tolerance. (34, 35)

(3B3, MT1-10) MT1-10: No application has been found in liver transplantation.
Tim-3 galectin-

9
anti-Tim-3 mAb
(RMT3-23)

No sufficient data.

Tim-4 anti-Tim-4 mAb Alleviate the acute rejection injury and down-regulate the expression of pro-inflammatory factors. (36)
LFA-1 ICAM-1 anti-LFA-1 mAb

anti-ICAM-1
mAb

Prolong the allografts survival time, but can not induce permanent tolerance. (37)
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clinical trial have not yet been studied in human liver
transplantation (56).
TNF-RELATED SUPERFAMILY
COSTIMULATORY PATHWAYS

CD40/CD154 Costimulatory Pathway
CD40 is a member of the TNF receptor family, which is
expressed in APCs, including B cells, macrophages, and
dendritic cells (DCs), as well as in endothelial cells, fibroblasts,
and smooth muscle cells (57). CD40 mainly binds to CD154,
which is expressed on activated T cells. CD154 also belongs to
the TNF superfamily; both CD40 and CD154 are type II
transmembrane proteins. In addition to playing an important
role in B cell activation and Ig class conversion, the CD40/CD154
costimulatory pathway is important for costimulating T cell
immune responses (58). CD40/CD154 interactions are also
critical in T cell-dependent humoral immune responses and T
cell-mediated activation of DCs and macrophages (59). The
interaction between CD40 on T cells and CD154 on APCs lead
to the maturation of DCs, which increases the production of
cytokines and costimulatory molecules and enhances their ability
to promote T effector cell differentiation (60). This pathway
affects the function of many immune cells that are critical to the
adaptive immune response, and studies in animal transplant
models have shown considerable promise. Targeting CD154
prevents acute rejection and induces tolerance in some
transplant models (61). In a model of mouse skin and heart
transplantation, treatment with anti-CD154 prolongs graft
survival (62, 63). In an NHP model, blocking CD154 leads to
long-term survival of renal allografts and the loss of donor-
specific mixed lymphocyte reactivity (64). When used in
combination with CTLA4Ig, CD40/CD154 blockade had
synergistic effects, on the enhancement of long-term skin and
heart graft survival (65, 66). However, thromboembolic
complications related to the anti-CD154 antibody were later
reported in NHP research (67). It is now believed that the
binding of the Fc domain of the anti-CD154 antibody to the
Fc receptor of platelets contributes to platelet aggregation (68).
Therefore, the current approaches to targeting this pathway
mainly focus on the use of CD40-blocking antibodies.

Treatment with an anti-CD40 monoclonal antibody is an
effective alternative method to block the costimulatory CD40/
CD154 signal without interfering with platelet aggregation.
ASKP1240 is a fully humanized inhibitory monoclonal
antibody against CD40, which can block the CD40/CD154
interaction and inhibit cell-mediated and humoral immune
responses without immunogenic and thromboembolic
complications (69). A trial in NHPs showed that monotherapy
with ASKP1240 increases the survival rate of liver grafts without
the occurrence of thromboembolism, and monkeys showed good
tolerance (28). In a 2017 study of a liver xenotransplantation
model, the use of a blocking anti-CD40 monoclonal antibody
prolonged the survival of xenografts (29). Other CD40
antibodies, such as 4D11, HCD122, and 2C10R4, have been
Frontiers in Immunology | www.frontiersin.org 5
effective in heart and kidney transplantation studies, but they
have not been tested in liver transplantation studies.

OX40/OX40L Costimulatory Pathway
The expression of the TNF superfamily member OX40 on
activated T cells is time-dependent (70). OX40 is essential for
the regulation of T cell proliferation, differentiation, survival,
and cytokine production (71). The expression of its ligand
OX40L is induced on activated T cells and APCs, such as DCs,
macrophages, and B cells, but also some endothelia and mast T
cells. OX40-OX40L costimulatory pathway has been shown to
be involved in the regulation of Th cells differentiation.
Although CD28 signaling up-regulates the expression of
OX40 on T cells, OX40 costimulation does not depend on a
complete CD28 signal (72). Blocking the OX40/OX40L
pathway alone had little effect in an allograft model (73).
However, OX40/OX40L pathway blockers prolonged allograft
survival time in CD28/CD40 dual-gene knockouts or in
transplantation models featuring CD28/B7-1 blockers (74,
75). However, OX40/OX40L costimulatory blockade inhibited
skin allograft rejection not by inhibiting T cell activation and
proliferation, but by preventing the trafficking of peripheral
lymph node effector T cells into the grafts (76). Combination
therapy using OX40L blockers with traditional costimulatory
blockers effectively prevents the allo-reactive T cell responses
that impede long-term graft function and survival (47).
Blocking the OX40/OX40L pathway with OX40Ig inhibits the
rejection of liver allografts and induces immune tolerance in
rats by reducing IL-2 expression (30). However, there have been
no any clinical trials of OX40/OX40L pathway blockade
in transplantation.

TNF Receptor Superfamily Member 9/TNF
Superfamily Member 9 Costimulatory
Pathway
TNF receptor superfamily member 9 (also known as 4-1BB or
CD137) is a transmembrane protein expressed on T cells, DCs,
and B cells. It reaches peak expression after T cell activation. Its
ligand TNF superfamily member 9 (also known as 4-1BBL or
CD137L) is expressed on APCs, including mature DCs,
macrophages, and activated B cells, but not on resting or
activated T cells (77). The 4-1BB/4-1BBL costimulatory signal
can activate T cells independently of the CD28 signal (78), and 4-
1BB can provide sufficient costimulation to drive T cell
activation. The role of the 4-1BB/4-1BBL costimulatory
pathway in transplantation varies depending on the model, as
uncovered using antagonistic or agonistic anti-4-1BB
monoclonal antibodies or gene silencing of 4-1BB. In a mouse
model of graft-versus-host disease, treatment with an agonistic
anti-4-1BB monoclonal antibody exacerbated cytotoxic CD8+ T
cell-mediated tissue damage and accelerated the rate of rejection
of heart allografts or skin grafts (79). However, blocking the
interaction of 4-1BB/4-1BBL with an antagonistic 4-1BB
monoclonal antibody prolonged allograft survival time and
helped prevent allograft rejection (31). It has been reported
that silencing 4-1BB with RNA interference or blocking the
February 2021 | Volume 12 | Article 537079
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pathway with an anti-4-1BBL monoclonal antibody can inhibit
or limit acute rejection in rat liver transplantation (32, 33).

TNF Receptor Superfamily Member
18/TNF Superfamily Member 18
Costimulatory Pathway
TNF receptor superfamily member 18 (also known as
glucocorticoid induced tumor necrosis factor related receptor
or GITR) is a type I transmembrane protein that can be
expressed on T lymphocytes, NK cells, and APCs. Regulatory
T cells highly express GITR, which can also be expressed at low
levels on resting T cells; however, the expression of GITR is up-
regulated when T cells are activated, especially in the presence of
the CD28 signal (80). Its ligand TNF receptor superfamily
member 18 (also known as GITRL) is mainly expressed on
APCs after stimulation through Toll-like receptors. GITR
activation is a positive costimulatory signal for CD4+ and
CD8+ T cells, leading to enhanced proliferation, survival, and
cytokine production (81). In addition, GITR-induced signaling is
important for regulatory T cell-mediated inhibition of effector T
cell activity and the prevention of autoimmune diseases.
Shimizu J et al. (82) found that increased expression of GITR
in T cells impairs allograft tolerance and self-tolerance. Wei et al.
(83) showed that GITR expressed on Kupffer cells may mediate
acute rejection of rat liver grafts. However, the role of the GITR/
GITRL pathway in transplantation requires further investigation.
OTHER PATHWAYS

TIM Family Molecules
The TIM family of genes encodes type 1 glycoproteins that share a
common Ig V-like domain, mucin-like domain, single
transmembrane domain, and cytoplasmic domain (84). The
TIM gene family consists of 8 members in mice; the 3 human
TIM genes are most similar to mouse TIM-1, TIM-3, and TIM-4.
As a novel family of costimulatory molecules, the TIM gene family
plays an important role in the activation and differentiation of Th
cells (85). TIM-1 (also known as HAVCR1 or KIM1) is not
expressed on naive CD4+ T cells, but it is expressed after TCR
stimulation, preferentially on Th2 cells (34). TIM-1 is not only
necessary for regulating Th1 and Th2 immune responses, it also
regulates Th17 and regulatory T cells. Agonism of TIM-1 with the
high-affinity monoclonal antibody 3B3 promoted the expansion of
antigen-specific T cells expressing Th1 and Th17 cytokines and
blocked allograft tolerance (34, 35). However, the use of the
blocking monoclonal antibody MT1-10, which has a lower
affinity for TIM-1, prolonged the survival of completely
mismatched cardiac allografts and induced tolerance in
combination with rapamycin (86).

Although it was originally identified in Th1-differentiated
cells, TIM-3 has a wide range of expression and is the first among
the TIM family of proteins that was discovered. In addition to its
expression on Th1 and Th17 cells, it is constitutively expressed
on DCs, macrophages, NK cells and mast cells (84). Like other TIM
Frontiers in Immunology | www.frontiersin.org 6
family members, TIM-3 is a phosphatidylserine receptor; it can
bind multiple ligands, including galectin-9, phosphatidylserine,
high mobility group box 1, and CEA cell adhesion molecule 1
(84, 87–89). As a negative costimulatory molecule, TIM-3 dampens
Th1 and Th17 responses after binding galectin-9, thereby playing
an important role in immune and inflammatory responses. It can
promote apoptosis and inhibit the immune response mediated by
Th1 cells. In a cardiac allograft transplantation model, blocking
TIM-3/galectin-9 costimulatory signal transduction with an
anti-TIM-3 monoclonal antibody (RMT3-23) accelerated rejection
(90), in a process characterized by the promotion of Th1/Th17
polarization, inhibition of regulatory T cell differentiation, and
promotion of donor-specific alloantibody production. In contrast,
the application of exogenous galectin-9 prolonged the survival of skin
and heart allografts (91, 92), and combination therapy with
rapamycin promoted allograft tolerance (93). So far, human
transplantation studies have focused on the use of Tim-3 as a
marker of Th1 activation and rejection.

TIM-4 is mainly expressed on APCs, including CD11c+ DCs
and macrophages, but not on T cells (94). TIM-4 was originally
thought to be a ligand of TIM-1 that promoted T cell
proliferation; however, it was later demonstrated that direct
interaction between TIM-1 and TIM-4 was achieved by
bridging exosomes (95). The specific effect of TIM-4 on T cell
activation remains unclear, and in vitro studies using the TIM-
4Ig fusion protein have shown conflicting results. The use of the
TIM-4Ig fusion protein can enhance TIM-4 signal transduction
and increase the proliferation of activated T cells, but has the
opposite effect on naive T cells (96–98). Blocking TIM-4
ameliorated acute rejection injury after liver transplantation in
rats and down-regulated the expression of TNF‐a, IFN‐g, CCL2,
and CXCL2 in allografts. When combined with exogenous TGF-
b, it further ameliorated acute rejection injury and increased
graft survival time (36).

Integrin Subunit Alpha L/Intracellular
Adhesion Molecule 1 Costimulatory
Pathway
Integrin subunit alpha L (also known as lymphocyte function-
associated antigen 1 or LFA-1) is an adhesion molecule found on
the surface of T cells, which belongs to the integrin family of cell
adhesion factors. When it binds intercellular adhesion molecule
1 (ICAM1) expressed on endothelial cells, LFA-1 can provide the
costimulatory second signal and promote the activation and
proliferation of T cells (99). Some studies have shown that
blocking the interaction between LFA-1 and ICAM1 with anti
LFA-1 and anti-ICAM1 monoclonal antibodies prolonged the
survival time of mouse skin, heart, and islet allografts (100–102).
Earlier studies showed that the use of anti-ICAM1 and anti-LFA-
1 antibodies prolonged the survival of rat liver allografts, but did
not induce permanent tolerance (103). When combined with
donor-specific blood transfusion, LFA-1/ICAM1 blockade
induced tolerance in 80% of rats (37). Currently, few clinical
trials have investigated blocking this costimulatory pathway in
liver transplantation, and its future role in liver transplantation
remains unclear.
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CONCLUSION

Traditionally, the induction of allograft tolerance has been regarded
as the “holy grail” of transplantation immunology as graft can
survive a long time in patients with tolerance. However, for most
liver transplant recipients, it is still very difficult to withdraw
immunosuppressants and achieve immune tolerance. T cell-
mediated rejection after liver transplantation is a complex and
dynamic process. The relative strength of the costimulatory and
coinhibitory signals activated after transplant determines how T
cells respond to allografts. As the key second signal, costimulatory
pathways are essential in the activation of T cells, especially CD28/
B7 costimulatory signal pathway. Although belatacept has achieved
considerable results in clinical renal transplantation since it was
approved by FDA, its clinical trials results in liver transplantation
are not very satisfactory. Considering the complex mechanisms
involved in the immune response to liver allograft transplantation,
blocking a single costimulatory pathway may not be sufficient to
induce tolerance. Besides, further clinical trials may be needed to
compare different costimulatory blockers to understand their
respective advantages, and we anticipate that blocking multiple
costimulatory pathways in combination with coinhibitory signaling
pathways may be the optimal regimen to achieve the true
transplant tolerance in humans.
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