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Abstract 

Background:  In this study, we performed a molecular evaluation of primary pancreatic adenocarcinoma (PAAD) 
based on the comprehensive analysis of energy metabolism-related gene (EMRG) expression profiles.

Methods:  Molecular subtypes were identified by nonnegative matrix clustering of 565 EMRGs. An overall survival 
(OS) predictive gene signature was developed and internally and externally validated based on three online PAAD 
datasets. Hub genes were identified in molecular subtypes by weighted gene correlation network analysis (WGCNA) 
coexpression algorithm analysis and considered as prognostic genes. LASSO cox regression was conducted to 
establish a robust prognostic gene model, a four-gene signature, which performed better in survival prediction than 
four previously reported models. In addition, a novel nomogram constructed by combining clinical features and the 
4-gene signature showed high-confidence clinical utility. According to gene set enrichment analysis (GSEA), gene sets 
related to the high-risk group participate in the neuroactive ligand receptor interaction pathway.

Conclusions:  In summary, EMRG-based molecular subtypes and prognostic gene models may provide a novel 
research direction for patient stratification and trials of targeted therapies.
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Introduction
Pancreatic adenocarcinoma (PAAD) is one of the most 
lethal malignancies, causing 459,000 deaths and 432,000 
deaths worldwide, according to GLOBOCAN 2018 [1]. 
Our current understanding of the complicated genetic 
and epigenetic alterations and their correlation with the 
microenvironment has not resulted in a leap in patient 
survival [2]. Substantial effort is required for further 
exploration of disease pathogenesis and progression 

and the identification of early detection and risk evalu-
ation biomarkers that will translate to diverse treatment 
options.

The reprogramming of cellular metabolism plays an 
indispensable role in tumorigenesis as both a direct and 
indirect outcome of oncogenic alteration. Reprogram-
ming enables tumor cells to produce ATP to maintain 
the reduction-oxidation balance and macromolecular 
biosynthesis processes required for cell growth, prolifera-
tion, and migration. For a long time, it was believed that 
malignancies mainly restrict their energy metabolism 
to glycolysis, even in the presence of oxygen, a situation 
known as the Warburg effect [3]. However, an increasing 
number of studies have acknowledged the heterogene-
ous metabolic phenotype of cancer cells [4]. For example, 
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Daemen et al. successfully proposed three highly distinct 
metabolic subtypes in PAAD through broad metabo-
lite profiling [5]. Although recent bioinformatic analyses 
have revealed the existence of metabolic subtypes with 
differential prognosis within PAAD [6], which suggests 
a relationship between the metabolic genetic expres-
sion profile and tumor aggressiveness, almost nothing is 
known about the potential to define molecular subtypes 
in PAAD specifically based on the gene expression pro-
files of energy metabolism-related genes (EMRGs) or 
how signatures might relate to prognosis. A deep under-
standing of EMRGs in tumors might provide an impor-
tant basis for the development of new therapies.

In this study, we constructed energy metabolism-
associated molecular subtypes of PAAD by using EMRG 
expression data from public databases, including TCGA, 
GEO, and ICGC. Furthermore, we assessed relationships 
with prognosis and identified differences in clinical and 
immune characteristics. The prognostic risk model con-
structed by differentially expressed genes between PAAD 
molecular subtypes can better evaluate PAAD prognosis. 
We further used the gene expression datasets from the 
GEO and ICGC databases to verify the performance of 
the prognostic risk model.

Materials and methods
Data collection and processing
Raw gene expression data and corresponding clinical 
information of patients with PAAD were obtained from 
The Cancer Genome Atlas (TCGA), Gene Expression 
Omnibus (GEO), and the International Cancer Genome 
Consortium (ICGC). The RNA-seq expression data, 
RNA-seq count data, and clinical follow-up information 
of 177 patients diagnosed with PAAD were downloaded 
through the TCGA GDC API; among them, 171 patients 
(90%) were randomly selected as the training set for 
model construction (Table 1). Subsequently, to verify the 
robustness of the model over different sequencing plat-
forms, all PAAD samples in TCGA database were used 
as internal verification sets. Furthermore, a GEO dataset, 
GSE57495, containing transcriptome and clinical data of 
63 patients and a series of RNA-seq profiles of 269 sam-
ples obtained from the ICGC database, was downloaded 
for validation datasets (Table 1). Eleven annotated metab-
olism-related pathways from the Molecular Signature 
Database v7.0 (MSigDB), which included 594 EMRGs, 
were downloaded from the Reactome database (https://​
react​ome.​org/, Supplementary Table 1). We matched the 
candidate gene with the TCGA transcriptome matrix, 
retained genes with detectable signals in more than half 
of the tissues, and finally obtained 565 genes for subse-
quent analysis. The workflow is shown in Supplementary 
Fig. 1.

Identification of energy metabolism molecular subtypes
Among all TCGA and ICGC PAAD samples, 565 
EMRGs were extracted. Nonnegative matrix fac-
torization (NMF) [7] was utilized to cluster all PAAD 
samples, and the optimal numbers of clusters were 
determined according to indicators including cophe-
netic correlation [7], silhouette coefficient [8], and 
residual sum of squares (RSS) [9].

Analysis of immune scores between molecular subtypes
The fragments per kilobase of exon model per million 
mapped reads (FPKM) data of genes in the TCGA PAAD 
dataset were submitted to the TIMER (tumor immune 
estimation resource) tool [10] and the R software pack-
age estimate for calculation of the immune score. Next, 
the difference in the immune score and stromal score, 
which represent the relative proportion of immune cells 
and stromal cells in tumor tissues, was calculated using 
the R package estimation of stromal and immune cells 
in malignant tumors using expression data (ESTIMATE) 
[11]. The estimate score, which refers to the purity of 
tumor tissues, is the sum of the immune score and 

Table 1  Clinical characteristics of the training and validation 
datasets

Characteristic TCGA Set Training 
Set

GSE57495 
Set

ICGC Set

Age (years) < 65 78 71 – 103

> = 65 93 83 – 154

Survival 
state

Alive 80 74 21 151

Dead 91 80 42 106

Gender female 78 71 – 120

male 93 83 – 137

Pathologic 
T

T1 7 6 – –

T2 21 20 – –

T3 138 123 – –

T4/Tx 4 4 – –

Pathologic 
N

N1 119 107 – –

N/Nx 51 46 – –

Pathologic 
M

Mx 90 81 – –

M0/M1 81 72 – –

Tumor 
Stage

Stage I 19 17 – –

Stage II 142 128 – –

Stage III 3 3 – –

Stage IV 3 3 – –

Grade G1 28 24 – –

G2 92 82 – –

G3 47 40 – –

G4/Gx 4 4 – –

Total 171 154 63 257

https://reactome.org/
https://reactome.org/
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stromal score. Then, the differences in the immune scores 
of the samples between the two subtypes were compared.

Identify differentially coexpressed genes 
between molecular subtypes
To identify the differentially coexpressed genes between 
each subtype, the R software package DESeq2 was used 
to calculate the differentially expressed genes (DEGs) 
between the two subtypes, and the thresholds were set 
to FDR < 0.05 and | log2FC | > 1. The weighted gene cor-
relation network analysis (WGCNA) coexpression algo-
rithm was used to detect coexpressed genes and modules 
by the R package WGCNA [12]. To improve the accuracy 
of network construction, the TPM profiles of genes were 
subjected to hierarchical cluster analysis to remove out-
lier samples. Second, the distance between each gene 
was calculated using the Pearson correlation coefficient; 
a weighted coexpression network was constructed using 
the R package WGCNA, and coexpression modules 
were screened by setting the soft threshold power β to 
10. Third, the topology overlap matrix (TOM) was then 
constructed from the adjacency matrix to avoid the influ-
ence of noise and spurious associations. On the basis of 
TOM, average-linkage hierarchical clustering using the 
dynamic shear tree method was subsequently conducted 
to define coexpression modules, and the minimum gene 
size of each module was set as 30. The feature vector val-
ues ​​(eigengenes) of each module were calculated in turn 
to explore the relationship among modules, and then 
modules with highly correlated eigengenes were merged 
into new modules by performing cluster analysis with the 
following thresholds: height = 0.25, DeepSplit = 2, and 
minModuleSize = 30. To identify the modules of inter-
est, the correlation between each coexpression module 
and patients’ clinical features as well as cluster subtypes 
was further evaluated. Modules with a significant corre-
lation with the energy metabolism subtypes were defined 
as key modules for the subsequent selection of hub genes 
(Spearman correlation coefficient > 0.4, P < 0.05). Finally, 
pathway enrichment analysis of differentially coexpressed 
genes was performed using the R package WebGestaltR 
(threshold FDR < 0.05).

Establishment of prognosis prediction model
The R package survival coxph function was used for 
analysis of the univariate Cox proportional hazards 

regression model, and log rank p  < 0.01 was selected as 
the threshold. To narrow the gene range and maximize 
the accuracy, least absolute shrinkage and selection oper-
ator (LASSO) Cox regression analysis [13], a method for 
screening signatures with generally effective prognostic 
performance by performing automatic feature selection, 
was performed by using the glmnet package of R to iden-
tify the prognostic genes. Optimal genes were evaluated 
by 10-fold cross validation. Genes obtained by LASSO 
analysis were subjected to multivariate Cox survival 
analysis to construct a final prognostic risk model. Time-
dependent receiver operating characteristic (ROC) curve 
analysis was conducted to assess the prognostic value of 
the identified model using the R package timeROC [14]. 
The risk scores of patients in the internal verification 
set and the external verification set were analyzed using 
the same model coefficients as the training set to verify 
the robustness of the gene signature. Kaplan–Meier 
curves were used to evaluate the difference in survival 
time between groups, and then univariate and multivari-
ate Cox regression analyses were performed to evaluate 
independent prognostic factors. A P value < 0.05 was 
considered statistically significant. Decision curve anal-
ysis (DCA), which can evaluate predictive models from 
the perspective of clinical consequences [15], was per-
formed in the entire cohort to test the clinical usefulness 
of the nomogram in comparison with the gene signature 
and clinicopathological parameters. A restricted mean 
survival time (RMST) curve was drawn to construct the 
comparison with the R package rms.

Bioinformatic analysis
Data processing and symbol remapping were conducted 
using R-4.0.1 software. A P value < 0.05 was considered 
statistically significant. Single-sample gene set enrich-
ment analysis (ssGSEA) was applied to identify the rela-
tionship between the risk scores of different samples 
and biological functions using the R package GSVA. The 
classical gene sets of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways (c2.cp.kegg.v7.0.symbols) 
were considered to decipher the phenotype [16–18]. For 
each analytical pathway, the enrichment score (ES) and 
the significance of ES were calculated, and the normal-
ized enrichment score (NES) and false discovery rate 
(FDR) were further calculated to examine functional 
enrichment results.

Fig. 1  Identification of molecular subtypes in PAAD. A Consensus map of NMF clustering in TCGA PAAD dataset; B Kaplan–Meier curves showing 
the overall survival (OS) curve of the two subtypes in TCGA PAAD dataset; C Consensus map of NMF clustering in ICGC PAAD dataset; D Kaplan–
Meier curves showing the overall survival (OS) curve of the two subtypes in ICGC PAAD dataset; E The proportions of B cells, CD4 + T cells, CD8 + T 
cells, neutrophils, macrophages, and dendritic cells (DCs) between the two subtypes; F Distribution of the ImmuneScore, StromalScore, and 
ESTIMATEScore between the two subtypes

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Result
Construction of energy metabolism‑related molecular 
subtypes
By using NMF analysis based on the expression of the 565 
EMRGs (Supplementary Fig. 2A), we identified two distinct 
subtypes (Cluster 1 [n = 74], Cluster 2 [n = 97]) between 
the 171 patients in the TCGA PAAD dataset (Fig.  1A-
B). Clinically, patients in Cluster 1 showed a significantly 
higher tumor grade than those in Cluster 2 (Supplemen-
tary Fig.  2C). Moreover, we assessed the potential differ-
ence in prognosis between the two subtypes, and patients 
in Cluster 1 had significantly better OS compared with 
patients in Cluster 2 (p = 0.017, HR = 0.597, 95%CI 0.383–
0.914, Fig.  1B). Similarly, the expression profiles of these 
565 EMRGs also divided 257 patients into two molecular 
subtypes in the ICGC PAAD dataset (Fig.  1C-D, Supple-
mentary Fig.  2B), and patients in Cluster 1 also showed 
significantly better OS compared with patients in Cluster 2 
(p = 0.003, HR = 0.610, 95%CI 0.441–0.844, Fig. 1D). These 
data show the consistency of these molecular subtypes in 
PAAD.

Then, we calculated the immune scores of six cell types (B 
cells, CD4 T cells, CD8 T cells, neutrophils, macrophages, 
and dendritic cells) in each PAAD sample and analyzed the 
potential difference between Cluster 1 and Cluster 2. The 
results showed that except for the B cell immune score, 
Cluster 1 showed a higher immune score than Cluster 2 
(Fig.  1E). We further observed that the scores of immu-
nity, stroma, and tumor purity in Cluster 1 were also sig-
nificantly higher than those in Cluster 2 (Fig.  1F). These 
results indicate that lower immune cell infiltration in the 
tumor environment (TME) may confer worse prognosis in 
patients with PAAD.

Identification of differentially coexpressed genes 
between subtypes
We extracted the expression profile of protein-coding genes 
from the TCGA PAAD dataset and clustered all samples 
through hierarchical clustering (Supplementary Fig.  3A), 
from which we confirmed that there was no outlier sample. 
To ensure that the network constructed by WGCNA was 
scale-free, β was set as 10 (Supplementary Fig. 3B). Then, 
we performed cluster analysis and obtained 14 modules, 
among which the gray module represented gene sets that 
could not be aggregated to other modules (Fig. 2A). More-
over, by analyzing the correlation of the module and genes 
in the module with phenotypes (Supplementary Table  2), 

we found that the blue module (containing 1692 coex-
pressed genes) was significantly correlated with Cluster 1, 
and the yellow module (containing 645 coexpressed genes) 
was significantly correlated with Cluster 2 (Fig. 2B-D). In 
addition, we identified 2411 DEGs differentially expressed 
genes (DEGs) between Cluster 1 and Cluster 2, compris-
ing 1641 upregulated DEGs and 770 downregulated DEGs 
(Fig.  2E-F, Supplementary Table  3). We further analyzed 
these 2411 DEGs and their coexpressed genes in the blue 
and yellow modules and identified 743 overlapping genes 
(Supplementary Table  4). These 743 coexpressed DEGs 
were analyzed by GO function and KEGG pathway enrich-
ment (Supplementary Table 5), and 38 KEGG pathways, 52 
GO cellular component (CC), 126 GO molecular function 
(MF), and 977 GO biological process (BP) were enriched. 
The top enriched pathways included cell adhesion mol-
ecules (CAMs), transcriptional misregulation in cancer, 
immunological synapses, and T cell differentiation (Sup-
plementary Fig.  3C-F), suggesting that these coexpressed 
DEGs may be involved in the PAAD molecular regulatory 
network by performing pivotal functions through these 
pathways.

Development of a prognostic risk model based 
on coexpressed DEGs
By analyzing the expression profiles of 743 coexpressed 
DEGs and the corresponding survival of the training set 
using a univariate Cox proportional hazard regression model, 
we identified sixty-seven prognostic coexpression DEGs 
(P  < 0.01, Supplementary Table  6). After Lasso Cox regres-
sion analysis and 10-fold cross validation, we selected four 
genes (λ = 0.1042) as candidate genes for construction of the 
prognostic risk model (Supplementary Fig.  4A-B). We then 
established a gene-based prognostic model by using univari-
ate Cox regression analysis (Table  2). High expression levels 
of GJB5, MET, and TMEM139 were identified as risk factors, 
whereas AFF3 was identified as a protective factor. The final 
4-gene signature formula is as follows: RiskScore = − 0.1513* 
expAFF3 + 0.0156*expGJB5 + 0.0045*expMET + 0.0164*exp™EM139.

We calculated the risk score of each sample accord-
ing to the established model and plotted the risk score 
distribution, which showed that the survival time of the 
samples with high risk scores was significantly shorter 
than that of those with low risk scores (Fig. 3A). In addi-
tion, the AUCs of the 1-, 3-, and 5-year ROC curves 
for the 4-gene signature to predict PAAD survival were 
all above 0.70 (Fig.  3B). Finally, we performed Z-score 

(See figure on next page.)
Fig. 2  WGCNA coexpression analysis. A Gene dendrogram and module colors; B Relationship between the 29 modules and the clinical 
phenotypes and molecular subtypes. C-D The correlation of the blue module with Cluster 1 (C) and the yellow module with Cluster 2 (D) in the 
TCGA PAAD dataset; E Volcano map of differentially expressed genes (DEGs) between the two subtypes; F Heat map of the expression profile of 
2411 DEGs and the distribution of clinicopathological parameters in the two subtypes
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Fig. 2  (See legend on previous page.)
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normalization on the risk score, which classified sam-
ples with a risk score greater than zero into the high-risk 
group and samples with a risk score less than zero into 
the low-risk group. Kaplan-Meier survival analysis dem-
onstrated that there were significant differences between 
the high- and low-risk groups (log rank P  < 0.001, 

HR = 2.413, Fig.  3C). We further obtained the subtype 
schema of samples in the TCGA PAAD cohort [19] and 
compared the difference in risk scores between basal 
and classic samples. We observed that basal samples had 
a significantly higher risk score than classical samples 
(Supplementary Fig. 4C).

Table 2  Univariate Cox regression of the 4-gene signature

Symbol coefficient Hazard ration Z-score P value Low 95%CI High 95%CI

AFF3 −0.1513 0.8595 −1.7450 0.0809 0.7252 1.0190

GJB5 0.0156 1.0157 3.4580 0.0005 1.0068 1.0250

MET 0.0045 1.0045 2.3600 0.0183 1.0008 1.0080

TMEM139 0.0164 1.0165 1.8980 0.0577 0.9995 1.0340

Fig. 3  Construction of the 4-gene signature in the training dataset. A Risk score, survival time, survival status, and expression of the 4-gene 
signature in the training set; B ROC curve of the 11-gene signature for 1-year, 3-year, and 5-year survival in the training set. C Kaplan–Meier survival 
analysis of overall survival for high-risk or low-risk group patients in the training set. ROC, receiver operating characteristic; AUC, area under the 
curve; HR, hazard ratio; CI, confidence interval
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Internal and external validation of the prognostic risk 
model
To determine the robustness of the model, we subjected 
patient data from the entire TCGA dataset to our prog-
nostic gene signature formula. The risk score distribu-
tion of all samples (Fig. 4A), corresponding ROC curves 
(Fig.  4B), and Kaplan–Meier survival curves (Fig.  4C) 
showed that the AUCs of the signature remained high, 
and the high-risk groups had consistently shorter OS 
than the low-risk groups.

However, we noticed that 27 samples in the TCGA 
cohort were not exactly pancreatic ductal adenocarcinoma. 
Among them, ten samples were normal pancreas with atro-
phy, eight samples were neuroendocrine neoplasms, four 
samples were tumors derived from other organs (duode-
num-ampulla in three cases and undefined location in one 
case), two samples were intraductal papillary neoplasms, 
one sample was an acinar cell carcinoma, one was a ductal 
adenocarcinoma but had received neoadjuvant chemother-
apy and one had a normal ampulla [20]. Therefore, we fur-
ther subjected patients’ data of the 146 exactly PAAD cases 
from the TCGA cohort to our prognostic gene signature 
formula (Fig. 4D). The corresponding ROC curves (Fig. 4E) 
showed high AUCs similar to the whole TCGA cohort. And 
Kaplan–Meier survival results also showed that patients in 
the high-risk groups had consistently shorter OS than the 
low-risk groups (Fig.  4F). Therefore, we believe that the 
impact of these 27 samples on the remaining 150 samples is 
acceptable. We further verified the robustness of the 4-gene 
prognosis signature by external analysis in the GSE57495 
dataset (Fig.  5A-C) and ICGC PAAD dataset (Fig.  5D-F) 
using the same coefficients in our prognostic gene signa-
ture formula. Excellent performance was observed in the 
prognostic risk indication.

Independence of the 4‑gene prognostic signature
To assess the independence of the 4-gene signature in clini-
cal application, we conducted univariate and multivariate 
Cox regression in the TCGA PAAD dataset. We system-
atically analyzed the clinical data of patients, including age, 
sex, pathologic T stage, pathologic N stage, pathologic M 
stage, tumor stage, tumor grade, Basal/classical phenotype 
[19] and the 4-gene signature. Univariate Cox regression 
analysis showed that age, tumor grade, pathologic T stage, 
pathologic N stage, tumor stage, and the 4-gene signa-
ture were significantly associated with survival (P  < 0.05, 
Fig.  6A). However, multivariate Cox regression analysis 

revealed that only the 4-gene signature (Fig. 6B) were inde-
pendent prognostic indicators in PAAD. The above con-
ditions indicated that the 4-gene signature has good 
predictive performance in clinical application.

Furthermore, we combined clinical features and the 
4-gene signature and constructed a nomogram using the 
entire TCGA PAAD dataset (Fig. 6C). The nomogram sug-
gested that the 4-gene signature had the greatest impact on 
the survival rate prediction. We calibrated the performance 
of 1-, 2-, and 3-year nomography data for visualization of 
the nomogram, which further verified the consistency 
between the predicted and actual survival (Fig. 6D).

Comparison with previous prognostic models
Previous studies have identified several prognostic mod-
els for PAAD survival. The predictive performance of the 
present 4-gene signature was further compared with four 
previous models (a 15-gene signature proposed by Chen 
et  al. [21], a 7-gene signature proposed by Cheng et  al. 
[22], a 5-gene signature proposed by Raman et  al. [23], 
and a 7-gene signature proposed by Magouliotis et  al. 
[24]). We calculated the risk score of each PAAD sample 
in the TCGA PAAD dataset based on the corresponding 
coefficients provided by each model, evaluated the ROC 
of each model, and divided the samples into high-risk and 
low-risk groups based on the median risk score of each 
signature. All four models divided the patients into a high-
risk group and a low-risk group (Supplementary Fig.  5). 
Kaplan–Meier curves showed that there were significant 
differences between the high-risk and low-risk groups in 
the Chen, Cheng, and Raman models (P < 0.05) but no sig-
nificant difference for the Li model (P = 0.076, Supplemen-
tary Fig. 5A-D). Among the four models, the AUCs of the 
Chen model and Raman model were greater than 0.70, but 
generally, the predictive efficacy of the four models was 
worse than that of our four-gene model (Supplementary 
Fig. 5E-H). Furthermore, RMST curves (Fig. 7A) and DCA 
curves (Fig. 7B) were used to evaluate the predictive effect 
of our 4-gene signature and the four published models on 
the prognosis of PAAD patients, and both curves demon-
strated that the performance of our four-gene model was 
significantly better than that of the previous four models.

GSEA of enriched pathways based on risk score
To investigate the relationship between the risk score and 
biological function of different samples, we conducted 
single sample GSEA (ssGSEA) analysis and calculated 

(See figure on next page.)
Fig. 4  Internal validation of the robustness of the 4-gene signature in the entire TCGA cohort. A Risk score, survival time, survival status, and 
expression of the 4-gene signature in the training set; B ROC curve of the 11-gene signature for 1-year, 3-year, and 5-year survival in the entire TCGA 
cohort; C Kaplan–Meier survival analysis of overall survival for high-risk or low-risk group patients in the entire TCGA set. ROC, receiver operating 
characteristic; AUC, area under the curve; HR, hazard ratio; CI, confidence interval



Page 9 of 16Tan et al. BMC Cancer          (2022) 22:404 	

Fig. 4  (See legend on previous page.)
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the ssGSEA score of each sample on different biological 
functions. The correlation between these functions and 
the RiskScore with a coefficient cutoff of 0.4 showed that 
most of the functional pathways were negatively corre-
lated with the RiskScore of the samples (Fig. 8A). Moreo-
ver, we divided the training set into a high-risk group and 
a low-risk group according to the risk score. GSEA was 
used to analyze the significantly enriched pathways in the 
two groups (Supplementary Table 7). Pathways including 
bladder cancer, the pentose phosphate pathway, the p53 
signaling pathway, and thyroid cancer were significantly 
negatively correlated with the low-risk group, whereas 
the neuroactive ligand receptor interaction pathway was 
negatively correlated with the high-risk group (P  < 0.01, 
Fig. 8B).

Discussion
Cumulative evidence has revealed that metabolic repro-
gramming in cancer is extensively linked to oncogenesis 
and immune disorders [25, 26]. In PAAD, previous stud-
ies suggested that the metabolic alteration in PAAD was 
typically characterized by the overexpression of glycolytic 
enzymes and lactate dehydrogenase for glucose, amino 
acid, and lipid metabolism [27, 28]. Moreover, there is 
complex crosstalk among these reprogrammed metabolic 
pathways within the tumor microenvironment, which 
contributes to the extraordinary growth advantages of 
tumor cells and unlimited development of PAAD [28].

The detection of aberrant metabolomics also con-
tributes to the identification of novel biomarkers for 
diagnosis and prognosis and the discovery of poten-
tial therapeutic targets for PAAD. For example, there 
are significant differences in metabolic profiles not only 
between PAAD patients and normal controls but also 
among different pathological PAAD subtypes [29, 30], 
and metabolic alterations have helped identify several 
promising metabolomics-based diagnostic biomarkers, 
such as single serum metabolites [31] and even metabo-
lomics-based biomarker signatures in blood [32]. Oliver 
F. Bathe et al. proposed the utility of serum metabolomic 
profiling in discriminating PAAD patients from healthy 
controls [33]. PAAD patients with higher levels of PE in 
serum exosomes might have a worse prognosis accord-
ing to a population-based study [34]. Taken together, 
the distinct characteristics of energy metabolism in 

PAAD are worth exploring and may shed new light on 
the development of novel biomarkers related to metabo-
lism. However, the accurate detection of metabolites in 
biological samples remains hampered by some techni-
cal defects, such as a lack of optimized study methods, 
limited coverage in metabolomics fingerprints, and inter-
ference caused by unwanted sources [35]. Moreover, the 
abundance of some metabolites can be quite low and fall 
below the detection limit [36]. Gene expression profiling, 
with the advantage of being convenient and precise, can 
provide a complete picture of tumor properties based on 
quantitative data [37]. By analyzing the expression levels 
of EMRGs in PAAD tumor tissue, the metabolic charac-
teristics of PAAD can be comprehensively interpreted 
from another dimension.

In the present study, a total of 565 EMRGs were 
selected from the Reactome database. These genes 
mainly participate in the key pathways of carbohy-
drate, fatty acid, and glycogen metabolism. Based on the 
expression data of the TCGA-PAAD dataset, pancreatic 
cancer patients were divided into two metabolic sub-
types using the NMF algorithm. Significant differences 
were observed in patients’ immune cell infiltration and 
survival status between the two subtypes. Moreover, the 
proportions of nearly all immune cells and the fraction 
of immune components were significantly higher in the 
subtype with significantly better clinical outcomes, which 
strongly indicates the close relationship between tumor 
energy metabolism and immunology in PAAD. Previous 
evidence has shown that metabolic interventions can 
impact the immune functions of immune cells upon acti-
vation [38, 39]. This phenomenon revealed the potential 
influence of the cross-talk between energy metabolism 
and the immune microenvironment on the development 
and long-term survival of PAAD.

To select the hub genes that may significantly modulate 
cancer metabolism in PAAD, WGCNA coexpression anal-
ysis was conducted, and a total of 743 genes that strongly 
correlated with the two metabolic subtypes and were dif-
ferentially expressed between the two subtypes were identi-
fied and considered as candidates for the construction of a 
prognostic model. Using Lasso regression analysis, a four-
gene (AFF3, GJB5, MET, and TMEM139) signature was 
identified after the verification of the training, internal vali-
dation sets, and external validation sets, which comprised 

Fig. 5  External validation of the robustness of the 4-gene signature in the GSE57495 and ICGC PAAD cohorts. A Risk score, survival time, survival 
status, and expression of the 4-gene signature in the GSE57495 dataset; B ROC curve of the 4-gene signature for 1-year, 3-year, and 5-year survival 
in the GSE57495 cohort; C Kaplan–Meier survival curve based on the 4-gene signature in the GSE57495 cohorts. D Risk score, survival time, survival 
status, and expression of the 4-gene signature in the ICGC PAAD dataset; E ROC curve of the 4-gene signature for 1-year, 3-year, and 5-year survival 
in the ICGC PAAD cohort; (D) Kaplan–Meier survival curve based on the 4-gene signature in the ICGC PAAD cohorts. ROC, receiver operating 
characteristic; AUC, area under the curve; HR, hazard ratio; CI, confidence interval

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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a total of 491 patients from the TCGA​, ICGC, and GEO 
PAAD datasets. The model translated the gene expression 
information into a risk score for the accurate estimation of 
prognosis in PAAD. Notably, the 3-year AUCs for the sig-
nature in all datasets were solid (higher than 0.70). When 

clinicopathologic parameters were taken into considera-
tion, the constructed risk score system still independently 
predicted the prognosis of PAAD patients. A nomogram 
integrating the calculated risk score and clinical informa-
tion constructed for the accurate prediction of survival 

Fig. 6  Independence of the 4-gene prognosis signature. A-B Forest plot of the univariate (A) and multivariate (B) Cox regression analyses in the 
TCGA​ PAAD dataset; C A nomogram was developed by integrating the signature risk score with the clinicopathologic features in the TCGA PAAD 
dataset. D Calibration curves of the nomogram for predicting OS at 1 year, 3 years and 5 years in the TCGA​ PAAD dataset
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probability of PAAD patients also showed confident clini-
cal utility in PAAD.

Although there were 27 non-PAAD samples in the 
TCGA cohort, them are exactly pancreatic carcinoma. We 
also used those 146 PAAD samples for survival analysis, 
and observed that the high risk-score samples have a sig-
nificantly worse prognosis, and the formula also showed 
similarly higher AUC in these PAAD samples. In addition, 
we had verified the good robustness of the 4-gene signature 
by two pancreatic ductal adenocarcinoma datasets from 
ICGC and GEO database. Therefore, we believe that the 
impact of these 27 samples on the remaining 146 samples 
is acceptable. This may also be the reason why other recent 
PAAD relayed prognostic models also did not excluded 
these 27 samples [22, 23].

Among the four genes, GJB5, MET, and TMEM139 
were risk factors, whereas AFF3 was a protective factor for 
clinical outcomes in PAAD. The prognostic value of MET 
in PAAD has been reported in previous studies [40, 41]. 
MET is a well-recognized regulator in the progression of 
PAAD, and MET inhibitors have shown promising results 
in preclinical studies [42, 43]. However, the risk or protec-
tive value of the other three genes in PAAD have rarely 
been identified. Functional enrichment analysis revealed 
that this metabolism-related signature was significantly 
involved in some classical cancer-related pathways. The 
interaction between the four genes and tumor metabolism 
and progression in PAAD deserves further investigation.

Several previous studies have also identified specific 
prognostic models for the risk prediction of PAAD. For 
example, Chen et  al. proposed a 15-gene signature that 
contained C6orf15, CAPN8, HIST1H3H, IGF2BP3, KIF14, 
KRT6A, PMAIP1, PPBP, RTKN2, SCEL, SERPINB5, 
SLC2A1, SLC45A3, TMPRSS3, and UCA1 [21]. Cheng 
et al. identified a biomarker consisting of 7 genes, including 
SCEL, SLC2A1, and SERPINB5, which were in Chen’s gene 
signature [22]. Raman et al. discovered another 5-gene sig-
nature based on the gene expression levels of ADM, ASPM, 
DCBLD2, E2F7, and KRT6A [23], which are distinct from 
the genes in the previous two modules. Magouliotis et al. 
discovered another gene signature containing 3 protein-
coding RNAs and 4 microRNAs that was totally different 
from that of Jiang et al. [24]. The prognostic performance 
of the present model was further compared with that of the 
four previous models. Among the four different signatures, 
our four-gene biomarker had the highest AUC and C-index 
values. It could be concluded that these EMRGs outper-
form some previous biomarkers in the survival prediction 
of PAAD patients and have great potential to be used in 
clinical applications in the future.

However, there are still some limitations of this study. 
For example, the analysis was based on retrospective data 
and needs to be verified in a prospective cohort containing 
samples from multiple centers before clinical application. 
Deeper mechanistic research is also needed to elucidate 
the exact functions of the identified signature in PAAD.

Fig. 7  The performance of the 6-gene signature in comparison to previous signatures in the TCGA STAD dataset. A Restricted mean survival time 
(RMST) curve developed by integrating the indicated 5 signatures; B DCA plots developed by integrating the indicated 5 signatures
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Fig. 8  ssGSEA results according to the risk score of PAAD samples in the TCGA dataset. A Clustering of KEGG pathways correlated with RiskScore, 
with correlation coefficients greater than 0.40; B Enrichment pathways that were significantly correlated in the high-risk and low-risk groups
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Conclusion
In summary, by analyzing the expression levels of EMRGs 
in PAAD tumor tissues, two different clusters with varied 
overall survival and immune status were identified in the 
TCGA PAAD dataset. A 4-gene prognostic signature and a 
novel nomogram were identified for the accurate risk pre-
diction of PAAD patients.
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