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Abstract

Cardiovascular disease is a leading cause of death among cancer survivors, second only to 

cancer recurrence or development of new tumors. Cardio-oncology has therefore emerged as a 

relatively new specialty focused on prevention and management of cardiovascular consequences 

of cancer therapies. Yet challenges remain regarding precision and accuracy with predicting 

individuals at highest risk for cardiotoxicity. Barriers such as access to care also limit screening 

and early diagnosis to improve prognosis. Thus, developing innovative approaches for prediction 

and early detection of cardiovascular illness in this population is critical. In this review, we 

provide an overview of the present state of machine learning applications in cardio-oncology. 

We begin by outlining some factors that should be considered while utilizing machine learning 

algorithms. We then examine research in which machine learning has been applied to improve 

prediction of cardiac dysfunction in cancer survivors. We also highlight the use of artificial 

intelligence (AI) in conjunction with electrocardiogram (ECG) to predict cardiac malfunction and 

also atrial fibrillation (AF), and we discuss the potential role of wearables. Additionally, the article 

summarizes future prospects and critical takeaways for the application of machine learning in 

cardio-oncology. This study is the first in a series on artificial intelligence in cardio-oncology, and 

complements our manuscript on echocardiography and other forms of imaging relevant to cancer 

survivors cared for in cardiology clinical practice
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1. Introduction

Approximately 370,000 cancer survivors die from cardiovascular diseases each year [1]. 

Thus, cardio-oncology has been developed as a relatively new subspecialty in medicine that 

focuses on the prevention and management of adverse cardiovascular effects associated 

with cancer therapies [2–4]. A small subset of the field is devoted to the diagnosis 

and management of primary or secondary heart tumors [5]. The majority of the field 

is devoted to chemotherapy, radiotherapy, and immunotherapy-related cardiotoxicity. 

While anthracyclines are the most frequently investigated medications and are commonly 

associated with cardiomyopathy, new cardiotoxic pharmacologic agents are continuously 

being developed, associated with a variety of cardiovascular (CV) effects (Tables 1 

and 2). Conventional chemotherapies, as well as endocrine therapies, and targeted or 

immunotherapies can all cause cardiovascular toxicities [6–14], as can radiation therapy 

[15–17].
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Cancer survivors are at increased risk for heart failure and cardiac mortality attributable 

to prior exposure to anthracycline chemotherapy and/or chest-directed radiation [18–20]. 

Early recognition of cardiomyopathy provides an opportunity for interventions that can 

potentially improve cardiac health and quality and length of survival [21,22]. Consequently, 

clinical practice guidelines recommend echocardiogram screening and early detection of 

asymptomatic cardiomyopathy, with the goal of reducing progression to symptomatic or 

fatal heart failure.

Guidelines from the American Society of Clinical Oncology (ASCO) and National 

Comprehensive Cancer Network (NCCN) recommend post-anthracycline echocardiography 

for patients with elevated cardiovascular risk [23–25]. However, these guidelines are 

inconsistently followed, and predicting anthracycline cardiotoxicity continues to be 

relatively evasive. Furthermore, variable definitions have been used for cardiovascular 

toxicity over time and some have been rather differential such as a decline in left ventricular 

ejection fraction (LVEF) by more than 10% points if the LVEF remains ≥50%, or a LVEF 

decline by 5% points or more if the LVEF is <50%. In addition, pediatric cancer cohort 

studies have demonstrated disparities in access and barriers to adherence to follow-up 

care related to race/ethnicity, socioeconomic and insurance status, geographic location, 

behavioral factors, survivor knowledge and perceptions and provider knowledge [26–30]. 

These aspects make it inherently difficult to develop and validate prediction models and 

deep learning algorithms. Applying new methods of prediction and early recognition of 

cardiovascular diseases in this population is therefore important and can potentially inform 

antineoplastic regimen, cardioprotection, and surveillance decision-making. Nonetheless, 

prediction and early diagnosis remain a challenge.

Despite well-established clinical risk factors, predicting cardiotoxicity continues to be 

relatively evasive. Due to the large inter-individual variability and inadequacy of clinical 

predictors, our prediction of cardiovascular disease in cancer survivors is imprecise. 

Initiatives are needed to overcome these challenges and transform the cardiovascular care 

of cancer patients. There is great need to develop non-invasive, accessible, low-cost tools 

for early identification of survivors at risk for cardiovascular disease to enable optimal 

screening, early diagnosis, and timely interventions.

Although AI has its own challenges, machine learning (ML) and deep learning (DL) 

approaches applied to various features could be transformative for prediction and diagnosis 

in cardio-oncology. ML learns from cumulative data to generate predictive models and 

explore relationships among variables; DL utilizes deep or convoluted neural networks to 

recognize subtle patterns through the abstraction and synthesis of numerous layers of data 

for analysis and prediction [31]. AI, including ML and the subcategory DL, in early stages 

has been applied to various cardiovascular modalities [31–34]. Notably, the ECG remains 

the most often used diagnostic tool for determining heart anatomy and electrical activity, 

and is a key prognostic and diagnostic tool in cardio-oncology. Parallel advancements 

in processing power, machine learning methods, and the availability of large-scale data, 

may significantly expand the clinical inferences obtained from the ECG while keeping 

interpretability for medical decision-making in cardio-oncology (Fig. 1).
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Here, we share our point of view with a brief survey of the current early state of machine 

learning applications in cardio-oncology. We begin by discussing some of the considerations 

for using machine learning algorithms. We then discuss studies in which machine learning 

was used to improve prediction of cardiac dysfunction in cancer survivors, and we explain 

that machine learning algorithms vary in sensitivity and specificity depending on the specific 

phenotype that they are used to identify (i.e., a rarer more severe cardiac issue vs. a more 

common less severe issue). We provide a spotlight on the use of AI with ECG for predicting 

cardiac dysfunction and also atrial fibrillation (Tables 3 and 4), and we mention a potential 

role for wearables. Additionally, future directions and key takeaways for the application 

of machine learning in cardio-oncology are summarized. This article is one of a series of 

publications on AI in cardio-oncology, complementing our manuscript on echocardiography 

and other forms of imaging salient to cancer survivors cared for in cardiology clinical 

practice. In our companion manuscript, titled “AI & Imaging in Cardio-Oncology,” we delve 

deeper into the application of AI to imaging modalities and their predictive power [35].

2. Cardiotoxicities in cardio-oncology

2.1. Traditional chemotherapies

Anthracyclines are frequently used in the treatment of breast cancer, sarcoma, leukemia, 

and lymphomas. Anthracyclines are extremely effective against a variety of cancers but 

may cause cardiotoxicity [36] (Table 1). 5-fluorouracil (5-FU) and its metabolic precursor 

capecitabine are fluoropyrimidines or antimetabolites frequently used in multiple cancer 

treatments and typical associate with cardiotoxicity during the first cycle of chemotherapy 

[37]. Paclitaxel and docetaxel are microtubule-targeting agents are typically used to 

treat breast, head and neck, and gastrointestinal cancers, and have been shown to cause 

abnormal conduction [38,39]. Cyclophosphamide is frequently used to treat breast cancers 

and lymphomas and also carries numerous cardiac adverse effects [40,41]. Cisplatin and 

busulfan have been linked to additional cardiovascular toxicities [42,43].

2.2. Targeted, endocrine, immune, and cell therapies

Trastuzumab is a monoclonal antibody to the human epidermal growth factor receptor 

2 (HER2) receptors and is most frequently used to treat patients with HER2-positive 

breast cancer [44]. Concomitant use of anthracyclines and HER2 monoclonal antibodies 

is typically avoided, due to synergistic cardiotoxic effects (Table 2).

With excellent clinical outcomes, multitargeted TKIs such as bosutinib, dasatinib, ponatinib, 

and nilotinib have transformed the management of chronic myelogenous leukemia and acute 

lymphocytic leukemia, and these drugs are also linked to cardiotoxicity. Bruton tyrosine 

kinase inhibitors have been used to manage B-cell malignancies, and have been shown to 

increase cardiotoxicity [45] (Table 2). Angiogenesis inhibitors may cause adverse effects 

such as hypertension, thrombosis, Q-T interval prolongation, or left ventricular dysfunction 

[46–48].

Cyclin-dependent kinase inhibitors are used to treat metastatic breast cancer [49]. Ribociclib 

has been reported to prolong the QTC interval [50]. Proteasome inhibitors, such as 
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carfilzomib, have resulted in unprecedented advances in the treatment of multiple myeloma 

[51,52]. Carfilzomib has been associated with cardiovascular adverse events such as heart 

failure, systemic and pulmonary hypertension, arrhythmias, and acute coronary syndrome. 

Histone deacetylase inhibitors, such as vorinostat, romidepsin, and panobinostat are used to 

treat hematological malignancies, and have been linked to cardiac ischemia, arrhythmias, 

and conduction abnormalities [53–56].

There is some evidence that estrogen deprivation caused by aromatase inhibitors (e.g., 

anastrozole, letrozole, exemestane or tamoxifen (an estrogen receptor selective modulator) 

used to treat early and advanced breast cancers may increase the risk of ischemic heart 

disease [57–60].

Immune checkpoint inhibitors are monoclonal antibodies that activate T cells and initiate 

an adaptive immune response, enabling the immune system to launch an optimal immune 

response when exposed to cancerous cells, but this can associate with myocarditis [61].

Cellular therapy, more precisely chimeric antigen receptor (CAR)-T cell therapy, has 

demonstrated early success in patients with recalcitrant hematological cancers [62,63]. 

Cardiovascular complications have been reported in this setting primarily as a result of 

cytokine release syndrome and complications [64]. The most common malignancy treated 

with autologous stem cell transplantation is multiple myeloma [65], which associates with 

cardiomyopathy and poor outcomes [55,66–69].

3. AI and cardio-oncology

Artificial intelligence (AI) advancements have gained traction in recent years, with the use 

of computer algorithms to simulate human intelligence [70,71]. In common practice, AI is 

already being used to a limited extent in the form of computer-generated electrocardiograms 

(ECGs) [70]. Machine Learning (ML) in particular, which employs advanced computer 

algorithms to learn complex patterns [71], has the potential to improve cancer survivor 

prediction, early diagnosis, and ultimately prevention. Over the last decade, the idea of 

applying machine learning to cardiology has generated considerable interest, with over 3000 

papers published on the subject in the last five years alone [70,71].

Developing novel AI algorithms could provide an avenue for research to improve patient 

care for cancer patients and survivors at risk for cardiovascular disease related to cancer 

therapy. The term AI was first used in 1956 to refer to machines simulating human 

intelligence. AI comprises multiple techniques including Bayesian networks, ML, and 

hybrid intelligent systems that allow efficient data representations. AI processes and 

analyzes high-density data not otherwise feasible by traditional statistics. AI differentiates 

itself from traditional parametric statistical methods by capturing high dimensional and 

hierarchical relationships, which makes AI more applicable to real-world problems.

In cardio-oncology, the use of machine learning to predict cardiac dysfunction 

(cardiomyopathy, left ventricular systolic dysfunction) in cancer survivors is of particular 

interest. Cardiac dysfunction is one of the most frequently reported long-term adverse effects 

of cancer therapy. This is especially true for some patients receiving anthracyclines, one of 
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the most frequently prescribed classes of cancer medications [13]. In these patients, every 

doubling of the time required to detect and treat cardiac dysfunction can result in a fourfold 

reduction in the likelihood of complete recovery of cardiac function [72].

4. AI opportunities for diagnosis, prognosis, and care delivery

The application of machine learning is contingent upon the ability of algorithms to 

process heterogeneous data within a learning dataset and to generate accurate and reliable 

predictions. After developing the algorithm, its performance must be validated against an 

alternate dataset to which the algorithm has never been exposed previously. The most 

frequently used validation parameters are those that assess the model’s ability to 1) 

discriminate between different outcomes, which is commonly expressed as an area under 

the curve (AUC) or a c-statistic, and 2) calibrate the model-derived risk estimate to observed 

outcomes [73,74]. Researchers evaluating machine learning algorithms work with a variety 

of datasets that are frequently consolidated retrospectively. The type of data collected varies 

between studies and may include baseline demographics, clinical characteristics, treatments, 

and outcome measures that may be adjudicated centrally. There is a dearth of data on the 

optimal type of machine learning algorithm to use or the parameters to set prior to initiating 

the learning process [75]. Nonetheless, some studies are demonstrating the utility of ML in 

cardio-oncology.

4.1. AI techniques used in cardiology, oncology, and cardio-oncology

Various AI techniques have been applied in cardiology [32–34,71,76–83] and oncology 

[84,85] and are now also being used in cardio-oncology (Table 5). The most frequently used 

techniques in ML and DL generally fall within the two primary categories of ‘supervised 

learning’ and ‘unsupervised learning’. A recent publication has delineated advantages, 

disadvantages, and example uses cases of common algorithm subclasses within supervised 

or unsupervised learning [32]. In supervised learning, both input and output data are 

provided to algorithms, which then determine complex mathematical relationships between 

the input data and the expected output data [31]. In unsupervised learning, on the other 

hand, input data (without expected output data) are provided to the algorithm, which extracts 

insights from the data based only on its internal structure and statistics [31].

In supervised learning, the objectives are outcome prediction, classification of observations, 

and parameter estimation [32]. Three common classes of algorithms in supervised 

learning are regularized regression, decision tree ensembles, and support vector machines 

[32]. Advantages of regularized regression include simple and automatic solutions to 

complex problems, and recognized interpretations of the relationship between variables 

and outcomes. Disadvantages include the use for groups of features that must correlate 

with one another, the arbitrary choosing of any single feature (least absolute shrinkage 

and selection operator). An example application has been the development of a model to 

predict acute myocardial infarction using proteomic and clinical data [86]. Advantages of 

decision tree ensembles include frequently being the best “off-the-shelf” algorithms for 

classification or prediction, and built-in methods for selecting features and determining the 

relative importance of variables. Disadvantages include being less useful for descriptive 
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analysis than while being more useful for predictive analysis of datasets and variables, as 

well as a proclivity for overfitting data. An example application has been predicting the risk 

of cardiovascular events [87]. Advantages of support vector machines include utilizing the 

“kernel trick” to convert linear classifiers to nonlinear classifiers, and frequently making 

extremely accurate predictions. Disadvantages include by default using nonprobabilistic 

classification, and computations in high-dimensional spaces can be challenging. An example 

application has been using metabolites in the blood to predict in-stent restenosis [88]. There 

are other simple prototypes of machine learning algorithms that do not fall neatly into these 

categories. One of the most often used is the k-nearest neighbor approach, which sidesteps 

the typical model algorithm in favor of making predictions based on the outcomes of similar 

cases [89,90]. For example, a k-nearest neighbor approach may be used to predict whether 

a patient may have a cardiovascular event, based on whether similar patients have had 

cardiovascular events. The distance between patients in multidimensional vector space is 

calculated, and those patients with the shortest distance between them are considered to be 

the nearest neighbors. This methodology is utilized in patient similarity algorithms, which 

can be used for this purpose in cardiology and oncology [91,92], and in cardio-oncology 

[93,94].

In unsupervised learning, the goals are discovery of hidden data structure, exploration of 

relationships between variables, and the tendency for features discovered by unsupervised 

learning often being available for incorporation into subsequent more explainable and 

interpretable supervised learning models [32]. Three common classes of algorithms in 

unsupervised learning are deep learning algorithms, tensor factorization, and topological 

data analysis [32]. Advantages of deep learning algorithms include the use of current 

state-of-the-art feature engineering techniques, and features are frequently then used as 

input to supervised learning models as described. Accordingly, the use of these algorithms 

is developing rapidly, with broad industry and academic interest. Disadvantages include 

computational cost to train the unsupervised algorithms, with large datasets needed to 

train the models, and interpretability of the model output can be challenging. An example 

application has been the unsupervised development of representative models predicting 

important patient characteristics using electronic health record data [95]. Advantages of 

tensor factorization include the ability to naturally incorporate both multidimensional 

and multimodal data. Disadvantages include small numbers of applications published in 

cardiovascular reports, and the factorization algorithm chosen is critical to the outcome. An 

example application has included evaluating subcategories of heart failure with preserved 

ejection fraction [96]. Advantages of topological data analysis include clustering and 

identification of variable relationships in an interpretable manner. Disadvantages include 

being less mature than other unsupervised learning methods, and the requirements for 

licensing agreements associated with frequently commercial algorithms. An example 

application has been determining subcategories of diabetes mellitus type 2 in data from 

electronic medical records [97].

4.2. Cardiac dysfunction in cancer survivors

ML has shown great promise in cardio-oncology research thus far. This is made possible 

in part by the availability of longitudinal clinical data, such as ECGs and cardiovascular 
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imaging, which significantly improves performance when compared to static single 

timepoint data. Indeed, the robustness of the available data has an effect on the nature 

and quality of the algorithm that results [98]. In one such longitudinal study, researchers 

evaluated the use of machine learning algorithms to predict the risk of cardiac dysfunction 

(Table 3). In a longitudinal retrospective study of 4309 cancer patients, echocardiographic 

data were predictive of cardiac dysfunction, with laboratory data having limited additive 

value [94]. AUC of 0.85 was obtained from echocardiographic data alone, whereas AUC of 

0.74 was obtained from laboratory data alone. Finally, the combined model incorporating 

both types of data demonstrated the best performance for diagnosing cardiac dysfunction 

(AUC 0.91). This analysis demonstrates the most robust cardio-oncology-specific risk 

estimates available in the published AI literature. After additional external validation, the 

algorithm will be made available in an online risk stratification tool.

In a subsequent study, this research group recently applied machine learning to large-

scale institutional electronic medical records to predict which patients will have adverse 

cardiac outcomes [93]. They established a large longitudinal cardio-oncology cohort (with a 

maximum follow-up of >20 years, from March 1997 to January 2019) of >4600 cancer 

patients at Cleveland Clinic who had one of five cardiac diagnoses: atrial fibrillation, 

coronary artery disease, heart failure, myocardial infarction, or stroke. The population 

as a whole was composed of 84% white Americans and 11% black Americans, with a 

median age of ~65 years. They used a topology-based K-means clustering approach to 

conduct unbiased patient–patient network analyses using data from general demographics, 

echocardiography (over 25,000), laboratory testing, and clinical factors. Hazard ratio (HR) 

and Kaplan–Meier analyses were used to identify clinically actionable variables. Cox 

regression models were used to eliminate all confounding variables. Random-split and 

time-split training-tests were used to validate the model. They identified four clinically 

significant subgroups of cancer survivors with four levels of cardiac events incidence and 

mortality. They demonstrated in this study that machine learning algorithms focused on 

analyzing similarity among patients over several years may facilitate the identification of 

cancer survivors at increased risk of cardiac dysfunction.

5. ECG for prediction and prognostication in cardio-oncology

Recent findings associating AI findings in ECGs with severe cardiac conditions represent 

a giant step forward in cardiology [99]. More precisely, using 12-lead ECGs AI algorithms 

can predict reduced left ventricular ejection fraction (LVEF <40%) and a patient’s 

predisposition to atrial fibrillation while in normal sinus rhythm (NSR) [99,100]. Deviations 

from NSR on ECG are being identified via AI technologies to automate diagnoses. AI-based 

predictive tools utilizing low-cost, accessible, and potentially remote applicable ECG data 

may become useful for screening and diagnosis in cardio-oncology. In this section, we 

describe various studies assessing the potential utility of ECG to define or predict cardiac 

pathology in the general population. We then outline how AI-ECG can be applied in cardio-

oncology, with a focus on cardiomyopathy and atrial fibrillation and looking toward the 

future.
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5.1. Cardiac pathology on ECG

This statement is supported by recent studies utilizing deep learning on 12-Lead ECG data 

in accurately estimating echocardiogram parameters representing left ventricular systolic 

dysfunction [101–103]. Further, there is also literature suggesting that deep learning applied 

to ECG alone can identify patients with no heart failure yet in risk for developing in 10 years 

(AUC of 0.76) with a similar accuracy to Framingham Heart Study’s risk calculator (AUC 

of 0.78) utilizing several clinical risk factors. Also, when AI-ECG results are combined 

with clinical risk factors, the accuracy was further increase (AUC of 0.83) confirming the 

added value of ECG in assessing cardiovascular risk [104]. Another study group determined 

whether AI-ECG could be used in a clinical decision support tool for early detection 

of cardiac dysfunction [105]. The study authors utilized a fast-paced low-cost pragmatic 

trial embedded in the electronic health record clinical workflow to generate real-world 

evidence in less than a two-year time period. They used existing and prospective real-time 

and longitudinal electronic health record data, incorporated with clinical decision support 

tools, throughout small and large hospital, academic, community, and rural practices. In 

the intervention arm, AI-ECG results were provided to 181 clinicians on 120 primary care 

teams from 45 clinics/hospitals; the control arm (standard care; 177 clinicians) did not 

receive the AI-ECG results. ECGs from >22,600 adults (n = 11,573 in the intervention 

group, n = 11,068 in the control group) without previously known left ventricular systolic 

dysfunction were obtained during routine visits. There was a greater number of subsequent 

early diagnoses of left ventricular systolic heart failure in the intervention group than the 

control group (2.1% vs. 1.6%, odds ratio (OR) 1.32, confidence interval (CI) 1.01–1.61, p = 

0.007).

In another study, the authors evaluated the evidence for using DL to analyze resting 

electrocardiograms (ECG) in order to predict cardiac dysfunction, left ventricular 

hypertrophy, and coronary heart disease [106]. A systematic review was pursued, yielding 

12 published reports on the application of DL algorithms to resting electrocardiogram 

signals. These algorithms were used for the detection of structural cardiac pathologies 

in the ambulatory setting, during stress testing, or from intracardiac/implantable devices; 

ECGs already clearly demonstrating arrhythmias were excluded. Three articles reported on 

the use of DL-ECG to detect cardiac systolic dysfunction, with an area under the curve 

(AUC) of 0.89–0.93 and a 98% accuracy. One study reported on the use of DL-ECG to 

detect cardiac hypertrophy (AUC 0.87, 87% accuracy). Six articles reported on the use of 

DL-ECG to detect ischemic heart disease and two articles reported on the use of DL-ECG to 

detect stable coronary heart disease (AUC 0.88–1.00, 83–99.9% accuracy). Algorithms for 

deep learning, particularly those based on convolutional neural networks, showed superior 

performance to rules-based and other ML algorithms. DL algorithms may provide promising 

methodologies for analyzing resting electrocardiogram signals to detect structural heart 

disease, including left ventricular dysfunction. This may have clinical utility for screening 

asymptomatic individuals and early diagnosis of symptomatic patients.

One group assessed >1 million raw 12-lead ECGs from >415,000 unique patients, paired 

with their clinical data, to predict the development of atrial fibrillation [107] (Table 4). 

Recordings were assigned to training, validation, and test sets, stratified by class, age, and 
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gender. A random forest machine learning classifier was trained to estimate the risk of 

AF development within five years for a particular recording. Results indicated the highest 

accuracy of prediction with incorporation of heart rate variability, morphology of the ECG, 

and features derived from a variety of sources, including demographics, clinical data, 

designed features, and deep representation learning (AUR = 0.91). Another group applied 

a new combination of convolutional neural networks and hidden Markov models to >360 k 

12-lead ECGs to diagnose pulmonary arterial hypertension, hypertrophic cardiomyopathy, 

cardiac amyloid, and mitral valve prolapse (AUC 0.94, 0.91, 0.86, and 0.77, respectively) 

[108]. In recent years, investigators have sought to characterize the utility of AI-ECG as a 

predictor of future developing atrial fibrillation in more than 1900 participants, compared to 

the Cohorts for Aging and Research in Genomic Epidemiology–AF (CHARGE-AF) score 

[109]. They found improved C statistics for AI-ECG model output (0.69, 95% confidence 

interval [CI] 0.66–0.72) and CHARGE-AF (0.69, 95% CI 0.66–0.71) when the two features 

were combined (0.72, 95% CI 0.69–0.75). Several other authors have reported on the use of 

AI-ECG to predict cardiac pathology (see review [78]).

Although the studies mentioned above were not specifically on patients with a history 

of cancer, they demonstrate promise for application in cancer survivors. One advantage 

of AI is specifically DL algorithm. In these algorithms, learned information and patterns 

in pre-existing AI models can be utilized via transfer learning. This can be helpful for 

customizing models for cancer survivors. These models can be used to detect and predict 

a variety of forms of cardiotoxicity. Further, these models mainly use convolutional neural 

network architecture, which is a specific type of deep learning; yet there are other types of 

deep learning such as recurrent neural networks and long-short term memory networks that 

can also be implemented in the analysis of ECGs [110–115].

5.2. Cardiomyopathy

5.2.1. Children—In 2001, one of the first studies in this area evaluated ECG changes 

in children who developed a decline in cardiac function after receiving doses of various 

anthracyclines in the order of 198 to 737 mg/m2 cumulative doxorubicin equivalents (CDEs) 

for various hematologic cancers and solid tumors [116] (Table 6). The ECGs of 16 children 

with cardiomyopathy (fractional shortening < 28%) were compared to ECGs of 31 children 

without cardiomyopathy who also had received anthracycline therapy (CDE dose range 120–

517 mg/m2). Age, body surface area, and time since anthracycline therapy were the same 

between the two groups. All ECGs were also compared to those of a second control group 

including 530 healthy children without cancer. A decrease in QRS duration was noted more 

frequently in children with cardiomyopathy compared to both control groups. In 2019, a 

study of 589 children treated with anthracyclines for various pediatric cancers demonstrated 

that a reduction of 0.6 mV in the sum of absolute QRS amplitude in the 6 limb leads (SQRS) 

and a 10 ms increase of QTc interval associated with a 17% (HR 1.174; p = 0.003) and 

10% (HR 1.098, p < 0.006) increased risk of developing cardiomyopathy (defined as LVEF 

< 50%, fractional shortening < 26%, or left ventricular end-diastolic diameter z-score > 2.5), 

compared to those who did not develop cardiomyopathy (CDE median 236 mg/m2 and range 

153–329 mg/m2 versus median 165 mg/m2 and range 92–232 mg/m2) [117]. ECG changes 

were more pronounced for those who received higher doses of anthracyclines [117]. Neither 
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of these studies in children with cardiomyopathy had yet evaluated the use of AI-ECG 

to predict cardiomyopathy. However, a recent study indicated that artificial intelligence 

algorithms trained on the ECGs of 1217 childhood cancer survivors (65% with lymphoma/

leukemia and 77% received anthracycline therapy with median dose 169 mg/m2 and range 

35–734 mg/m2) can predict the development of late-onset cardiomyopathy (defined based on 

2014 American Society for Echocardiography guidelines) compared to baseline in those at 

high risk among a test set of 244 individuals, with a sensitivity, specificity, and AUC of 76%, 

79%, and 0.87 (95% CI 0.83–0.90), respectively [118,119].

5.2.2. Adults—In 1977, a study assessed factors associated with anthracycline-induced 

cardiomyopathy (based on published clinically actionable thresholds) in 53 adult cancer 

patients treated with doxorubicin for a variety of cancers [120]. The investigators found 

that a 30% decrease in QRS amplitude in the limb leads was significantly more frequently 

noted on the ECGs of 17 individuals who developed cardiomyopathy compared to the ECGs 

of 36 individuals who did not develop cardiomyopathy despite receipt of similar doses 

of anthracycline (median 510 mg/m2, range 310–825 mg/m2 versus median 510 mg/m2, 

range 405–600 mg/m2). Subsequently, in 2009, a study revealed a 1 mV decrease in QRS 

amplitude and an approximately 15 ms increase in QTc as the two main ECG changes in 

9 of 26 patients with leukemia who received anthracycline therapy (median 429 mg/m2, 

range 240–715 mg/m2), with a statistically significant correlation between these electrical 

abnormalities and left ventricular systolic dysfunction (LVEF ≤55%) compared to baseline 

[121]. While both of these studies identified associations between changes in left ventricular 

conduction and systolic function, neither study pursued a prospective analysis nor the use of 

AI-ECG for prediction.

A recent AI study demonstrated that the 12-lead ECG can be used to identify patients in 

the general population (without a cancer history) with reduced ejection fraction with quite 

favorable test performance characteristics [100]. Since the 12-lead ECG is low-cost, widely 

available, and minimally invasive, it may serve as an ideal method to screen patients who 

remain at risk of low ejection fraction after receiving cardiotoxic chemotherapeutics. While 

it is currently unknown whether AI-ECG can be used to identify adult cancer patients 

or survivors at risk for cancer therapy-induced cardiomyopathy, this approach is currently 

being tested in the ongoing TACTIC trial (ClinicalTrials.gov Identifier: NCT03879629). The 

main objectives of this trial are to define the need, timing, and duration of cardioprotection 

with the beta-blocker carvedilol in individuals with breast cancer who are commenced on 

human epidermal growth factor receptor 2 (HER2)-targeted therapy. One of the subaims of 

the study is to assess how an AI-ECG algorithm developed to detect an LVEF <35–40% 

in a community population performs in patients on HER2-directed therapies. In order to 

accomplish this aim, patients are asked to undergo serial ECGs in addition to troponins and 

echocardiography over a two-year period. Preliminary data are supportive of the concept, 

indicating a diagnostic performance of the AI-ECG algorithm for the detection of an LVEF 

<40% that is similar to the general population. The hope is that, if confirmed, AI-ECG could 

be used as a gatekeeper to the currently recommended more costly serial imaging-based 

cardiac function studies. This aspect of cost-effectiveness is very pertinent, especially in 

times of challenging health care delivery scenarios such as viral pandemics.
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5.3. Atrial fibrillation

No studies have been reported on using AI-ECG to predict atrial fibrillation or other 

arrhythmias in cancer patients or survivors. Yet, atrial fibrillation has become a common 

cardiovascular toxicity of antineoplastic therapy, including during ibrutinib treatment for 

chronic lymphocytic leukemia (CLL), or after chest radiotherapy (which increases the 

risk of conduction abnormalities). Other contributors to atrial fibrillation in the cancer 

patients and survivors include underlying comorbidities, systemic inflammation or direct 

effect from the presence of the cancer itself, surgery, or pharmacologic cancer therapy 

[122]. The presence of AF in cancer patients and survivors confers an increased risk of 

CV complications, including a 3-fold risk of heart failure and a 5-fold risk of stroke, 

with prognostic implications [122]. AI-ECG could potentially identify cancer patients and 

survivors at high risk of atrial fibrillation and facilitate early individualized treatment 

choices or could inform shared decision-making.

5.4. Wearables and mobile devices

There has been an exponential increase in AI applications in medicine parallel to the 

technological advancements of the last decade. The integration of digitized medical data and 

electronic health records into daily living (e.g., wearables, smart phone apps) has produced 

massive data. These developments and their application hold promise for the transformation 

of medicine and are being increasingly available [123]. Recent technological advancements 

in biomedical engineering have enabled recording lead I of ECGs via smartwatches, 

conferring a tremendous opportunity for remote patient screening for detection and 

prediction of various cardiovascular risks facilitating earlier recognition and intervention. 

Moreover, recent literature shows that Lead I ECG collected via smartwatch is comparable 

to ECGs recorded via a Holter device or standard 12-Lead ECG in terms of known ECG 

characteristics including R peak location and P-wave amplitude [124–126].

Although current guidelines recommend serial echocardiography for patients who have 

received anthracyclines and other agents, clinical uptake of this practice is inconsistent, 

and many patients may not undergo surveillance due to the costs and cumbersome nature 

of screening. Therefore, the application of AI-ECG on convenient hand-held and mobile 

devices could improve screening rates without patients needing to present for in-person 

medical care. As part of the TACTIC study (Ongoing clinical trial, ClinicalTrials.gov 

Identifier: NCT03879629), ECGs from mobile devices (Kardia (AliveCor) and EKO 

device) are compared to in-clinic 12-lead ECGs and cardiac function parameters by 

echocardiography. Results will help us determine whether 12-lead ECGs, or even 1-

lead ECGs from mobile devices, can potentially serve as initial screening prior to 

echocardiography.

The idea of routine screening over time is interesting and particularly important in the 

setting of patients with current or prior treatment with cardiotoxic agents. AI-ECG has 

been shown to be effective in identifying patients at higher likelihood of low ejection 

fraction. This concept of using AI-ECG as a screening mechanism is being explicitly 

tested in the ongoing TACTIC trial (ClinicalTrials.gov Identifier: NCT03879629), which 

seeks to identify new systolic dysfunction among patients treated with chemotherapeutic 

Martinez et al. Page 12

Am Heart J Plus. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT03879629
http://ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT03879629


agents for breast cancer. In this study, we are performing serial ECG and echocardiographic 

assessment of patients and we hope that some of these relationships will be clarified. 

Ongoing retrospective analyses of changes in model output over time are also ongoing 

and will help inform perspectives on the potential use of AI-ECG for screening in cancer 

patients and survivors. We will need to determine whether AI-ECG algorithms are useful 

for identifying changes in risk over time, rather than an isolated aggregate risk that remains 

relatively constant, while still important to identify.

In the general population, the detection of arrhythmias particularly atrial fibrillation can 

be feasible and effective. This has been demonstrated by studies in which ambulatory 

automated handheld ECG-based apps can accurately monitor heart rhythm with 71% 

sensitivity and 99% specificity [127]. Wearables ECG-monitoring devices compared to 

ECG-based apps have also improved detection of atrial fibrillation, facilitating optimal 

anticoagulation. Translating the work that has been done in the general population on the 

development and validation of ECG-monitoring wearables (which depend on AI) in addition 

to AI-ECG algorithms that predict AF risk [99,127] to patients currently and previously 

treated for cancer is ongoing. Use of AI-ECG prior to treatment initiation to predict which 

of these patients will go on to develop an arrhythmia could facilitate targeted prevention and 

management strategies to improve outcomes.

6. AI in precision and translational cardio-oncology

6.1. Genomic and precision medicine using biologically relevant models

In a recent study, biologically relevant models capable of detecting drug-induced toxicity 

via phenotypic screening were developed [128]. Deep learning, high-content image analysis, 

and cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) were used 

to rapidly screen for instigators of cardiotoxicity. Deep learning was used to determine a 

single-parameter score predicting cardiotoxicity induced by a library of ~1300 screened 

bioactive compounds. Compounds with potential cardiotoxic properties in iPSC-CMs were 

identified. DNA intercalators, epidermal growth factor receptor, cyclin-dependent kinase, 

and multi-kinase inhibitors were among the compounds that demonstrated cardiotoxicity in 

iPSC-CMs. Combining deep learning and iPSC technology in this way could be a powerful 

method for developing biologically relevant models for modeling cardiotoxicities from 

cancer therapies.

Another research group recently used machine learning algorithms to develop a clinical 

and genetic risk prediction model for anthracycline cardiotoxicity in survivors of childhood 

cancer [129]. The study authors sequenced the exomes of 289 childhood cancer survivors 

who had been exposed to anthracyclines for at least three years. 183 case patients with 

decreased left ventricular ejection fraction despite low-dose doxorubicin (≤250 mg/m2) and 

106 control patients with preserved left ventricular ejection fraction despite doxorubicin 

>250 mg/m2 were chosen as extreme phenotypes in a nested case-control design. Rare/

low-frequency variants were collapsed to identify genes that were differentially enriched 

for variants between case and control patients. The expression levels of five top-ranked 

genes were determined in cardiomyocytes derived from human induced pluripotent stem 

cells, and variant enrichment was confirmed in a replication cohort. A risk prediction model 
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with genetic and clinical predictors was developed using random forest machine learning 

algorithms. Between case and control patients, 31 genes were significantly enriched for 

variants (p < 0.001). Only 42.6% of case patients and 89.6% of control patients had a 

variant in these genes (odds ratio: 0.09; 95% confidence interval: 0.04 to 0.17; p = 3.98 × 

10−15). In comparison to a clinical-only model, a risk prediction model for cardiotoxicity 

that included clinical and genetic factors had a higher prediction accuracy and a lower 

misclassification rate. In vitro inhibition of gene-related pathways (PI3KR2, ZNF827) 

protected cardiomyocytes from cardiotoxicity. The study identified cardioprotective variants 

in cardiac injury pathway genes, aided in the development of a prediction model for 

delayed anthracycline cardiotoxicity, and identified novel targets in autophagy genes for 

the development of cardioprotective drugs.

Similar AI methods may potentially be applied to the study of electrophysiological 

parameters associated with adverse cardiovascular events from cancer therapy. The use 

of iPSC-CMs in cardio-oncology investigations is growing [130,131], and these include 

electrophysiology studies in cardio-oncology [132,133]. A translational study of acquired 

prolonged QT, or long QT syndrome (LQTS), and torsades de pointes (TdP) in iPSCs-CM 

and in more than 6 million male patients from the United Kingdom Vigibase database 

investigated clinical features and underlying mechanisms of LQTS associated with androgen 

deprivation therapy (ADT) used to treat prostate cancer [132]. Particularly, enzalutamide 

(an androgen receptor antagonist) was associated with a higher rate of death compared 

to other ADT drugs used to treat prostate cancer (17% versus 8.1%, p < 0.0001). 

In this same translational study, enzalutamide was shown to prolong action potential 

durations and induced afterdepolarizations in iPSCs, via inhibition of the delayed rectifier 

potassium current and activation of the late sodium current; administration of the androgen 

dihydrotestosterone counteracted the effects of enzalutamide. It would be interesting to 

evaluate and determine the utility of applying machine learning or subset deep learning 

AI algorithms to electrophysiological changes in iPSCs in response to cancer therapies to 

predict (and ultimately prevent) adverse events in cardio-oncology.

7. Challenges and limitations

Despite early proof-of-concept publications in cardio-oncology, there is an unmet need for 

additional investigation of machine learning-based approaches in dedicated cardio-oncology 

cohorts. Prospective studies examining the impact of this technology on patient outcomes 

may shed additional light on the utility of AI utility for cardio-oncology patients. The 

widespread use of machine learning approaches is constrained by their heterogeneity 

and logistical challenges associated with their seamless integration into contemporary 

clinical practice [9]. Additionally, the validity and efficacy of such methods have not been 

established in well-designed prospective studies [39]. Certain data challenges will need to 

be overcome through open access to algorithms and auto-population of research databases 

across multiple institutions to enable algorithms to be externally validated. Algorithms 

integrated as plugins into clinical systems may aid physicians by alerting them to subtle 

changes in their data interpretation that may require additional workup in high-risk patients.
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We have discussed ECGs, echocardiograms, laboratory, and electronic health record 

data as input to algorithms. Additional publications on cardiac magnetic resonance, 

computed tomography, and nuclear imaging are also becoming available [6,29,40–42]. 

These cardio-oncology applications for patients at risk of coronary ischemia, myocarditis, 

hyperinflammatory response, and other conditions will almost certainly continue to benefit 

from ML research. Over the last decade, the use of AI applications in medicine has grown 

exponentially, particularly for remote monitoring and mobile and connected health, such as 

using smart devices (e.g. smartwatches) or smartphone apps to diagnose or manage various 

cardiac diseases [6,7]. Along with cardiomyopathy, the use of smartwatches to predict 

other cardiovascular conditions such as atrial fibrillation is being studied and may become 

more prevalent in the future [6]. This has enormous potential for cardio-oncology patient 

monitoring.

Globally, significant advancements in cancer diagnosis and treatment have resulted in a 

continuous increase in the number of survivors. The application of machine learning to 

predict cardiac dysfunction (cardiomyopathy, left ventricular systolic dysfunction) in cancer 

survivors is of particular interest in cardio-oncology. Using machine learning to predict 

cardiac dysfunction in cancer survivors was more predictive than clinical laboratory data 

alone. However, combining both types of data resulted in the most precise prediction. In 

cardio-oncology, recent research indicates that machine learning can be used to analyze 

ECGs to detect subclinical cardiac dysfunction prior to major echocardiographic changes 

in patients receiving chemotherapy. Thus, machine learning algorithms have been used to 

detect subtle differences in cardiac mechanics in cancer survivors prior to the onset of overt 

cardiac dysfunction.

Additionally, efforts to apply AI in clinical practice must be directed toward overcoming 

rather than propagating health inequities and bias [43]. This is especially true in cardiology, 

oncology, and cardio-oncology, all of which are fields in which African Americans, for 

example, face a disproportionate risk of poor outcomes when compared to their Caucasian 

counterparts. For use in cardio-oncology, AI algorithms will need to be tested and validated 

in diverse populations, to ensure their appropriate and equitable use. Great care must be 

taken to ensure that AI models are generalizable to diverse populations, and that their 

implementation does not reflect or perpetuate healthcare disparities. The AI-ECG algorithms 

we have assessed in cardio-oncology so far show great promise for the detection of low 

ejection fraction across a range of ethnic and racial subgroups [134]. However, we must 

remain cognizant of the risk of AI models to reflect, perpetuate, and even promote bias in 

medicine.

Another challenge in developing and implementing AI-based clinical decision support 

tools on ECG is the infrastructural unpreparedness. The majority of AI-ECG models rely 

on using raw digital time-voltage ECG data. These raw data are typically not available 

through electronic health records and are typically underutilized/untouched in over 99% 

of institutions. Accessing these raw ECG data and integrating these data with clinical 

information requires technical knowledge and infrastructural investment. Further, in many 

cases, these raw ECG data are proprietary to vendors, making it more challenging to access 

ECG data for research purposes. These are not limitations specific to cancer survivors. 
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However, studies involving cancer survivors often have small sample sizes. This compounds 

the limitations because large sample sizes are needed for training deep learning models.

We recognize that in general individual AI models can vary greatly depending on the 

architecture, data used to train, training methodology, and so on. Consequently, each model 

should be evaluated separately for generalizability and absence of propagation of bias. 

Additional challenges of AI-ECG include distinguishing signal data from noise (especially 

in wearables), recognizing and avoiding false positives or negatives, and optimizing the 

implementation of technologies to improve morbidity and mortality.

8. Conclusion

These studies add to the body of evidence demonstrating the utility of machine learning 

in predicting cardiac dysfunction in cancer survivors. As a result, AI has the potential 

to make a significant difference in predicting cardiac dysfunction in cancer survivors. In 

particular, over the course of half a century, ECG parameters have been evaluated and 

found to associate with (and perhaps predict) systolic dysfunction. With the dawn of the 

digital era, it will be prudent to advance our application of AI-ECG in cardio-oncology. 

Future studies should assess the ability of AI-ECG to predict the development of different 

cardiomyopathy phenotypes, AF, and other forms of cardiovascular toxicities in both 

children and adults, creating greater opportunity to pursue prophylactic and preventive 

cardioprotective measures, while facilitating cancer cure or palliation. One could imagine 

using AI-ECG to create an individualized profile of cardiotoxicity risk that could be used 

to tailor treatment choices and cardiovascular monitoring. Such applications are precocious 

at this point, but we anticipate that, with time, we will be able to leverage AI technologies 

to personalize care. This application of AI-ECG in cardio-oncology may be helpful to 

transform care in small and large hospital, academic, community, and rural practices, 

especially utilizing fast-paced low-cost pragmatic trial embedded in the electronic health 

records. Such incorporation of AI-ECG into cardio-oncology and other precision medicine 

programs may be beneficial to predict, preempt, and optimize cardiovascular health.

We did not obtain ethical/IRB approval for this literature review.
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Fig. 1. 
The use of convolutional neural networks, a deep learning approach as a form of artificial 

intelligence, can be used to computationally predict cardiac dysfunction or atrial fibrillation 

in in silico experiments. Traditional multivariate discrimination approaches in statistics 

typically use known prespecified physiological parameters for analyses. In comparison, 

artificial intelligence methods can uncover and use subclinical unknown physiological 

parameters reflected in subtle changes on the ECG for improved prediction, early diagnosis, 

and prognosis of cardiac dysfunction and atrial fibrillation.
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Table 2

Cardiovascular toxicities associated with targeted, endocrine, immune, and cell therapies.

Cancer type Class Chemotherapeutic agents Cardiovascular effects

Human epidermal growth 
factor receptor 2 (HER2)-
positive breast cancer

Monoclonal antibodies Trastuzumab Synergistic toxic effects on cardiomyocytes with 
concomitant use of HER2 monoclonal antibodies 
and anthracyclines [44].

Chronic myelogenous 
leukemia and acute 
lymphocytic leukemia

Tyrosine kinase 
inhibitors (TKIs)

Bosutinib, dasatinib, ponatinib, 
and nilotinib

QT prolongation, heart failure, myocardial 
infarction, and potentially fatal thrombosis [45].

B-cell malignancies (chronic 
lymphocytic lymphoma and 
indolent lymphomas)

Bruton tyrosine kinase 
inhibitors

Ibrutinib Increase risk of atrial fibrillation or hypertension 
[45].

Renal cell carcinoma Angiogenesis 
inhibitors

Sunitinib, axitinib, sorafenib, 
and pazopanib

Hypertension, thrombosis, QT interval 
prolongation, or left ventricular dysfunction [46–
48].

Metastatic breast cancer Cyclin-dependent 
kinase inhibitors

Palbociclib, ribociclib, 
abemaciclib

Ribociclib has been shown to prolong the QTc 
interval [50].

Multiple myeloma Proteasome inhibitors Carfilzomib Heart failure, systemic and pulmonary 
hypertension, arrhythmias, and acute coronary 
syndrome [51,52].

Hematological malignancies 
(lymphomas and multiple 
myeloma)

Histone deacetylase 
inhibitors

Vorinostat, romidepsin, and 
panobinostat

Cardiac ischemia, arrhythmias, and conduction 
abnormalities [53–56].

Breast cancers Aromatase inhibitors Anastrozole, letrozole, 
exemestane, and tamoxifen, 
an estrogen receptor selective 
modulator

May increase the risk of ischemic heart disease 
[57–60].

Breast cancer, head and neck, 
and lung cancers

Immune checkpoint 
inhibitors (monoclonal 
antibodies)

Anti-PD-1 and anti-PD-L1 Myocarditis [61].

Recalcitrant hematological 
cancers

Cellular therapy Chimeric antigen receptor 
(CAR)-T cell therapy

Cardiovascular effects related to (CAR)-T cell 
therapy is primarily a result of cytokine release 
syndrome (CRS). Cardiovascular effects include 
sinus tachycardia, left ventricular systolic 
dysfunction, and hypotension [64].

Multiple myeloma Stem cell 
transplantation

- Increased risk for cardiovascular toxicity 
including cardiomyopathy [69].

PD-1: Programmed death receptor-1; PD-L1: Programmed death receptor 1 ligand.
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Table 4

Prediction of atrial fibrillation in AI-ECG studies.

Number of patients Predicted effect size for atrial fibrillation History of 
cancer 
YES/NO

Reference

180,922 Main analysis: AUC of 0.87 (95% CI 0.86–0.88) Secondary analysis: AUC of 0.90 
(95% CI 0.90–0.91)

NO [99]

415,389 AUROC of 0.909 (95% CI 0.903–0.914) NO [107]

1936 Concordance statistic (C statistic) of 0.72 (95% CI 0.69–0.75) for combined 
AI-ECG and clinical score

NO [109]

Total: 12,186 ECG 
recordings Training 
dataset: 8528 ECG 
recordings Testing set: 
3658 ECG recordings

Overall F1 accuracy of 0.864 F1 accuracy 0.919 for normal rhythms F1 accuracy 
0.858 for atrial fibrillation rhythms F1 accuracy 0.816 for other rhythms

NO [112]

508 Sensitivity of 93.7% (95% CI 89.8% – 96.4%) Specificity of 98.2% (95% CI 
95.8% – 99.4%) Accuracy of 96.1% (95% CI 94.0% – 97.5%)

NO [126]

AI-ECG: artificial intelligence-enhanced electrocardiography; AUC: area under the curve; AUROC: area under the receiver operating characteristic 
curve; CI: confidence interval; F1: F-Score/F-Measure.
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Table 5

Machine learning artificial intelligence techniques used in ECG studies.

Cardiovascular pathology Artificial intelligence techniques Reference

N/A (Machine learning (ML)/Deep learning 
(DL) review)

ML: decision tree, support vector machine (SVM), supervised ML, unsupervised 
ML, clustering, segmentation, reinforcement learning DL: neural network

[70]

N/A (Artificial intelligence (AI) in cardiac 
imaging review)

Supervised ML: regression analysis, SVM, random forest (RF), neural network, 
convoluted neural network (CNN), DL Unsupervised ML: principal component 
analysis, hierarchical clustering, partitioning algorithm, model-based clustering, 
grid-based algorithm, density-based spatial clustering of applications with noise

[71]

N/A (Challenges of ML/DL models) ML/DL algorithms [75]

N/A (ML review) ML algorithms [98]

Coronary artery disease Atrial fibrillation 
(AF) Heart failure (HF) Stroke Myocardial 
infarction De novo cancer therapy–related 
cardiac dysfunction (CTRCD)

ML: K-nearest neighbor (kNN), logistic regression (LR), SVM, RF, gradient tree 
boosting

[94]

CTRCD ML, topology-based K-means clustering, hierarchical clustering [93]

AF AI-enabled electrocardiograph (ECG), CNN with Keras framework with a 
Tensorflow (Google; Mountain View, CA, USA) backend

[99]

Asymptomatic left ventricular dysfunction 
(ALVD)

AI-enabled ECG, CNN with Keras framework with a Tensorflow (Google; 
Mountain View, CA, USA) backend

[100]

Left ventricular systolic dysfunction (LVSD), 
ejection fraction (EF) ≤35%

AI-augmented ECG, CNN with Keras framework with a Tensorflow (Google; 
Mountain View, CA, USA) backend

[101]

LVSD, EF ≤40% AI-augmented ECG [102]

LVSD, EF ≤35% LVSD, EF <50% AI-enabled ECG, CNN with Keras framework with a Tensorflow (Google; 
Mountain View, CA, USA) backend

[103]

HF ECG-AI model, CNN, Light Gradient Boosting (LGBoost) [104]

Low EF ≤50% AI-enabled ECG, neural network [105]

LV systolic dysfunction LV hypertrophy 
Ischemic heart disease

DL, CNN, deep neural network, RF, LR, SVM, classification and regression tree, 
multilayer perceptron (MLP), recurrent neural network (RNN), long-short term 
memory (LSTM), bilateral long-short term memory (BLSTM), multiple feature 
branch convolutional bidirectional recurrent (MFB-CBRNN), neural network, 
ensemble neural network

[106]

AF Deep representation learning, RF classifier [107]

Pulmonary arterial hypertension 
Hypertrophic cardiomyopathy Cardiac 
amyloid Mitral valve prolapse

ML, combination of CNN and hidden Markov model [108]

AF AI-enabled ECG, CNN with Keras framework with a Tensorflow (Google; 
Mountain View, CA, USA) backend

[109]

Heart rhythm LSTM recurrence network model with focal loss [110]

N/A (ECG identification) Bidirectional (LSTM)-based deep RNN [111]

AF 21-layer 1D convolutional RNN (RhythmNet) [112]

Premature ventricular contraction (PVC) RNN with LSTM [113]

N/A (Cardiac monitoring on wearable 
devices)

Algorithm consisting of multiple LSTM recurrent neural networks and wavelet 
transform

[114]

Atrial premature contraction (APC) Paced 
beat (PB) Premature ventricular contraction 
(PVC) Right bundle branch block (RBBB) 
Ventricular bigeminy (VB) Ventricular 
couplets (VCs) Ventricular tachycardia (VT)

LSTM with a second stage model including MLP, SVM and LR [115]

Cardiomyopathy DL, model consisting of a 12-layer 1D CNN and 2-layer dense neural network [118]

Cardiomyopathy DL, XGBoost, descriptive statistics, sample entropy, probabilistic symbolic 
pattern recognition, Fourier transformation, discrete wavelet transformation, 
continuous wavelet transformation, CNN

[119]
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Cardiovascular pathology Artificial intelligence techniques Reference

AF Deep neural network [126]

Cardiotoxicity DL algorithms [128]

Anthracycline cardiotoxicity ML, RF classifier [129]

Low EF ≤35% CNN algorithms [134]

AF = atrial fibrillation; AI = artificial intelligence; CNN = convolutional neural network; CTRCD = cancer therapy–related cardiac dysfunction; 
DL = deep learning; ECG = electrocardiograph; EF = ejection fraction; HF = heart failure; kNN = k-nearest neighbor; LR = logistic regression; 
LSTM = long-short term memory; LV = left ventricular; LVSD = left ventricular systolic dysfunction; MACE = major adverse cardiac events; 
ML = machine learning; MLP = multilayer perceptron; RF = random forest; RNN = recurrent neural network; SVM = support vector machine; 
XGBoost = extreme gradient boosting.
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Table 6

Potential utility of ECG parameters to predict cardiomyopathy in children and adults.

QRS amplitude QRS duration QT/QTc interval

Cardiomyopathy in children Decrease [117] Decrease [116,117] Increase [117]

Cardiomyopathy in adults Decrease [120,121] - Increase [121]
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