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SUMMARY
Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs),
but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using
preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary
humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies
from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells:
broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high ti-
ters of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the
directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope
specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity.
Future vaccines may need to overcome—or could, alternatively, leverage—the effects of circulating primary
antibodies on subsequent naive B cell recruitment.
INTRODUCTION

The generation of protective humoral immunity in response to

antigen is a key feature of adaptive immunity. On initial antigen

exposure, a clonally diverse pool of antigen-specific B cells is re-

cruited to form germinal centers (GCs). Here, B cells undergo af-

finity maturation prior to taking up functions as antibody-

secreting plasma cells (PCs) andmemory B cells (MBCs) (Victora

and Nussenzweig, 2022). Subsequent encounters with similar

antigens induce increasingly potent secondary responses, in

part due to experienced MBCs either rapidly differentiating into

short-lived plasmablasts (PBs) or reengaging into secondary

GCs (Gray, 1993; Kurosaki et al., 2015; Mesin et al., 2020; Weisel

and Shlomchik, 2017). These anamnestic responses are

fundamental to the efficacy of many vaccines, whereby the

administration of one or successive doses of antigen is used to

elicit protective serum antibody titers (Cyster and Allen, 2019;
1856 Immunity 55, 1856–1871, October 11, 2022 ª 2022 The Author(
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Pollard and Bijker, 2021). Consequently, the rules governing

primary and secondary B cell responses—particularly the

engagement of specific B cell populations—are of great interest

to vaccine development.

The quality and diversity of the B cell clones that seed the initial

GC are fundamental to a successful response, as recruiting cells

that recognize diverse epitopes increases the likelihood of

neutralizing pathogens (Scheid et al., 2009). Although early

GCs tend to be diverse, the clones recruited to GCs are generally

only a subset of the antigen-specific B cells in the total repertoire

(Tas et al., 2016; Victora and Nussenzweig, 2022). Bias in B cell

recruitment toward immunodominant epitopes could omit

lesser-represented or lower-affinity clones, limiting, in turn, the

opportunities to develop antibodies against other epitopes

(Robbiani et al., 2020).

The recruitment of antigen-specific B cells to nascent GCs is in

part governed by T cell help during the initial stages of the
s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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response; therefore, the ability of individual B cell clones to cap-

ture antigen and present their respective peptides to T cells is

crucial (Schwickert et al., 2011; Yeh et al., 2018). The recognition

and binding of B cells to an antigen is governed by a combination

of physical properties, including epitope conformation, accessi-

bility, and valency, as well as likeness to self-antigen (Bachmann

et al., 1993; Batista and Neuberger, 1998; Kato et al., 2020;

Kringelum et al., 2013). Many of these properties have been

exploited to modulate the immunogenicity of vaccines and bio-

logical therapeutics (Bachmann and Jennings, 2010).

However, the humoral response against an antigen is not

solely a function of these properties, as commensurate chal-

lenges can elicit varied responses (Laserson et al., 2014).

Although genetic determinants may contribute (Briney et al.,

2019), so does the immunological memory of past exposures

(Auladell et al., 2022; Sallusto et al., 2010). The passive adminis-

tration of antibodies has long been observed to variably enhance

or inhibit downstream epitope-specific responses (Finkelstein

and Uhr, 1964; Henry and Jerne, 1968; Heyman, 2000; Smith,

1909), and the term ‘‘original antigenic sin’’ was coined to

describe how initial humoral responses to a pathogen can shape

the outcome of subsequent encounters (Davenport et al., 1953;

Francis, 1960; Zhang et al., 2019). In a salient recent example, a

substantial part of the world population has been exposed to the

SARS-CoV-2 virus through infection, vaccination, or both (Dong

et al., 2020), and whether that exposure was via vaccination or

natural infection shapes the response to subsequent infection

(Röltgen et al., 2022).

The development of secondary GCs after subsequent expo-

sures is primarily ascribed to naive B cell recruitment, as the

GC participation of MBCs appears relatively limited and

restricted to certain MBC subpopulations (Akkaya et al., 2020;

Mesin et al., 2020; Pape and Jenkins, 2018b; Wong et al.,

2020; Zabel et al., 2014). Conversely, however, antigen-specific

serum, when transferred into a naive recipient, can block

cognate naive B cell entry into GCs (Pape et al., 2011), and

some MBCs do undergo further modification in GCs during sec-

ondary responses (McHeyzer-Williams et al., 2015). Clarifying

secondary GC recruitment is of broad interest for rational

vaccine design but may be particularly vital for HIV. Broadly

neutralizing antibodies (bnAbs) against HIV, which bind

conserved epitopes on the HIV envelope protein (Env), are cen-

tral to current HIV vaccine research (Burton and Hangartner,

2016; Haynes and Mascola, 2017). To elicit mature bnAbs, a

stepwise vaccine regimen to drive multiple rounds of affinity

maturation against progressively more native-like immunogens

has been proposed (Andrabi et al., 2018); the seeding of second-

ary GCs is, therefore, critical.

Here, we examined the recruitment of naive B cells to second-

ary GCs. Using preclinical SARS-CoV and HIV bnAb mouse

models, we found that prior exposure established an epitope-

specific affinity floor, mediated by circulating antibodies, direct-

ing the recruitment of specific cognate naive B cell populations.

This is not necessarily deleterious: a broad polyclonal serum

response to a SARS-CoV antigen favored the responses of

underrepresented clones and enhanced the recruitment of

higher-affinity clones during a secondary response; by contrast,

however, epitope-specific high-affinity antibodies elicited by HIV

bnAb priming immunogens attenuated epitope-specific naive B
cell responses in a concentration-dependent fashion. Our find-

ings on the circumstances under which peripheral antibodies

inhibit or enhance naive B cell entry into GCs provide a concep-

tual framework for vaccine design.

RESULTS

Primary humoral responses could impair the secondary
recruitment of naive B cells
Current immunization strategies to elicit bnAbs to HIV rely on

activating low-frequency precursors and shepherding them

through sequential immunization (Burton and Hangartner,

2016; Jardine et al., 2013; Klein et al., 2013; Stamatatos et al.,

2017; Steichenet al., 2019). We used a BG18 germline heavy-

chain (HC) knockin (KI) precursor model (BG18gH) to investigate

whether prior exposure to homologous antigen influenced naive

bnAb precursor B cell participation in secondary responses.

BG18 is a potent bnAb that targets an epitope comprising

the conserved co-receptor sequence, GDIR, and a glycan at

Asn332 (N332) (Barnes et al., 2018). Its germline-reverted HC

was inserted into the murine IgH locus to create the BG18gH

mouse model in which 30%–32% of the B cell receptors

(BCRs) consist of KI HCs paired with native murine light chains

(LCs). BG18gH was used to validate the engineered germline-tar-

geting (GT) HIV Env-trimer N332-GT2 (geomean KD of naive

BG18gH B cells: 582 nM; geomean KD of sequenced human

precursors: 519 nM) (Lin et al., 2018; Steichen et al., 2019).

To investigate the effect of primary antigen exposures on

secondary responses, naive CD45.2+ BG18gH cells were adop-

tively transferred into CD45.1+ WT recipients to establish phys-

iological precursor numbers (�10–15 BG18gH B cells per 106

total mouse B cells). Recipients were either naive (unprimed)

or previously immunized with N332-GT2 nanoparticle (NP)

(primed); both groups were challenged with N332-GT2 NP

1 day after the transfer (Figure 1A). GC responses and the pro-

portion of CD45.2+ BG18gH GC B cells were evaluated 10 days

post-immunization (dpi) (Figure 1B). Although the magnitudes

of the GC responses were similar between both groups

(mean splenic B cells: 5.2% in primed and 6.4% in unprimed),

the participation of naive BG18gH cells in the GC was reduced

in primed hosts (mean 0.02% BG18gH of the total GC B popu-

lation in primed; 6.8% in unprimed) (Figures 1C and 1D). Addi-

tionally, BG18gH B cells were similarly restricted during second-

ary responses when subjected to two consecutive homologous

immunizations (prime and boost) (Figures S1A–S1C). The

reduction in BG18gH responses could indicate that the primary

immune response to N332-GT2 NP limited the participation of

these precursors.

To determine whether prior humoral response affected the

secondary response, we investigated whether naive BG18gH B

cells were similarly restricted from GCs in mice unable to mount

an effective humoral response against N332-GT2 NP. We used

congenic MD4 mice in which humoral responses to antigens

other than HEL and its homologs were severely compromised,

as almost all mature B cells express a transgenic hen egg lyso-

zyme (HEL)-specific BCR—although incomplete allelic exclusion

in thismodel allows for a small number ofWTBCRs (Mason et al.,

1992). As both the BG18gH and MD4 lines are CD45.2+, BG18gH

was crossed with an eGFP-expressing line to produce
Immunity 55, 1856–1871, October 11, 2022 1857
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Figure 1. Previously elicited high-affinity antibodies restrict naive BG18gH B cell responses

(A) Schematic of evaluation of naive BH18gH B cell responses to immunization by N332-GT2 NP in primed and unprimed recipients.

(B) Representative FACSplots of gating strategy to quantify FAS+CD38�GCBcells andCD45.2+ BG18gHGCBcell responses versus endogenousCD45.1+GCB

cell responses in unprimed (left) and primed (right) recipients.

(C and D) (C) GC cells as the percentage of total B cells and (D) CD45.2+ BG18gH cells as the percentage of total GC B cells at experiment day 52 (10 days post-

immunization [dpi]) in previously unprimed (gray) or primed (red) recipients.

(E) Experimental design to evaluate naive BH18gH B cell responses in primed and unprimed MD4 recipients.

(F and G) (F) GC cells as the percentage of total B cells and (G) GFP+ BG18gH cells as the percentage of total GC B cells at experiment day 52 (10 dpi) in previously

unprimed (gray) or primed (red) MD4 BG18gH recipients.

(H) N332-GT2 trimer binding serum IgG of unprimed (gray) and primed (red) MD4 BG18gH recipients at experiment day 42 (prior to immunization) and experiment

day 52 (10 dpi). AUC = area under the ELISA binding curve.

(I) Schematic of evaluation of the effect of serum IgG from previously immunized mice on naive BG18gH recipients consisting of (1) isolation of serum from N332-

GT2 immunized cohort and (2) administration of purified IgG to the naive BG18gH recipients.

(J and K) (J) GC cells as the percentage of total B cells and (K) CD45.2+ BG18gH cells as the percentage of total GC B cells at 10 dpi in BG18gH recipients receiving

200 mg of IgG isolated from 7- and 28-dpi serum.

(L andM) (L) GC cells as the percentage of total B cells and (M) CD45.2+ BG18gH cells as the percentage of total GCB cells at 10 dpi in BG18gH recipients receiving

escalating doses of IgG isolated from 28-dpi serum.

p values were calculated by unpaired Student’s t test (C, D, F, and G) or ordinary one-way ANOVA with Dunnett’s multiple comparisons (K and M) (*p < 0.05;

**p < 0.01; ****p < 0.0001; ns, not significant). Figures represent data from one of at least two experiments with 3–5 mice per condition, with data presented as

mean ± SD.

See also Figures S1–S3.
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BG18gH-GFP. As above, a cohort of MD4 mice was primed with

N332-GT2 NP, whereas another was left unprimed. Both MD4

cohorts were then adoptively transferred with naive BG18gH-

GFP cells prior to immunization with N332-GT2 NP (Figures 1E

and S2). Naive BG18gH-GFP cells were detected in GCs in

both the primed (39.6% of the total GC B cells) and unprimed

(21.7%) MD4 mice (Figures 1F and 1G), in contrast to the WT
1858 Immunity 55, 1856–1871, October 11, 2022
BG18gH recipients above. The increase in BG18gH-GFP GC B

cells in primed mice may have been due to low-affinity IgM eli-

cited during the primary response, which could allow for

improved immunogen sequestration and processing through im-

mune complex (IC) formation (Heesters et al., 2014). Neither

MD4 cohort had detectable N332-GT2-specific IgG titers on

day 42, but both groups generated strong N332-GT2-specific
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Figure 2. Naive CR3022Ma but not CR3022Gl B cell responses are enhanced in primed mice
(A) (Top) Nested pie chart of CR3022Gl HC (light green), murine HC (dark gray), CR3022Gl LC (light purple), and murine LC (light gray) sequences amplified from

single-cell sorted B220+ naive B cells from two CR3022GL mice. n = sequence pairs amplified. (Bottom) As top, for CR3022Ma.

(legend continued on next page)
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IgG titers after the cell transfer and boost (Figure 1H). The

contrast between the results of secondary immunization in WT

and MD4 mice suggested that specific IgG responses contrib-

uted to BG18gH restriction in WT.

To determine whether antibodies generated during primary

immunization impair naive BG18gH B cell responses, we investi-

gated the effects of immunoglobulin isolated fromprimedmice in

unprimed adoptive transfer recipients. A cohort of WT mice was

adoptively transferred with BG18gH cells and immunized with

N332-GT2 NP a day later; serum was then collected on 7 and

28 dpi. Total IgG was purified using protein-G and administered

to unprimed CD45.1+ mice (intravenously [i.v.], 200 mg/mouse)

adoptively transferred with naive BG18gH B cells the previous

day. Approximately 4–6 h after receiving IgG, the CD45.1+

mice were immunized with N332-GT2 NP (Figure 1I). At 10 dpi,

GC formation was similar between mice that received no serum

and mice that received day-7 IgG; whereas there was a slight

increase in GC size associated with day-28 IgG (Figure 1J).

Meanwhile, there was a minor increase in CD45.2+ BG18gH in

GCs after the administration of day-7 IgG (mean 17.0% of GC

B cells) over WT (12.2%), but CD45.2+ responses were strongly

attenuated in mice receiving IgG isolated from day-28 serum

(1.0%) (Figure 1K). As the affinity of BG18gH B cells rapidly in-

creases over time (Steichenet al., 2019), the curtailment by late

time point IgG suggested that the affinity of the circulating

antibodies could play a role.

To distinguish the effects of affinity and abundance, BG18gH

recipients were given incremental doses of the day-28 IgG iso-

lates prior to immunization with N332-GT2 NP. N332-GT2-spe-

cific IgG serum titers prior to immunization corresponded closely

with the dose of purified IgG received (Figure S3). In terms of GC

size, we found an inflection point: up to 25 mg, an increase in anti-

body dose was associated with an increase in GC size; at higher

concentrations, however, IgG was increasingly inhibitory (Fig-

ure 1L). By contrast, the BG18gH GC responses diminished as

mice received higher doses of purified IgG and were almost

completely abrogated at the highest dose (0.7% CD45.2+ GC

B cells at 100 mg IgG) (Figures 1L and 1M). Low affinities or low

concentrations of circulating antibodies may have, therefore,

enhanced the overall recruitment of B cells to GCs, whereas

certain specific naive B cells may have been restricted at higher

affinities and concentrations.
(B) Representative FACS plot of binding of naive CR3022Gl and CR3022Ma and

(C) Schematic of evaluation of the effect of previous exposures on naive CR3022

(D) Representative FACS plots of gating strategy to quantify GC B cell respon

CR3022Gl/Ma) GC B cells of the total GC B cell population.

(E) (Left) GC cells as the percentage of total B cells and (left-center) CR3022Gl GC

unprimed (gray) or primed (red) CR3022Gl recipients. (Right-center) GC cells as the

of total B cells at experiment day 40 (10 dpi) in previously unprimed (gray) or prim

(F) Nested pie chart of CC12.1 HC (teal), murine HC (dark gray), CC12.1 LC (pink)

naive B cells from 2 CC12.1 mice. Center number indicates sequence pairs amp

(G) Representative FACS plot of binding of naive CC12.1 and WT B cells to SAR

(H) Schematic of experimental evaluation of the effects of previous exposures on

(I) Representative FACS plots of gating strategy to quantify GC B cell responses a

GC B cells of the total GC B cell population.

(J) (Left) GC cells as the percentage of total B cells and (right) CC12.1 GC B cel

unprimed (gray) or primed (red) CC12.1 recipients.

p values were calculated by unpaired Student’s t test (**p < 0.01; ***p < 0.001; ns,

condition, with data presented as mean ± SD.

See also Figure S4.
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Antibodies elicited during primary responses could, by
contrast, enhance the recruitment of specific naive
B cells
We next sought to confirm these initial findings on naive B cell

recruitment and GC size in an alternate preclinical vaccination

model. To this end, BCRKImicewere generated based on a pre-

viously described broadly neutralizing SARS-CoV antibody,

CR3022, and its inferred germline sequence (ter Meulen et al.,

2006; Yuan et al., 2020). Briefly, using CRISPR-Cas9 as previ-

ously described (Lin et al., 2018; Wang et al., 2021a),

mature, high-affinity CR3022 immunoglobulin (CR3022Ma) HC

and variable LC regions, as well as germline-reverted, low-affin-

ity CR3022 HC and LC (CR3022Gl), were inserted into the

respective native loci. The resulting mouse lines expressed

either CR3022Ma HC and LC or CR3022Gl HC and LC. B cells

isolated from the peripheral blood of heterozygous HC+/�LC+/�

CR3022Gl and CR3022Ma animals expressed KI HC and LC

almost exclusively (Figure 2A). These cells displayed high bind-

ing to SARS-CoV-1 RBD probes, indicating the expression of

functional BCRs specific to SARS-CoV RBD (Figure 2B).

To determine whether antibody raised against SARS-CoV-1

RBD influenced the recruitment of naive KI B cells during sec-

ondary challenges, naive CD45.2+ CR3022Gl or CR3022Ma B

cells were adoptively transferred into either WT CD45.1+ hosts

(unprimed) or CD45.1+ hosts previously immunized (primed)

with trimeric SARS-CoV-1 RBD (as described in Hauser et al.,

2022) (Figure 2C). After receiving CR3022 B cells, the recipients

were (re-)immunized with SARS-CoV-1 RBD trimer, after which

GC responses and CD45.2+ CR3022 GC B cells were evaluated

at 10 dpi (Figure 2D). Both high and low-affinity CR3022-bearing

KI B cells participated in GCs in unprimed recipients (mean 6.1%

and 3.2% of the total GC B for CR3022Gl and CR3022Ma,

respectively) (Figure 2E). Priming produced a significant,

�3-fold increase in the magnitude of GCs, with total GC B pop-

ulations averaging 1.3% (unprimed) versus 4.7% (primed) in low-

affinity CR3022Gl B cell recipients and 1.1% (unprimed) versus

5.1% (primed) in high-affinity CR3022Ma B cell recipients (Fig-

ure 2E). However, although we observed a minor increase in

the number of low-affinity CR3022Gl GC B cells in primed recip-

ients (mean 0.27% of the total B cells in primed versus 0.06% in

unprimed), the proportion of high-affinity CR3022Ma GC B cells

wasmore than fifty times higher in primed recipients (mean 2.0%
WT B cells to SARS-CoV-1 RBD probes.

Gl and CR3022Ma B cell responses.

ses as the percentage of total B cells and the percentage of CD45.2+ (here

B cells as percentage of total B cells at experiment day 40 (10 dpi) in previously

percentage of total B cells and (right) CR3022MaGCBcells as the percentage

ed (red) CR3022Ma recipients.

, and murine LC (light gray) sequences amplified from single-cell sorted B220+

lified.

S-CoV-2 RBD probes.

naive CC12.1 B cell responses in primed and unprimed recipients.

s the percentage of total B cells and the percentage of CD45.2+ (here CC12.1)

ls as the percentage of total B cells at experiment day 37 (7 dpi) in previously

not significant). Figures represent data from one experiment with 4–5 mice per
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of total B cells) than in unprimed recipients (0.03%) (Figure 2E).

Rather than abrogating the recruitment to GCs, prior immuniza-

tion enhanced the recruitment of high-affinity, but not low-affin-

ity, precursors. Specific IgG titers were low immediately prior to

boosting but increased in both groups of recipients after

(Figure S4). We also generated a KI model for the mature

SARS-CoV-2 antibody CC12.1 and used it to repeat these ex-

periments (Figures 2F and 2G) (Rogers et al., 2020). We found

a similar increase in CC12.1 GC B cells after RBD boost

(Figures 2H–2J). These results and the differential responses to

early and late N332-GT2 IgG observed above suggest that the

affinities of both the circulating antibodies and the naive B cell

population affect the seeding of secondary GCs.

RBD responses were multi-epitope, whereas N332-GT2
responses were highly epitope focused
The differential effects on naive B cell in previously primed

SARS-CoV and BG18gHmodels led us to further dissect their pri-

mary IgG responses. First, we investigated serum antibody

generated against natural SARS-CoV-2 infection in human do-

nors by negative stain electron microscopy polyclonal mapping

(nsEMPEM). SARS-CoV-2 infection elicited a range of primarily

RBD and N-terminal domain (NTD)-directed antibodies, target-

ing diverse epitopes within these domains (Figure 3A). Addition-

ally, antibodies from the serum of non-human primates (NHPs)

immunized with NVX-CoV2373, a SARS-CoV-2 subunit vaccine

using stabilized spike protein trimers (Dunkle et al., 2022),

comparably targeted diverse NTD andRBD epitopes (Figure 3B).

This is in line with the known diversity of convalescent and vac-

cine-induced SARS-CoV-2 antibodies (Ju et al., 2020; Wang

et al., 2021b; Yuan et al., 2021).

Responses to HIV GT antigens, such as N332-GT2, are

intended to be highly epitope focused to recruit rare bnAb pre-

cursors (Burton and Hangartner, 2016; Jardine et al., 2013; Klein

et al., 2013; Stamatatos et al., 2017; Steichen et al., 2019). In

N332-GT2-immunized WT mice and WT mice receiving

BG18gH B cells (Figure 3C), both endogenous murine B cells

and BG18gH B cells formed high titers of antibodies against the

N332-GT2 trimer (Figure 3D). Although the BG18gH model

carries a diverse murine LC repertoire, many of these cells

reach sub-nanomolar affinities against N332-GT2 within weeks

following primary immunization (Steichen et al., 2019). This

was illustrated by single particle electron microscopy (EM) anal-

ysis of murine polyclonal serum antibodies (Figure S5). We saw

predominant binding against the BG18 epitope on N332-GT2

at both 14 and 42 dpi in the mice receiving BG18gH B cells, as

well as on day 42 in theWT sera, in addition to some endogenous

base-directed responses (Figure 3E). This elicitation of a narrow

epitope-specific subset of the B cell repertoire results in high-af-

finity responses to a single site, in contrast to the multi-site

recognition induced by SARS-CoV-2 RBD.

Monoclonal antibodies restricted BG18gH B cells in a
concentration-, affinity-, and epitope-dependent
manner
To dissect the response to purified serum IgG, we sought to

recapitulate it with monoclonal antibodies (mAbs). We adminis-

tered mAbs with the same epitope specificity to the N332-GT2

molecule as the BG18gH cells; naive BG18gH B cell-recipient
mice were given high-affinity N332-GT2-specific BG18-class

mAbs i.v with either a murine or human IgG1 constant region

(muBG18_d42.10 with KD 0.5 nM or BG18_iGL0 with KD

4.0 nM, respectively; Steichen et al., 2019) or no antibody (No

Ab) and were then immunized with N332-GT2 NP (Figure 4A).

Although the total GC responses remained roughly equivalent

at �6% of B cells (Figure 4B), both murine and human IgG1

mAbs blocked the BG18gH GC responses (Figure 4C). Similarly,

increasing the dose of BG18_iGL0 decreased the BG18gH GC

responses, with near-complete abrogation above 2.5 mg

(Figure 4D).

To further investigate the role of antibody affinity on the atten-

uation of the BG18gH GC responses, mAbs with varying affinities

for the BG18gH-epitope on N332-GT2 (BG18_iGL0 with KD 4 nM,

BG18_Pre14 with KD 93 nM, and BG18_Pre5 with KD 1.3 mM;

Steichen et al., 2019) were administered i.v. to naive BG18gH-

recipient mice prior to immunization. Although the high-affinity

antibodies fully blocked the BG18gH B cells from participating

in the GC on day 10, lower-affinity antibodies allowed for some

BG18gH response (Figure 4E).

As both antibody titer and affinity for the antigen clearly played

a role in the restriction of the BG18gH GC responses, we next

interrogated epitope specificity. Except for the modified BG18

binding site, the surface of the N332-GT2 trimer is mostly iden-

tical to that of the WT BG505 MD39 trimer (Steichen et al.,

2016; Steichen et al, 2019), allowing other HIV bnAbs to bind

their respective conserved epitopes on the molecule. We inde-

pendently administered the overlapping V3-glycan antibody

PGT128 (Pejchal et al., 2011; Walker et al., 2011), as well as an-

tibodies binding more distal epitopes, including CD4-binding-

site-directed VRC01 (Wu et al., 2010), apex-directed PGT145

(Lee et al., 2017; Walker et al., 2011), and MD39 base-directed

RM19R (Cottrell et al., 2020), to naive BG18gH B cell recipients

prior to N332-GT2 NP immunization (Figure 4F). Administering

PGT128, which overlaps with the mature BG18 epitope, pre-

vented BG18gH B cells from participating in the GC (Figures 4G

and 4H). By contrast, none of the antibodies binding other epi-

topes on N332-GT2 excluded BG18gH B cells from GCs

(Figures 4I and 4J). Competition for identical or overlapping epi-

topes by circulating antibodies, thus, limited the response of

cognate B cells to primary challenges, an inhibition that may

also be relevant to secondary challenges.

Circulating antibody affinity influenced VRC01-
precursor B cell exclusion from GCs
As BG18gH KI germline HCs are paired with a variety of endoge-

nous mouse LCs, the BG18gH repertoire consists of a range of

affinities for the N332-GT2 antigen (Lin et al., 2018; Steichen

et al., 2019). To confirm our findings in an alternative bnAb pre-

cursor model and further delineate the role of BCR affinity, we

turned to the previously generated VRC01 dual HC/LC KI

germline precursor model, CLK09 (Wang et al., 2021a). CLK09

B cells bind the GT immunogen eOD-GT8 with a KD of 350 nM

and produce robust responses to primary immunization

(Havenar-Daughton et al., 2018; Jardine et al., 2015; Wang

et al., 2021a). CD45.2+ CLK09 cells were transferred into WT

CD45.1+ recipients (�10–15 precursors per 106 total B cells)

prior to immunization with eOD-GT8 60mer (Figure 5A). Similar

to BG18gH recipients, when naive CLK09B cells were transferred
Immunity 55, 1856–1871, October 11, 2022 1861
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Figure 3. SARS-CoV spike responses engage multiple epitopes, whereas N332-GT2 responses are highly epitope focused

(A) Summary of nsEMPEM analysis of human serum samples from four patients naturally infected with SARS-CoV-2.

(B) Summary of nsEMPEM analysis of NHP serum samples from four subjects after immunization by NVX-CoV2373.

(C) Schematic of experimental design to evaluate serum in WT and BG18gH-recipient mice 14 and 42 days post N332-GT2 immunization.

(D) N332-GT2 binding serum IgG of WT B6 (gray) and BG18gH recipients (WT+BG18gH, red) at 14 and 42 dpi. AUC = area under the ELISA binding curve. p values

were calculated by unpaired Student’s t test (****p < 0.0001; ns, not significant). Data from one experiment with 6–7 mice per condition and presented as

mean ± SD.

(E) Summary of nsEMPEM analysis of pooled mouse serum samples from (D). Composite models represent polyclonal antibody targeting against the N332-GT2

trimer. (Purple) Fabs targeting the base of the trimer; (green) Fabs targeting the V1/V3 region.

See also Figure S5.
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Figure 4. High-affinity mAbs restrict BG18gH responses in an epitope-dependent manner

(A) Schematic of experiment to evaluate the effects of i.v. administration of monoclonal antibodies on naive BH18gH B cell responses in WT recipients.

(B andC) (B) GC cells as the percentage of total B cells and (C) CD45.2+ BG18gH cells as the percentage of total GCB cells at 10 dpi in BG18gH recipients receiving

30 mg of either high-affinity murine IgG1 BG18 mAb (BG18_d42.10, green) or high-affinity human IgG1 BG18 mAb (BG18_iGL0, red).

(D) CD45.2+ BG18gH cells as the percentage of total GC B cells at 10 dpi of BG18gH recipients receiving escalating concentrations of the high-affinity

BG18_iGL0 mAb.

(E) CD45.2+ BG18gH cells as the percentage of total GC B cells at 10 dpi of BG18gH recipients receiving 10 mg of BG18 mAbs with increasing affinity for the

N332_GT2 immunogen (BG18_Pre5 with KD 1.3mM, BG18_Pre14 with KD 93 nM, and BG18_iGL0 with KD 4 nM).

(F) Schematic of the HIV Env trimer and binding sites of the bnAbs used in (G)–(J).

(G andH) (G) GC cells as the percentage of total B cells and (H) CD45.2+ BG18gH cells as the percentage of total GCB cells at 10 dpi in BG18gH recipients receiving

10 mg of the BG18-epitope binding mAbs BG18_iGL0 and PGT128.

(I and J) (I) GC cells as the percentage of total B cells and (J) CD45.2+ BG18gH cells as the percentage of total GC B cells at 10 dpi in BG18gH recipients receiving

10 mg of antibodies binding other epitopes on the N332-GT2 immunogen.

p values were calculated by ordinary one-way ANOVA with Dunnett’s multiple comparisons (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant).

Figures represent data from one of at least two experiments with 3–5 mice per condition, with data presented as mean ± SD.
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into CD45.1+ hosts previously immunized with eOD-GT8 and

subsequently given a second challenge, we found virtually no

CLK09 B cells in the GC response 10 days post-secondary im-

munization (mean 3% versus 0.02% of GC B cells) (Figures 5B

and 5C). Additionally, there was a marked reduction in the GC

participation of endogenous eOD-GT8 binders (mean 3.8%

versus 0.4% of CD45.1+ GC B cells) (Figures 5D and 5E). Thus,

previously elicited antibodies restricted the clonality of primary

responses from VRC01-class germline precursor B cells as

well. There was also a reduction in CLK09 responses post-boost

compared with post-prime (Figure S6), similar to BG18gH (Fig-

ure S1). We hypothesize that antibody-mediated restriction of

B cells will be important at all stages of highly epitope-focused

humoral responses, although other aspects of the post-prime

response, such as MBCs, may present confounding factors.

To investigate whether the relative difference in affinity be-

tween the BCR and competing antibody affects the dynamics

of exclusion, we used B cells from both CLK09 and another

VRC01-class germline precursor model, CLK19 (KI B cells
from this line bind eOD-GT8 with a KD of 1.8 mM), alongside a

set of previously described CLK mAbs with a range of affinities

for eOD-GT8 (Havenar-Daughton et al., 2018) (Figure 5F).

When CLK09 B cell-recipient mice received mAbs of equal or

higher affinity (CLK20: KD 13 nM; CLK09: KD 350 nM), the

CLK09 GC response was almost completely blocked (mean

0.4% and 0.14% of GC B, respectively, versus 6.7% without

mAb), whereas a lower-affinity mAb (CLK31: KD 790 nM) did

not fully block the response (3.3%) (Figures 5G and 5H). When

mAbswere administered to CD45.1+mice adoptively transferred

with lower-affinity CLK19 B cells, however, the CLK31 mAb and

the higher-affinity CLK09 mAb did not fully block the CLK19 GC

B cell response (1.6%CLK19GCB cells after CLK31 administra-

tion and 0.4%after CLK09, versus 2.8%withoutmAb) (Figures 5I

and 5J). As the low-affinity precursors (CLK19) responds as well

or better after high-affinity mAb administration than the high-af-

finity precursors (CLK09), the gap between mAb and BCR

affinity does not map neatly to exclusion. Overall, however, a

given clone’s participation was more thoroughly blocked by a
Immunity 55, 1856–1871, October 11, 2022 1863
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Figure 5. High-affinity antibody restricts VRC01-precursor responses

(A) Schematic of experiment to evaluate naive CLK09 B cell responses in primed and unprimed recipients.

(B and C) (B) GC cells as the percentage of total B cells and (C) CD45.2+ CLK09 cells as the percentage of total GC B cells at experiment day 52 (10 dpi) in

previously unprimed (gray) or primed (red) recipients.

(D) Representative FACS plots at experiment day 52 (10 dpi) of gating strategy to quantify eOD-GT8 binding in the endogenous CD45.1+ GC B cell population.

(E) eOD-GT8 binding of endogenous CD45.1+ GC B cells at experiment day 52 (10 dpi) in unprimed and primed hosts.

(F) Schematic of experiment to evaluate the effects of i.v. administration of 10 mg of CLK mAbs with increasing affinity for the eOD-GT8 immunogen (CLK31 with

KD 790 nM, CLK09 with KD 350 nM, and CLK20 with KD 13 nM) on naive CLK09 and CLK19 B cell responses in WT recipients (G–J).

(G and H) (G) GC cells as the percentage of total B cells and (H) CD45.2+ CLK09 cells as the percentage of total GC B cells at 10 dpi of CLK09 recipients.

(I and J) (I) GC cells as the percentage of total B cells and (J) CD45.2+ CLK19 cells as the percentage of total GC B cells at 10 dpi of CLK19 recipients.

p values were calculated by unpaired Student’s t test (B, C, and E) or ordinary one-way ANOVA with Dunnett’s multiple comparisons (G–J) (*p < 0.05; **p < 0.01;

***p < 0.001; ****p < 0.0001; ns, not significant). Figures represent data from one of at least two experiments with 3–5 mice per condition, with data presented as

mean ± SD.

See also Figure S6.
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higher-affinity mAb than a lower-affinity mAb, suggesting that

circulating antibody affinity set a floor for GC entry.

Antigen-specific antibodies only restricted
corresponding B cells from GCs
If different bnAb precursors respond to their respective antigens

during the same GC response, it should be possible to restrict

the participation of one but not the other B cell subset by admin-

istering the respective epitope-specific antibody. To test this, we

transferred mixed CD45.2+ CLK09 and CD45.2+ BG18gH-GFP

precursors into CD45.1+ mice, administered antigen-specific

mAbs (CLK09 or BG18-iGL0), and challenged recipients with

either one or both of their respective antigens (Figure 6A). GFP

expression was used to distinguish the BG18gH-GFP and

CLK09 CD45.2+ populations (Figure 6B). GCs were of similar

magnitudes (Figure 6C), whereas CD45.2+ in GCs were some-

what decreased in recipients receiving both antigens (2.9%)

relative to mice receiving a single antigen (7.8%), possibly due

to increased competition with the endogenous repertoire (Fig-

ure 6D). Although individually administered immunogens re-

cruited only their specific B cell populations to the GC, those

that received both antigens had both BG18gH-GFP and CLK09
1864 Immunity 55, 1856–1871, October 11, 2022
B cell populations in the CD45.2+ GCs. However, administering

either BG18_iGL0 mAb or CLK09 mAb prior to immunization

resulted in the exclusion of transferred B cells corresponding

to the specificity of the mAb. After CLK09 mAb administration,

92.6% (mean, SD ± 5.2%) of the CD45.2+ population in the GC

at 10 dpi consisted of BG18gH-GFP cells; while post

BG18_iGL0 mAb administration, 91.8% (mean, SD ± 12.2%) of

the CD45.2+ GC B cells were CLK09 (Figure 6E). These findings

suggest that mAb administration could restrict individual

epitope-specific precursors from participating in multivalent

GC responses. Whether this approach to modulating clonal di-

versity is applicable when the non-desired epitope is present

on the same protein, however, is unknown.

Sequential antigen administration depleted peripheral
antibody andallowed epitope-specificB cells to respond
Our previous findings suggested a direct interaction between

antigens and antigen-specific circulating antibody in the

periphery. Circulating antibody is likely to rapidly bind available

immunogen, so we expected immunogen-specific antibody

titers to drop upon immunization. To investigate this, serum

was collected in regular intervals from mice that had received
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Figure 6. High-affinity antigen-specific antibody can restrict corresponding B cell populations from participating during co-evolution

(A) Schematic of experiment to test the antibody-mediated restriction of immunogen-specific responses during co-evolution.

(B) Representative FACS plots at 10 dpi of gating strategy to identify the effects of administration of no antibody, 10 mg of CLK09, or BG18_iGL0 mAb in BG18gH-

GFP/CLK09 double recipients immunized with either N332-GT2 or eOD-GT8 or both (C–E).

(C and D) (C) GC cells as the percentage of total B cells and (D) CD45.2+ population as the percentage of total GC B cells at 10 dpi.

(E) Distribution of the CD45.2+ GC B cell populations between BG18gH-GFP (blue) and CLK09 (red) cells at 10 dpi.

p values were calculated by unpaired Student’s t test (**p < 0.01; ****p < 0.0001). Figures represent data from one of at least two experiments with 2–5 mice per

condition, with data presented as mean ± SD.
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BG18_iGL0 antibody prior to immunization (blue), as well as from

control groups that either received nomAb prior to immunization

(baseline, black) or received BG18_iGL0 mAb but were not

subsequently immunized (natural decay, red) (Figure 7A). As

BG18_iGL0 mAb has a human constant region, it could be

measured independently from the endogenous mouse Ig re-

sponses. Over time, the curves show a drop in BG18_iGL0 anti-

body in mice receiving N332-GT2 NP, eventually declining to

background levels at 10 dpi; the decay in unimmunized mice is

far less severe (Figure 7B). The endogenous primary IgG

response was diminished in the mice receiving BG18_iGL0, re-

flecting the restriction of BG18gH response (Figure 7C). The rela-

tive drop in BG18_iGL0 suggests that antigen administration can

deplete circulating antibody titers significantly; whether this

would also be the case in a non-transfer model, where MBC-
driven antibody production might overwhelm depletion, is

unclear.

Based on these findings, we hypothesized that immunizing

with excess immunogen over a longer period might overcome

antibody blocking. To test this, a cohort of CLK09-recipient

mice received a dose of CLK09 mAb followed by either a single

immunization (day 0 group) or a series of three consecutive daily

immunizations (day 0-1-2 group) (Figure 7D). Mice that received

three immunizations had increased GCs in both conditions,

likely due to the additional antigen providing a stronger immune

activation potential (mean 1.3%GCB cells at single dose versus

2.8% at triple dose) (Figure 7E). We also observed that CD45.2+

cells in the GC were slightly increased in WT recipients receiving

three doses of immunogen (mean 1.8% versus 3.6% of the total

GCB cells). In mice receivingmAb prior to immunization, a single
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Figure 7. Excess antigen can overcome antibody-mediated restriction

(A) Schematic of experiment to evaluate the antigen-mediated depletion of circulating antibodies.

(B and C) (B) ELISA quantification of N332-GT2-specific human IgG and (C) N332-GT2-specifc murine IgG from mice receiving 10 mg BG18_iGL0 and subse-

quently immunized (blue) or left unimmunized (red) or mice that were immunized without receiving any mAb (black). p values were calculated by unpaired Stu-

dent’s t tests comparing red versus blue (B) or blue versus black (C) groups at individual time points (*p < 0.05; **p < 0.01; ****p < 0.0001).

(D) Schematic of experiment to test the effects of multiple doses of antigen on naive CLK09 B cell responses in CLK09 recipients receiving a single dose or triple

doses of eOD-GT8 immunogen after receiving either 10 mg CLK09 mAb (red) or no mAb (gray) (E and F).

(E and F) (E) GC cells as the percentage of total B cells and (F) CD45.2+ CLK09 cells as the percentage of total GC B cells at 10 dpi of CLK09 recipients.

Figures represent data from one of at least two experiments with 3–5 mice per condition, with data presented as mean ± SD.

See also Figure S7.
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dose of antigen elicited little CLK09 response in GCs (0.12% of

the total GC B cells), as previously observed. However, the

administration of three doses slightly restored CLK09 GC re-

sponses (0.98%) (Figure 7F). The antibody-mediated restriction

of B cell subsets might, therefore, be overcome through excess

antigen, either by peripheral antibody depletion or an increased

likelihood that some antigen escapes capture long enough to

initiate a GC reaction.

As the BG18_iGL0 mAb is more potent than CLK09, we

expected it to impose a more stringent barrier. In BG18gH

recipients receiving doses of either 2.5 mg BG18_iGL0 (the

lowest blocking dose from Figure 4D), 10 mg BG18_iGL0, or

No Ab, the GC formation in sequentially immunized mice

were again enhanced compared with mice receiving only a sin-

gle dose (mean 3.8% GC B at single dose versus 6.8% at triple

doses) (Figures S7A and S7B). Despite this, the sequential

administration of N332-GT2 was insufficient to overcome the

restriction posed by 10 mg of BG18_iGL0 (Figure S7C). Howev-

er, in recipients of 2.5 mg of BG18_iGL0, sequential immuniza-

tion did elicit a small number of BG18gH cells to the GC (mean

0.56% BG18gH of the total GC B versus 4.2% without mAb)

(Figure S7C). These findings illustrate that circulating antibody

indeed posed a barrier, one that varied with affinity and

concentration and could be overcome by repeat antigen

administration.
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DISCUSSION

The populating of secondary and ongoing GCs in response to

secondary antigen challenges remains opaque (McHeyzer-Wil-

liams et al., 2018; Pape and Jenkins, 2018a; Shlomchik, 2018);

it is clear, however, that naive B cells are the primary partici-

pants, at least in mice (Mesin et al., 2020). Here, we demonstrate

that previously elicited antibodies, when at low titers or from

broad, multi-epitope responses, enhanced naive the B cell

recruitment to GCs. By contrast, high titers of high-affinity

antibodies limited the participation of cognate naive B cells.

This modulation by previously elicited antibodies has major im-

plications for GC biology and vaccine design, particularly

multi-dose vaccines.

The enhancement of naive B cell recruitment in mice

previously exposed to SARS-CoV RBD is of urgent interest,

considering the active development and deployment of booster

regimens (Atmar et al., 2022; Gagne et al., 2022). Enhancement

may result from multiple factors: previously generated

antibodies can aid antigen transport and deposition through IC

formation and complement fixation, functionally increasing the

availability of antigen in the follicles (Batista and Harwood,

2009; Phan et al., 2009); this is likely what occurs after priming

and the first boost, or during escalating doses (Tam et al.,

2016). The lack of enhancement of off-target B cell recruitment
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after HIV mAb administration, however, complicates an IC-

based interpretation of the SARS-CoV system. We expect that

this difference reflects a lower rate of IC formation after mAb

administration relative to polyclonal sera; the SARS-CoV RBD

serum response is notably diverse, as shown in our infected hu-

man and immunized NHP data and by the range of SARS-CoV-2

antibodies in the literature (Ju et al., 2020; Wang et al., 2021b;

Yuan et al., 2021). The affinity of serum antibodies is also likely

to have a substantial role, as similar cognate naive cell recruit-

ment enhancements were observed after the administration of

early, low-affinity serum in the BG18 model and after priming

the MD4 host. However, we would expect some of the anti-

bodies in the SARS-CoV-2 response to be quite high affinity

(Brouwer et al., 2020), so perhaps a combination of the low titers

after only an antigen prime and the polyclonality of the circulating

serum—which is higher for SARS-CoV-2 after vaccination than

infection (Röltgen et al., 2022)—is the major source of enhance-

ment in this system. However, our own models received a single

prime: after repeated boosts, as the SARS-CoV-2 vaccine is

currently deployed, increases in antibody affinity and titer could

shift the balance toward inhibition. Such inhibitionmight be over-

come by altering the SARS-CoV-2 spike protein in the vaccine—

toOmicron BA.4, for example. New epitopes in variant spikes are

unlikely to be recognized with high affinity by previously elicited

antibodies and would, thus, be more likely to stimulate the

recruitment of different naive cells into the GC. Relatedly, the

antibody response to SARS-CoV-2 vaccines in patients who

previously received mAb treatment is also likely be affected by

epitope blocking.

The contrasting effects of previously elicited antibody in the

HIV models demonstrated that the elicitation of quasi-mono-

epitope high-affinity antibodies or passive administration of

high-affinity, single-specificity mAbs inhibited the recruitment

of certain antigen-specific naive B cells into GCs—although

the effects on total GC size weremixed, and even the total exclu-

sion of tracked cognate B cells did not prevent GC formation.

Inhibitory effects for previously elicited antigen-specific anti-

bodies have been observed before, although never dissected

to the extent here. Passive administration of both IgG and IgM,

for example, decreases GC volume or antigen-specific GC B

cells (Bergström et al., 2017; Zhang et al., 2013). Immunoglobulin

from hyperimmunized mice limits B cell responses to phycoery-

thrin and reduces responses from IgM+ MBCs in favor of re-

sponses from higher-affinity IgG memory subsets (Pape et al.,

2011). The mechanism of such inhibition is still unclear; our

mAb studies are suggestive of epitope masking, but as we

also found increased antibody consumption following immuniza-

tion, we suspect that epitope blocking and antibody-immunogen

degradation may act cooperatively. Although this epitope-spe-

cific inhibition may appear to constitute a potential hurdle in

the pursuit of bnAbs against HIV—which requires highly

epitope-specific responses and multiple rounds of immuniza-

tion—the alteration of the bnAb-epitope at each stage to create

a heterologous, more native-like booster immunogens provides

the opportunity to design immunogens with lower affinity for

circulating serum antibodies (Steichen et al., 2016).

These observations raise the question of whether serum

antibody feedback may overcome ‘‘antigenic sin’’ by driving

diversification on secondary exposure. Previous serum studies,
as well as in silicomodeling, suggest that antibody feedback can

shift humoral responses toward subdominant epitopes (Angeletti

et al., 2017; Meyer-Hermann, 2019) and block GC B cell re-

sponses in an epitope-dependent manner (Forsell et al., 2017),

presumably providing some counter to antigen seniority. On

repeat immunization with the malaria circumsporozoite protein

(CSP), as antibodies to the immunodominant repeats level

out, responses are enhanced against subdominant epitopes

(McNamara et al., 2020). Circulating antibodies focusing sec-

ondary responses toward epitopes not represented during the

primary humoral response may, however, be detrimental during

some recurring infections: more durable responses toward the

conserved stalk domain of influenza hemagglutinin (HA) may

be precluded in favor of strain-specific responses to the highly

variable head domain in repeat influenza infections (Dreyfus

et al., 2012; Ellebedy et al., 2020).

In terms of vaccination, there are several potential strategies to

overcome antibody-mediated restriction in circumstances

where it proves problematic. First, aswe have done here, antigen

availability can be addressed by increasing the amount of anti-

gen administered; it has been previously demonstrated that

escalating the doses of HIV gp120 improves antigen-specific hu-

moral responses (Tam et al., 2016). Alternatively, the continuous

delivery of immunogen through osmotic pumps or antigen depo-

sition—which can increase the magnitude and diversity of B cell

responses and resulting antibody titers (Hu et al., 2015; Tam

et al., 2016)—could enhance availability. In line with our observa-

tions on epitope exclusion, these methods induce a shift away

from the immunodominant epitopes typically favored during

bolus immunization (Cirelli et al., 2019; Moyer et al., 2020).

Increasing the time between doses to allow antibody titers to

decline may also limit blocking, although decreased MBCs

may be problematic for reengagement. Finally, a major opportu-

nity could lie in new adjuvants, as many of those in use were

selected for their ability to elicit sizable GCs and generate high

circulating antibody titers (Pulendran et al., 2021). A separate

class of adjuvants, with properties that prioritize MBC formation

over high-affinity antibody titers, could be developed to deploy,

for example, during HIV bnAb sequential immunization

(Burton, 2019).

Ultimately, the elicitation of a productive antibody response

depends on several factors, including, as demonstrated here,

the affinity, abundance, and epitope specificity of the antibody

in circulation. The interplay between B cells and the antibody

environment may be one of the keys to the fine-tuned control

of humoral responses.

Limitations of the study
For several mAbs used, it is unknown whether binding is mono-

valent or bivalent. In a recent study, the unexpected inhibitory

capacity of a non-overlapping, non-neutralizing, relatively low-

affinity antibody to CSP is attributed to its avid binding (Vijayan

et al., 2021), and we would expect this to be potentially relevant

to our mAb experiments. Unfortunately, our attempts to explore

this point with Fabs were limited by their short half-lives (data

not shown).

Furthermore, the strength of a transfer system is that it allows

for the isolation of desired cell populations. However, in natural

secondary exposures, the primary immune response will have
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left more than circulating serum antibodies: interactions with

other components of the primary humoral response could

outweigh the effects of serum antibody. Additionally, although

we have focused on naive B cell recruitment, some MBCs do

reenter GCs (McHeyzer-Williams et al., 2018; Pape and Jenkins,

2018a; Shlomchik, 2018), and the effects of antibody feedback

on potentially higher-affinityMBCsmay shape the secondary hu-

moral response in unexpected ways. For example, antibody

feedback, in part on MBCs, can limit the response to vaccine

boosters (McNamara et al., 2020). Finally, although we empha-

size the biology of GC formation here, we did not track the fate

of the transferred epitope-specific B cells outside of GCs.
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Leginon Suloway et al., 2005 https://emg.nysbc.org/redmine/

projects/leginon/wiki/Leginon_

Homepage

Appion Lander et al., 2009 N/A

DogPicker Voss et al., 2009 N/A

RELION Scheres et al., 2012 https://relion.readthedocs.io/

en/release-3.1/

UCSF Chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

Other

BD LSRfortessa BD Biosciences N/A

BD FACS ARIA II instrument BD Biosciences N/A

0.5 ml -10 kDa concentrator Amicon Ultra CAT #: UFC803096

15 ml-10 kDa concentrator Amicon Ultra CAT #: UFC901024

Protein G Sepharose 4 Fast Flow Cytiva CAT #: 17127903

AKTA pure system Cytiva N/A

FEI Tecnai Spirit T12 transmission

electron microscope

N/A

TemCam F416 CMOS 4k x 4k camera TVIPS N/A

BioTek Synergy Neo2 Biotek N/A

Biotek EL406 washer/dispenser Biotek N/A

Superdex 200 Increase 10/300 GL GE Healthcare Cytiva 28-9909-44
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RESOURCE AVAILABILITY

Lead contact
Please direct requests for data and resources related to this study to lead contact Facundo D. Batista (fbatista1@mgh.harvard.edu).
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Materials availability
Datasets and materials for this article are available from the lead contact on request under standard material transfer agreements.

Data and code availability
d Electron microscopy data for this article was deposited at the Electron Microscopy Data Bank (EMDB: https://www.ebi.ac.uk/

emdb/) and are available as of the date of publication. EMD numbers are listed in the key resources table. BCR sequence data

has been deposited to GenBank and is available as of the date of publication (https://www.ncbi.nlm.nih.gov/genbank/). Acces-

sion numbers are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
For immunization experiments, male B6.SJL-Ptprca Pepcb/BoyJ (CD45.1+/+), C57BL/6-Tg(IghelMD4)4Ccg/J (MD4+) and C57BL/6J

mice between 8–12 weeks of age were acquired from The Jackson Laboratory (Bar Harbor, ME). CR3022Gl, CR3022Ma and CC12.1

KI lines were generated and initially bred at the animal facility of the Gene Modification Facility (Harvard University) and breeding for

colony expansion and experimental procedures was subsequently performed at the Ragon Institute of MGH, MIT and Harvard.

Previously generated BG18 germline HC KI mice (BG18gH), and VRC01 germline KI mice (CLK09, CLK19) were bred and maintained

at the Ragon Institute of MGH, MIT and Harvard(Lin et al., 2018; Wang et al., 2021a). BG18gH mice were crossed with C57BL/6-

Tg(CAG-EGFP)131Osb/LeySopJ mice purchased from The Jackson Laboratory (Bar Harbor, ME) to generate BG18gH-GFP mice.

All genotyping was done via ear or tail snips by TaqMan assay for a fee for service agreement (TransnetYX).

Human samples
Convalescent sera or plasma from four SARS-CoV-2 recovered human donors were used for EMPEM studies. Donors A, B and

C correspond to donors 1988, 1989 and 1992 from our previous study (Bangaru et al., 2022); the studies were approved by the

Institutional Review Board of Vanderbilt University Medical Center. Plasma from donor D was obtained from a different cohort of

convalescent patients under protocol approved by the UCSD Human Research Protection Program (PMID: 32540903). The rhesus

macaques (Macaca mulatta) were from Indian origin and sourced from Southwest National Primate Research Center (SNPRC)

specific pathogen free colony and Envigo (Alice, TX). Sera from NVX-CoV2373-immunized NHPs were kindly provided by Novavax.

The animals received 3 mg NVX-CoV2373 with 50 mg Matrix-M (Novavax AB, Uppsala, Sweden) spaced 21 days apart.

METHOD DETAILS

Generation of CR3022Gl, CR3022Ma, and CC12.1 knockin (KI) mice
CR3022Gl, CR3022Ma and CC12.1 KI mice were generated following published protocols (Lin et al., 2018; Wang et al., 2021a). In

brief, the targeting vector 4E10 (Ota et al., 2013) wasmodified by the incorporation of human rearranged VDJ (heavy chain construct)

or VJ (light chain construct) sequences downstream of the promoter region and by elongation of the 5’ and 3’ homology regions using

the Gibson assembly method (NEB). The targeting vector DNA was confirmed by Sanger sequencing (Eton Bioscience Inc.). Next,

fertilized mouse oocytes were microinjected with a donor plasmid containing either the pre-rearranged IGH with the mouse VHJ558

promoter, or the pre-rearranged IGKwith the mouse Vk4-53 promoter (200 ng/ml); two pair of single-guided RNAs (sgRNAs, 25 ng/ml)

targeting either the H or the k locus; and AltR-Cas9 protein (50 ng/ml) and injection buffer (Wang et al., 2021a). Following culture, re-

sulting zygotes were implanted into the uteri of pseudopregnant surrogate C57BL/6J mothers.

SARS-CoV Immunogen and Flow Probe Protein Expression and Purification
The SARS-CoV-2 (Genbank MN975262.1) and SARS-CoV (Genbank ABD72970.1) spike protein receptor binding domains

(RBDs) were used as the basis for constructing the trimeric SARS-CoV-2 and SARS-CoV immunogens and monomeric RBD

flow probes as previously described (Hauser et al., 2022). Briefly, codon optimized constructs were purchased as gblocks from In-

tegrated DNA Technologies and subsequently cloned into pVRC for expression. Monomeric constructs for flow cytometry contained

C-terminal HRV 3C-cleavable 8xHis and Avi tags. Trimeric constructs included C-terminal HRV 3C-cleavable 8xHis tags and a non-

cleavable hyperglycosylated GCN4 tag that included two engineered C-terminal cystines as a modification from a published hyper-

glycosylated GCN4 tag (Sliepen et al., 2015) as previously described (Hauser et al., 2022).

Proteins were expressed in Expi 293F cells (ThermoFisher) via transfections were performed with Expifectamine reagents per the

manufacturer’s protocol. Transfections were harvested after 7 days, and supernatants were purified using Cobalt-TALON resin

(Takara) for immobilized metal affinity chromatography via the 8xHis tag. Imidazole was used to elute proteins, which were then

concentrated. Size exclusion chromatography with a Superdex 200 Increase 10/300 GL (GE Healthcare) column in PBS was used

to further purify proteins.
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Immunizations
For adoptive transfers, B cells were isolated from donor spleens via magnetic bead separation (Pan B cell isolation kit, Miltenyi Bio-

tec), quantified for live cells (LUNA automated cell counter) and adjusted to desired concentration in sterile PBS prior to intravenous

injection into recipient mice. For immunization of CR3022Ma and CR3022Gl mice, trimeric SARS-CoV-1 RBD as described above

and in (Hauser et al., 2022), and prepared for immunization at 10 mg/mouse by diluting stock in sterile PBS and complexing at a

1:1 volume ratio with Sigma Adjuvant (Millipore Sigma). For immunization of all BG18gH recipients, N332-GT2 ferritin nanoparticle

was used (except for the epitope experiments where N332-GT2 trimer was used instead). Specifics and production of N332-GT2

immunogen was originally described in (Steichen et al., 2019). N332-GT2 immunogen was prepared for immunization at 5 mg/mouse

by diluting N332-GT2 stock in sterile PBS and subsequently complexing it for 30 minutes at 4�C at 1:1 volume ratio with Sigma

Adjuvant. The eOD-GT8 60-mer immunogen was also previously described (Abbott et al., 2018), and was similarly prepared for

immunization at 15 mg/mouse by diluting eOD-GT8 stock in sterile PBS and complexing at a 1:1 volume ratio of Alhydrogel solution

(Invivogen) for 30 minutes at 4�C. For experiments administering a mixture of both N332-GT2 and eOD-GT8 both antigens were

diluted in sterile PBS to their respective concentrations prior to complexing with Sigma adjuvant. Prepared immunogen was

subsequently injected intraperitoneally (IP) at a total volume of 200 ml/mouse. All animals were cared for in accordance with American

Association for the Accreditation of Laboratory Animal Care (AAALAC) standards in accredited facilities. All animal procedures were

performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Harvard University and

the Massachusetts General Hospital (MGH), specifically: Animal Study Protocols 2016N000022 and 2016N000286 (MGH).

Serum IgG purification and monoclonal antibody production
Serum was acquired from immunized mice via cheek bleed and subsequently pooled. The IgG from the pooled serum was then

purified using a Pierce Protein G chromatography column (Thermo Fisher), and placed in PBS using a Centricon filter unit (EMD

Millipore). Concentration was measured via A280 on a Synergy Neo2 instrument (Biotek) To produce monoclonal antibodies for

administration to mice, genes encoding the antibody Fv regions were synthesized by GenScript and cloned into antibody expression

vectors. Monoclonal antibodies were produced using transient transfection of HEK-293F cells (ThermoFisher) and purified using

rProtein A Sepharose Fast Flow resin (Cytiva) or GammaBind G column (Cytiva) for the mouse antibody muBG18_d42.10.

Flow cytometry
At selected time points following immunization, whole spleens were mechanically dissociated to generate single-cell suspensions.

ACK lysis buffer was used to deplete red blood cells, after which splenocytes were resuspended in FACS buffer (2% FBS in PBS),

incubated with Fc-block (clone 2.4G2, BD Biosciences) and stained for viability with Live/Dead Blue viability dye (Thermo Fisher

Scientific) for 20 min at 4�C. Cells were then stained with a variety of antibodies, including antibodies against CD4-APC-eF780,

CD8-APC-eF780, Gr-1-APC-eF780, F4/80-APC-eF780, B220-V421, CD95-PE-Cy7, CD38-A700, CD45.1-PerCP-Cy5.5,

CD45.2-PE, IgD-APC-Cy7, and C138-BV650. For surface staining of eOD-GT8 binding, probes were labeled as described previously

and added 30 minutes prior to antibody staining (Wang et al., 2021a). Cells were acquired by a BD LSRFortessa (BD Biosciences) for

flow cytometric analysis and sorted using a BD FACS Aria II instrument (BD Biosciences). Data was analyzed using FlowJo software

(Tree Star).

ELISA
Antigen-specific antibody titers were detected by ELISA. N332-GT2 titers were detected using anti-His Ab (2 mg/ml) to capture

N332-GT2 antigen (2 mg/ml) on 96- or 384-well high-absorption ELISA plates (NUNC/Corning). SARS-CoV-1 RBD specific titers

were detected by coating 96-well high-absorbtion ELISA plates with SARS-CoV-1 RBD monomers (2.5mg/ml). Plates were then

washed 3 times with 0.05% Tween 20 in PBS, blocked with 3% BSA in PBS for 1 h at room temperature (RT), and washed again

prior to incubation with 1:100 serially diluted mouse serum samples for 1 hour at RT. Wells were washed and incubated with Alkaline

Phosphatase AffiniPure Goat Anti-Mouse IgG (Jackson Immuno Research, #115-055-071) at 1:1,000 in PBSwith 0.5%BSA for 1 h at

RT for detection of mouse IgG. For detection of Human IgG Alkaline Phosphatase linked to AffiniPure Goat Anti-human IgG (Jackson

Immuno Research, #109-055-098) was used at 1:1000. For detection, p-Nitrophenyl phosphate (Sigma, # N2770) was dissolved in

ddH2O and added at 50 ml/well, RT, 25 min. Absorbance at 405 nm was determined with a plate reader (Synergy Neo2, BioTek).

SARS-CoV-1 specific titers were measured through comparison to a CR3022Ma mAb standard. ELISA curves were analyzed and

AUC/concentration calculated using GraphPad Prism 8.4.3 (GraphPad).

BCR sequencing
Following single-cell sorting of naı̈ve or antigen-specific B cells, the genes encoding the variable region of the heavy and light chains

of IgG were amplified through RT-PCR. In brief, first strand cDNA synthesis was carried out using SuperScript III Reverse Transcrip-

tase (Invitrogen) according tomanufacturer’s instructions. Nested PCR reactions consisting of PCR-1 and PCR-2 were performed as

25ml reactions using HotStarTaq enzyme (QIAGEN), 10 mM dNTPS (Thermo Fisher Scientific) and cocktails of IgG- and IgK-specific

primers and thermocycling conditions described previously (von Boehmer et al., 2016). PCR products were run on precast E-Gels 96

2% with SYBR Safe (Thermo Fisher Scientific) and wells with bands of the correct size were submitted to GENEWIZ company for

Sanger sequencing. HC products were sequenced using the HC reverse primer from PCR-2 (5’ GCTCAGGGAARTAGCCCTTGAC

3’) and the LC was sequenced using the LC reverse primer (5’ TGGGAAGATGGATACAGTT 3’) from PCR-2. Reads were
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quality-checked, trimmed, aligned, and analyzed using the Geneious software (Biomatters Ltd, New Zealand). IMGT/V-QUEST

(http://www.imgt.org) was used for mouse/Human Ig gene assignments. Circleplots were generated in Graphpad Prism.

Expression and purification of SARS-CoV-2 spike proteins
A mixture of stabilized S proteins were used for nsEMPEM studies with SARS-CoV-2 spike. The base construct (SARS-CoV-2-HP)

was generated with residues 1 to 1208 from the Wuhan-Hu-1 strain (GenBank: QHD43416.1) with six stabilizing proline (HexaPro)

substitutions at positions 817, 892, 899, 942, 986, and 987 and the S1/S2 furin cleavage site modified to 682-GSAS-685 (Bangaru

et al., 2022). The spikes were further modified to include D614G mutation and/or a combination of additional stabilizing mutations;

Mut2 (S383C, D985C), Mut4 (A570C, L966C), and Mut7 (T883C, V705C). S protein expression and purification were carried out as in

previously published methods (Bangaru et al., 2022).

Polyclonal Fab preparation from serum and sample preparation for electron microscopy
Isolation of IgG from serum and subsequent digestion to Fab was performed as previously described (Bianchi et al., 2018). For faster

processing time and to observe the overall antibody response of the groups of mice used in this study, serum samples (0.5-1.0 mL

serum volume range per animal) were pooled. Briefly, IgGs from mouse serum were isolated by a 3-day incubation with Protein G

resin (Cytiva) at 4�C. IgGs were eluted with 0.1 M Glycine pH 2 and immediately neutralized with 1 M Tris pH 8. To prepare Fabs,

IgGs were digested with liquid papain from papaya latex (Sigma Aldrich) for 5 hrs at 37�C and quenched with iodoacetamide. For

higher throughput, size exclusion chromatography was not performed to separate the Fabs from papain, referred to as ‘‘dirty

Fab’’. For complexing, 15 mg of N332-GT2 trimer and 1 mg of ‘‘dirty Fab’’ were combined and incubated overnight at room temper-

ature. The antigen-Fab complex was then size exclusion purified using a Superose 6 Increase (Cytiva) column to remove the excess

Fabs and papain in the sample. The excess Fab peaks were pooled and stored at 4�C.
IgGs from NVX-CoV2373-immunized NHP sera and SARS-CoV-2 convalescent human sera were isolated in a similar manner with

the use of Protein A and protein G resin (GEHealthcare), respectively. For polyclonal Fab preparation, IgGswere digested for 4-5 hr at

37�Cwith activated papain from papaya latex and quenched with 0.5M iodoacetamide followed by buffer exchanging to 1 x TBS (pH

7.4) using 10kDa centrifugal filter units. The digested Fab/Fc portion was purified over a Superose 200 increase 10/300 column (Cy-

tiva) to remove any undigested IgG and concentrated using a 10kDa Amicon centrifugal filter unit (MilliporeSigma). For NHP samples,

polyclonal Fab-spike complexes were made by incubating 250 mg of purified polyclonal Fabs with 15 mg of a mix of stabilized S pro-

teins (SARS-CoV-2-6P-D614G, SARS-CoV-2-6P-Mut2-D614G, SARS-CoV-2-6P-Mut4-D614G, SARS-CoV-2-6P-Mut7-D614G,

SARS-CoV-2-6P-Mut7). For human donor samples, complexes were made by incubating 5mgs of purified polyclonal Fabs with

20 mg of a mix of stabilized S proteins (SARS-CoV-2-HP, SARS-CoV-2-HP-Mut2, SARS-CoV-2-HP-Mut4 and SARS-CoV-2-HP-

Mut7). Samples were incubated overnight at room temperature and complexes were purified over a Superose 6 increase 10/300 col-

umn (Cytiva) using UV 215 absorbance on an AKTA pure system (Cytiva). Protein fractions corresponding to the S protein were

collected and concentrated using a 0.5-mL capacity 10kDa Amicon Ultra Centrifugal Filter Unit (MilliporeSigma).

Negative stain electron microscopy (nsEM)
Purified complexes were diluted to 0.03 mg/ml using 1X TBS pH 7.4, deposited on glow-discharged carbon coated copper mesh

grids, and stained for 90 sec with 2% uranyl formate (w/v). Samples were imaged either on a FEI Tecnai Spirit T12 transmission elec-

tron microscope (120 keV, 52,000x mag, 2.06 Å per pixel, -1.5 mm defocus) equipped with an FEI Eagle 4k x 4k CCD camera or a FEI

TF20 transmission electron microscope (200 keV, 62,000x mag, 1.78 Å per pixel, -1.5 mm defocus) equipped with a TVIPS TemCam

F416 CMOS 4k x 4k camera. Collection of raw micrographs was automated with the Leginon (Suloway et al., 2005) software and

stored in the Appion (Lander et al., 2009) database. For each mouse group complex, enough micrographs were collected to have

R 100k particles for data processing. Particles were picked using DogPicker (Voss et al., 2009), and further data processing was

performed in RELION 3.0 (Scheres, 2012). For EMPEM with SARS-CoV-2 spike, an initial model was generated from a published

SARS-CoV-2 S protein structure (PDB: 6VYB (Walls et al., 2020)) and used during data processing. Map interpretation and segmen-

tation was performed in UCSF Chimera (Pettersen et al., 2004).

QUANTIFICATION AND STATISTICAL ANALYSIS

For immunization studies, statistical analysis was performed in Prism 9.3.1 (GraphPad) using unpaired student’s t test assuming

normal distributions, or one-way ANOVA test with Dunnett’s multiple comparisons. P values less than 0.05 were considered signif-

icant (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001) as indicated in the figure legends.
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