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Abstract: Mitochondria, the cell’s major energy producers, also act as signaling hubs, interacting with
other organelles both directly and indirectly. Despite having its own circular genome, the majority
of mitochondrial proteins are encoded by nuclear DNA. To respond to changes in cell physiology,
the mitochondria must send signals to the nucleus, which can, in turn, upregulate gene expression
to alter metabolism or initiate a stress response. This is known as retrograde signaling. A variety
of stimuli and pathways fall under the retrograde signaling umbrella. Mitochondrial dysfunction
has already been shown to have severe implications for human health. Disruption of retrograde
signaling, whether directly associated with mitochondrial dysfunction or cellular environmental
changes, may also contribute to pathological deficits. In this review, we discuss known signaling
pathways between the mitochondria and the nucleus, examine the possibility of direct contacts, and
identify pathological consequences of an altered relationship.
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1. Mitochondrial Form and Function

Mitochondria, a double membrane organelle evolving from an engulfedα-proteobacterium,
is colloquially referred to as the powerhouse of the cell [1,2]. The mitochondrion consists of
an outer membrane, an intermembrane space, the inner membrane, and the matrix. The
outer mitochondrial membrane (OMM) contains porins, which allow for the relatively free
diffusion of small molecules into the intermembrane space. The intermembrane space
also contains proteins involved in bioenergetics and apoptosis. The inner membrane is
highly impermeable and contains many transporters for mitochondrial proteins. The inner
mitochondrial membrane (IMM) creates folds into the matrix, known as cristae, where
the respiratory complexes are located [3]. Finally, the matrix is the innermost space where
many other processes, such as the Krebs cycle, mtDNA replication, transcription, and mito-
chondrial protein synthesis, occur [4,5]. Independent of the nuclear genome, mitochondrial
DNA (mtDNA) are double-stranded, circular molecules of approximately 16.5 kilobases,
encoding for 13 proteins of the oxidative phosphorylation (OXPHOS) complexes, 22 tRNAs,
and 2 rRNAs in mammals [6,7]. It is a multicopy genome, meaning each cell may hold
hundreds to thousands of copies of mtDNA [8]. Although present in the matrix, the mtDNA
associates with several proteins, forming nucleoids, which are present in the inner aspect
of the inner membrane [9].

Mitochondria exist both as individual organelles and highly connected networks.
The network is constantly transformed through fusion and fission, two major aspects
of mitochondrial dynamics, which aids in maintaining both mitochondrial and cellular
health [10]. Fusion is the process of two mitochondrial segments merging together; the
outer membranes must fuse together first, then the inner membranes before an exchange of
information (mtDNA, proteins, etc.) can occur [10]. As cellular cues influence fusion events,
it is thought that fusion acts to marry the state of the cell with mitochondrial function [10].
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Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2), and OPA1 are the three major fusion proteins, with
the first two present at the OMM and Opa1 at the IMM. Knockout of these proteins is embry-
onic lethal, and mutations are associated with neurodegenerative diseases [11–13]. Fission
is a division event that occurs at the endoplasmic reticulum (ER)—mitochondria contact
sites and results in one or more daughter mitochondria [10]. Knockout of fission-associated
proteins leads to elongated mitochondria, while overexpression leads to fragmented mi-
tochondria [14]. Dynamin-related protein 1 (DRP1) coordinates mitochondrial fission by
“strangulating” rings formed around the OMM [15]. Dysregulation of fission events has
detrimental effects, including congenital microcephaly, and may play a role in Huntington’s
Disease and Alzheimer’s Disease [16].

Mitochondria earned their nickname, Powerhouse of the Cell, from their major role
in energy production [2]. Oxidative phosphorylation is the process in which the mi-
tochondria convert substrates into ATP. As mentioned above, the respiratory chain is
embedded in the crista and consists of four large protein complexes, ATP synthase, and
two mobile electron transporters. In addition to ATP, reactive oxygen species (ROS) are
produced during this process, which acts as signaling molecules. In addition to significant
contributions to bioenergetics, mitochondria also play a role in several other metabolic
pathways, such as phospholipids biosynthesis, Ca2+ regulation and signaling, and cellular
stress response [17–19].

Mitochondrial Transport and Distribution

Mitochondria utilize the cytoskeletal network to move throughout the cell [20]. Micro-
tubules are used for long-range transport, while the actin network is used for short-range
movements [20,21]. Via the adaptor complex Miro, which anchors to the outer mitochon-
dria membrane, and Milton, which acts as an adaptor between Miro and the motor protein,
the mitochondria can undergo long-range movements [21]. For microtubule-mediated
transport, the kinesin superfamily proteins are the anterograde (towards the cell periph-
ery) motors, whereas dynein drives movement in a retrograde function (towards the
nucleus) [21,22]. Previous literature has shown that the knockout of the kinesin heavy chain
in mice is embryonic lethal, and further analysis found kinesin disruption to be correlated
with perinuclear clustering of mitochondria [22,23]. Myo19 has been identified as a motor
protein for the actin network [24]. Myo19 requires the Miro proteins for stabilization and
recruitment to the mitochondrial membrane [25]. Knockout of the Miro proteins, and
the consequent degradation of Myo19, results in perinuclear clustering and asymmetric
segregation of mitochondria during mitosis [25].

In general, mitochondrial trafficking allows for the distribution of mitochondria to
respond to local demands for ATP and Ca2+ buffering [21]. The motility of mitochon-
dria is influenced by cytosolic Ca2+, ROS, AMPK signaling, and other factors [21,26–29].
Additionally, there is cell-specific significance for mitochondrial transport. For example,
neuronal development, axon regeneration, and axon branching are influenced by the spatial
and temporal regulation of mitochondria [30–32]. Redistribution of mitochondria within
lymphocytes aids cell migration and polarity during an immune response [33]. Most
importantly, mitochondrial trafficking allows for proper distribution during embryonic
development and mitosis [34,35].

Mitochondrial distribution, while heterogenous, has some consistent patterns across
various cell lines. Collins et al. performed a study to visualize the mitochondrial network,
and in all cells studied, mitochondria were distributed throughout the cytosol but had a
higher density in the perinuclear region [36]. However, there is cell-specific organization as
well. For example, neurons tend to have larger populations of mitochondria at synaptic
sites to provide energy for neurotransmission [37]. In mature cardiomyocytes, mitochon-
dria have three distributions: long rows between bundles of myofilaments, under the
sarcolemma, and perinuclear clusters [38]. Collins et al. concluded that the heterogeneity
in mitochondrial morphology aids the organelle in functioning independently with respect
to mitochondrial membrane potential, Ca2+ sequestering, and permeability transition pore
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activation [36]. The combination of transportation and mitochondrial dynamics allows for
the mitochondria to alter the extent of their connectivity [36].

To maintain optimum distribution, mitochondria must have an anchoring system.
Several anchors have been identified in yeast, but this system is less clear in mammalian
cells [39]. In addition to the cytoskeleton, it is likely that mitochondria use tethering
between other cellular membranes as a sort of anchor [39–41]. Although syntaphilin
was previously identified as a neuron-specific mitochondrial docking protein, Caino et al.
observed syntaphilin mRNA expression in non-neuronal tissues and cell types [42,43].
Depletion of this protein also has tumor-enhancing effects, allowing for mitochondria to
accumulate at the leading edge of the cell and supporting tumor cell migration [43,44].

2. Physical Interactions of Mitochondria with the Nucleus

Mitochondria-associated membranes (MAM) are physical associations between the
mitochondria and other organelles, such as ER, lysosomes, and peroxisomes. The existence
of these contact sites suggests functions in addition to organelle-specific tasks. For example,
it has been found that the domain formed between the endoplasmic reticulum (ER) and the
mitochondria—the best characterized MAM—functions in regulating lipid synthesis, Ca2+

signaling, controlling mitochondrial biogenesis, and intracellular trafficking [27]. Through
studying ER-mitochondrial contacts, it has been observed that the two organelles can tether
together through stable interactions between apposing membrane proteins [27]. While
tethers between the mitochondria and the ER have been well established in yeast (ERMES),
these connections are less clear in mammals. A number of tethering complexes and proteins
have been proposed, such as IP3R/Grp75/VDAC, PTPIP51/VAPB, and Mfn2; however,
no one protein appears to be sufficient for maintaining MAM structure and integrity [45].
As much as 20% of the mitochondria surface is juxtaposed to the ER, with approximately
10–30 nm between the organelles [46]. Ion transporters and biosynthetic enzymes are
prominent components of MAMs [46]. Another major feature of MAMs is the lipid raft-
like domains, enriched in cholesterol and gangliosides [47]. Lipid composition influences
apoptosis, autophagy, and as well as mitochondrial dynamics and morphology [45,46].
Alterations in MAM signaling and contacts have been associated with various pathologies,
such as cancer, diabetes, and neurodegenerative diseases [28].

The nucleus has two enveloping membranes, an inner (INM) and an outer nuclear
membrane (ONM), joined periodically by nuclear pore complexes [29]. The ONM is
contiguous with both rough and smooth endoplasmic reticulum (ER) [29]. As the ONM
and ER are contiguous, and ER-mitochondrial contacts are well established, it seems likely
that these two membranes may also come into close contact. However, stable MAM
structures between mitochondria and nucleus have not been described.

Early studies of the mitochondria and their relation to the nucleus hinged on the “mys-
tery” of mitochondrial origin in the cell—where did new mitochondria come from? There
were several speculations, including de novo formation and binary fission [48,49], but a
common belief was mitochondrial were formed and extruded from the nucleus [50,51]. Elec-
tron microscopy showed a close association of the mitochondria with the nucleus in various
cell types [50–53]. Mota described an accumulation of mitochondria within invaginations
of the nuclei of aerial roots of Chlorophytum capense [53]. The contacts have even been
described as the mitochondrial and nuclear membranes being contiguous [53,54]. A study
by Frederic showed that these interactions increased with the addition of 2,4-dinitrophenol,
an OXPHOS uncoupler [55].

Prachař observed mitochondria in close proximity of the nuclear envelope in L1210
mouse leukemia cells, also noting a fusion of the outer membranes [56]. The fusion
occurred at a much higher incident rate in the rapidly growing L1210 cells, in comparison
to others, possibly due to increased metabolic activity [56]. As mitochondria can be seen
perinuclearly in almost of metabolically active cells, Prachař suggested the contacts between
the nucleus and the mitochondria could act as an energy reservoir for mRNA and protein
transport [56]. Dzeja et al. also proposes energetic communication as a major function of
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nuclear-mitochondrial contacts [57]. Through laser confocal microscopy, they observed
mitochondria clustered around the nucleus, although structures in the perinuclear space
hindered direct contact, and hypothesized this proximity is required due to the high-energy
demands of the nucleus [57]. ATP is required for nuclear transport, and more specifically,
inhibition of OXPHOS abolishes transport while inhibitors of glycolysis decreased ATP
production but did not abolish transport [57].

The proximity between these organelles may also function to accelerate retrograde
responses, stimulating mitogenesis or mitophagy. In a study by Al-Mehdi et al., hypoxia
triggers the perinuclear localization of mitochondria in pulmonary artery endothelial cells
(PAEC) [23]. Consequently, reactive oxygen species (ROS) then accumulate in the perinu-
clear and nuclear regions, introducing an oxidative base modification in hypoxia response
elements of hypoxia-inducible promotors, important for transcriptional activation [23]. In
hypoxic conditions, hypoxia-induced factor 1α (HIF-1α) induces transcription of hypoxia
up-regulated mitochondrial movement regulator (HUMMR) [58]. Interestingly, Li et al.
found perinuclear clustering following transfection with HUMMR in mouse astrocytes;
however, it was also observed that HUMMR functions to increase anterograde movement
while decreasing retrograde mitochondrial movement [58].

More recently, Desai et al. described nuclear-mitochondrial contact sites that aid in a
pro-survival retrograde response in MDA cells [59]. In their study, they identified TSPO,
an OMM-localized protein, as a key protein in a scaffolding complex between the two
organelles [59]. Upon induction of mitochondrial stress, mitochondria redistribute to the
perinuclear region and deliver cholesterol to the nuclear envelope [59]. The contact site
increases nuclear exposure of ROS and nuclear stabilization of pro-survival transcription
factors [59]. Additionally, it was suggested that TSPO deficiency triggers a retrograde
response via disruption of the mitochondrial membrane potential (∆Ψm) [60]. The decrease
in ∆Ψm leads to a dysregulation of calcium homeostasis, reduced respiratory function, and
altered transcriptome [60].

3. Functional Interactions between the Mitochondria and the Nucleus
3.1. Nuclear Control

When mitochondria evolved from endosymbionts to organelles, they experienced a
massive genome reduction [1,61,62]. The majority of the ancient mitochondria’s genome
was transferred to the host’s nucleus and integrated into the eukaryotic genome. Nuclear-
encoded mitochondrial genes include the outer membrane and intermembrane space
proteins, as well as most inner membrane and matrix proteins [63]. The proteins are
initially synthesized on free cytosolic ribosomes [64]. Many precursor proteins contain an
N-terminal mitochondrial targeting sequence (N-MTS) which is recognized by receptors on
the mitochondrial surface and eventually cleaved [63]. Other precursor proteins contain
an internal targeting sequence that will not be cleaved [63]. Although there are multiple
import pathways, the canonical pathway involves initial import through the translocase
of the outer membrane (TOM) complex [64]. From there, the precursor proteins will be
processed by the TIM22 or TIM23 complex resulting in import to the matrix, integration
into the outer and inner membrane, or released into the intermembrane space [64].

All transcription factors involved in mitochondrial gene expression are encoded by the
nucleus, as well as the major transcriptional co-activators [65]. Nuclear respiratory factors
1 and 2 (NRF-1/NRF-2) are nuclear-encoded transcription factors that activate nuclear-
encoded genes coding for mitochondrial proteins [65]. NRF-1 acts on the majority of genes
required for mitochondrial respiratory function, plus genes encoding components of the
heme biosynthetic pathway and the protein import and assembly complex [65]. NRF-2 acti-
vates cytochrome oxidase subunit IV and three of the succinate dehydrogenase (Complex
II) subunits [65]. Most important NRF-1 and -2 activate mitochondrial transcription factor
A (TFAM) [65,66]. In addition to its role in transcription initiation, TFAM contributes to the
stabilization and maintenance of mtDNA [65]. Peroxisome proliferator-activated receptor
gamma coactivator 1α (PGC-1α) is the major transcriptional coactivator for mitochondrial
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biogenesis [65]. PGC-1α interacts with NRF-1 and -2, as well as estrogen-related recep-
tor alpha and several other tissue-specific transcription factors to activate transcription
of nuclear genes encoding mitochondrial proteins, including TFAM [65], mitochondrial
RNA polymerase (POLRMT), the initiation factor TFB2M, and transcription termination
factors mTERFs [65]. The nucleus also controls replication, maintenance, and segrega-
tion of mtDNA [67,68]. Table 1 summarizes the role of nuclear factors in responding to
mitochondrial signals.

Table 1. Nuclear effectors of mitochondrial signaling.

Nuclear Signal Caused by Mediated by Mitochondrial Response Ref

TFAM OXPHOS defect PGC-1α, NRF1/2 Transcription initiation, mtDNA
maintenance, and stabilization [65,66]

PARP1 Nuclear DNA damage
Decreased metabolism and

mitogenesis, increased
oxidative stress

[69]

ERRα exercise PGC-1α, mTOR, cAMP Oxidative metabolism,
metabolism remodeling [70,71]

CREB Low ROS levels, DFO Mitochondrial PKA Expression of ETC components [70,72,73]

SOD2 Accumulation of ROS
and free radicals ? ROS degradation [74]

MEF2D Phosphorylation by
CaMK Hsp70 Complex I function [75,76]

NF-κB TNFα stimulation IkB, Hsp70, p53 Decrease mitochondrial
gene expression [77,78]

TERT

Oxidative stress Src kinase, Ran GTPase mtDNA protection [79,80]

Reverse transcription of
mitochondrial tRNAs [81]

STAT3 Modulation of ETC [82]

P53

Pro-apoptotic stimuli,
oxidative stress Tid1 Apoptosis, necrosis [83–85]

Oxidative stress Reduces SOD2
scavenging capacity [86]

POLG mtDNA stability, replication,
and repair [87–89]

3.2. Retrograde Signaling

As described above, over 95% of mitochondrial proteins are coded by nuclear DNA.
Therefore, alterations and adaptations in mitochondrial function are heavily dependent
on the nucleus responding to signals originating at the mitochondria, a process known
as “retrograde signaling” [90]. Retrograde signaling can extend lifespan by adapting to
metabolic needs and eliminating dysfunctional organelles [91]. The retrograde response
may be stimulated by the ATP/ADP ratio, disruption of the mitochondrial membrane
potential, reactive oxygen species (ROS), or general cellular stress [92,93].

The retrograde signaling response was first discovered and characterized in yeast [94,95].
In yeast, Rtg1-3 has been identified as a direct mediator of the retrograde response [96,97].
Upon assembly, the Rtg complex translocates from the cytoplasm to the nucleus [98].
The RTG pathway compensates for mitochondrial dysfunction by upregulating citric
acid cycle genes and, therefore, citric acid cycle activity [75]. Studies showed that ATP
concentration is a major trigger of the retrograde response in yeast [99]. Inhibition of the
TOR pathway, as well as activation of the SIRT2 pathway, have been shown to activate
retrograde signaling [75,100].
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In C. elegans and Drosophila, the retrograde response is primarily carried through via
the mitochondrial unfolded protein response, which will be discussed more below [92].

While retrograde signaling pathways have been elucidated in yeast, many of the
identified proteins do not have a mammalian homolog, and there is still controversy
whether there is a bona fide mitochondrial UPR or how to define the mitochondrial stress
response in mammalian cells [101,102]. Here we will discuss signaling molecules and
pathways that fall under the category of retrograde signaling. Table 2 contains a summary
of the major signaling molecules involved in canonical mito-nuclear communication.

Table 2. Mitochondrial signals that trigger a nuclear response.

Mitochondrial Signal Caused by Mediated by Nuclear Response Ref

Calcium mtDNA depletion,
∆Ψm

NF-κB, JNK, ATF2,
calcineurin, NFAT

Ca 2+ homeostasis
Glucose metabolism

Pro-inflammatory factors
Cell proliferation factors

Anti-apoptotic factors

[103–111]

ROS
Hypoxia, defects in

mitochondrial
respiration

HIF-1α Hypoxic transcriptional
response [23,112,113]

NO Calcium cGMP, PGC-1α Mitogenesis [114–117]

AMP/ATP Cellular stress, fasting,
exercise AMPK Mitogenesis, mitophagy [118–124]

NADH/NAD+ Metabolic activities SIRTs, PGC-1α, PARP
Mitogenesis, fatty acid

oxidation, DNA repair, DNA
modifications

[125–129]

Acetyl CoA Fed states acetyltransferases Histone acetylation, cell
growth, and proliferation [125,130]

α-ketoglutarate TCA cycle 2-OGDDs Hypoxic response, chromatin
modifications [125]

Succinate TCA cycle HIF-1α Histone and DNA
methylation [125]

fumarate Oxidation of succinate HIF-1α Histone modifications [125,131]

FAD/FADH Metabolic activities demethylation [126,132]

3.2.1. Calcium

In partnership with the ER, the mitochondria regulate Ca2+ homeostasis. As the ER
acts as the largest store of cellular calcium, microdomains of high calcium concentration can
form at ER-MAMs. Mitochondria can uptake calcium through the OMM via VDAC and use
the MCU (mitochondrial calcium uniporter) to bring calcium into the matrix. Mitochondrial
buffering of calcium regulates the activity of calcium channels in a negative feedback loop.
Within the mitochondria, calcium concentration greatly affects mitochondrial function—
several dehydrogenases in the matrix are sensitive to Ca2+, therefore influencing ATP
synthesis via NADH availability and electron flow [133]. High concentrations of Ca2+ can
stimulate the opening of the permeability transition pore (PTP) and induce apoptosis or
necrosis, while low concentrations may stimulate pro-survival autophagy due to decrease
ATP concentrations [133].

Calcium acts as a second messenger in many signaling pathways, its spatial and
temporal waves regulate the activation of transcription factors and, therefore, gene ex-
pression [103,106]. Calcium was first observed as a retrograde signaling molecule in a
study by Biswas et al. [106]. Through a combination of mtDNA depletion and metabolic
inhibitors, they were able to establish that disruption of the mitochondrial membrane
potential and altered ATP synthesis leads to Ca2+ efflux in C2C12 muscle cell lines [106].
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They observed decreased NF-κB activity, as well as an increase in JNK-dependent ATF2 and
calcineurin-dependent NFAT [106]. As a note, the NF-κB pathway is thought to evolve from
yeast retrograde signaling [110]. In response to mitochondrial respiratory stress, NF-κB
translocates to the nucleus to activate transcription of target genes for Ca2+ homeostasis
and glucose metabolism [104,110]. Heterogenous nuclear ribonucleoprotein A2 acts as a co-
activator by associating with the enhanceosome and acetylating target promoters [109,111].
Additionally, they saw increased expression of ryanodine receptor-1 (RyR-1) and subse-
quent Ca2+ release [106]. More recent research supports this model, showing mitochondrial
dysfunction upregulated RyR-1 activity as well as decreased levels of its regulator, FKBP12,
resulting in intracellular Ca2+ leak and calcineurin-dependent retrograde signaling [108].
Ultimately, in cells experiencing mitochondrial dysfunction, increased cytoplasmic Ca2+

leads to alteration in the activity of pro-inflammatory and cell proliferation transcription
factors and even expression of anti-apoptotic markers [105–107]. Figure 1 illustrates the
role of several molecules in retrograde signaling, discussed in this review.

Figure 1. Signaling from the mitochondria to the nucleus. Signals originating from the mitochon-
dria, including calcium, reactive oxygen species (ROS), and AMP/ATP, often stimulate pathways,
leading to transcriptional changes in the nucleus. Nuclear responses can involve upregulating cell
proliferation and anti-apoptotic factors, as well as proteins involved in mitogenesis, such as PGC-1α
and nuclear-encoded mitochondrial proteins. The levels of other molecules, such as TCA intermedi-
ates Acetyl CoA and α-ketoglutarate, can influence the epigenome by modifying methylation and
acetylation, and consequently, the cell physiology.

3.2.2. Free Radicals

Free radicals are any molecular species capable of independent existence that contains
an unpaired electron in an atomic orbital. Many are unstable and highly reactive, leading to
the early belief that all free radicals are exclusively damaging agents. While excessive levels
of free radicals can be damaging, especially to DNA, it has also been shown that they are
essential for numerous signaling pathways, including retrograde signaling [112,114,134].
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Reactive oxygen species (ROS) include superoxide (O2
−), hydrogen peroxide (H2O2), and

the hydroxyl radical (OH•) [135]. Mitochondrial produced ROS (mtROS) primarily forms
at complex I and III of the respiratory chain [134]. It has roles in apoptosis, activation
of transcription factors, cell differentiation, and aging [112]. ROS activates retrograde
signaling pathways in a dose-dependent manner—lower levels may induce the Ca2+/Cn
pathway while higher levels may reflect hypoxic conditions [136].

ROS primarily activates stress retrograde pathways; however, mtROS can act as a di-
rect retrograde molecule as well, specifically in hypoxic conditions. During hypoxia, mtROS
stabilizes hypoxic induction factors, specifically HIF-1α, which allows for the transcrip-
tional response to hypoxia, the dampening of ROS production, and ultimately increases
replicative life span [112,113]. As previously described above, Al-Mehdi et al. observed
that perinuclear clustering of mitochondria during hypoxia enhanced the ability of mtROS
to accumulate near the nucleus and induce oxidative base modifications of the VEGF pro-
moter [23]. These modifications are important for the hypoxic transcriptional response [23].

Although we primarily discuss pro-survival pathways in this review, it is important
to note that some retrograde signaling pathways lead to apoptosis; such as ROS-induced
JNK (c-Jun N-terminal kinase) signaling. JNK is a member of the mitogen-activated protein
kinase superfamily (MAPKs) [137]. Depending on the stimuli and cell type, JNK can
promote apoptosis or cell survival [138]. ROS activates JNK through upstream kinases,
including ASK1 (apoptosis signaling regulated kinase 1) and Src [139]. Prolonged activation
of JNK can stimulate a second generation of mitochondrial superoxide and promote pro-
apoptotic activation through interactions with the Bcl-2 family [139,140]. In contrast,
transient activation of JNK may promote pro-survival signaling, potentially enhanced by
other survival signaling pathways, such as NF-κB [137,141,142].

Nitric oxide (NO) is a freely diffusible gas synthesized from L-arginine and O2 by NO
synthase in a Ca2+-dependent manner [117]. The existence of mitochondrial NO synthase
is highly debated; however, NO has been detected within the mitochondria and shown
to regulate mitochondrial function [115]. In addition to acting on the respiratory chain
complexes, NO has been shown to be a player in mitogenesis [114,115,117]. In a cGMP-
dependent manner, NO increases expression of PGC-1α, which subsequently increases
expression of transcription factors NRF-1 and TFAM [115,117]. Following exposure to NO,
Nisoli et al. observed an increase in mtDNA content and functionally active mitochondria
in mammalian cells [116].

3.2.3. Metabolic Sensors
AMPK Pathway

AMP-activated protein kinase (AMPK) is a metabolic sensor of the AMP/ATP ra-
tio [118,119]. It is activated by cellular stress, fasting, and exercise (increase in AMP)
and acts as a switch for catabolic pathways to generate ATP [119]. At the same time, it
inhibits ATP-dependent biosynthetic pathways to reserve cellular ATP [119]. In recent
years, scientists have been able to resolve a pool of AMPK with mitochondrial localiza-
tion [120]. Inhibition of mitochondrial AMPK activity was sufficient to trigger cytosolic ATP
increase [120]. AMPK has several effects on mitochondrial function, including mitogenesis,
mitophagy, and regulation of mitochondrial dynamics [121–124].

mTOR Pathway

Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates
anabolic processes in response to growth factors, energy status, and oxygen levels [143].
mTOR complex 1 (mTORC1) is a central signaling complex very sensitive to rapamycin
that stimulates protein synthesis and other anabolic processes, including mitogenesis and
mitochondrial activity [143]. mTORC1 controls these functions through phosphorylation
of 4E-BP, eIF4E-binding proteins, allowing for the assembly of the translation initiation
complex [144]. It can also modulate energy metabolism through stimulation of PGC-1α,
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HIF-1 α, and SREBP1/2 [144]. Finally, mTORC1 is thought to play a role in the Integrated
Stress Response by remodeling one-carbon metabolism [145].

Sirtuins

Three sirtuins (SIRTs), SIRT3, 4, and 5, are localized in mitochondria and respond to
low mitochondrial membrane potential [146]. SIRT3 and SIRT5 are NAD(+)-dependent
deacetylases, removing acetyl groups from acetyllysine-modified proteins. SIRT4 trans-
fers the ADP-ribose group from NAD(+) to acceptor proteins. With adenine nucleotide
translocator 2 (ANT2), SIRT4 regulates the coupling efficiency of mitochondrial respiration.
SIRT4 acts in a feedback loop with ANT2-AMPK-PGC1α to regulate mitochondrial mass
and transcription of OXPHOS genes [147]. In this loop, overexpression of SIRT4 leads to
an increase in ATP, which decreases phosphorylated AMPK [147]. Consequently, this de-
creases the expression of fatty acid oxidation genes and PGC1α activity [147]. Additionally,
SIRT4 positively regulates mTORC1 signaling [148]. As SIRT4 is active in a “fed” state,
it mediates “glutamine sparing” via inhibition of glutamate dehydrogenase [148]. This
allows mTORC1 to be active and induce anabolic pathways [148].

FOXO Factors

Forkhead box O (FOXO) transcription factors are thought to have a role in retrograde
signaling; however, it is not yet determined whether this role is direct, indirect, or both [149].

FOXO transcription factors are inhibited by insulin and growth factor signaling and
regulated by phosphorylation and post-translational modifications [149]. FOXO activity
and function are also regulated by ROS, AMP, NAD+, and Acetyl-CoA, further implicating
it in retrograde signaling pathways [149,150]. In states of high cellular ROS, FOXO3 is
able to upregulate mtROS scavengers while reducing mitochondrial function to prevent
ROS generation [149]. FOXO3 also mediated PINK1 expression and can therefore regulate
mitochondrial remodeling and mitophagy [149,151].

3.2.4. Mitochondrial Derived Peptides

Mitochondrial derived peptides (MDPs) are peptides encoded within small open
reading frames in the mtDNA. Three types have been reported, MOTS-c (mitochondrial
open-reading frame of the twelve S rRNA-c), Humanin, and SHLPs (small humanin-
like peptides), and they were proposed to play roles in metabolism, aging, and cell sur-
vival [152]. MOTS-c is a 16-amino acid peptide encoded with the mitochondrial 12S
ribosomal RNA [153]. MOTS-c regulates cellular metabolism in an AMPK-dependent man-
ner [153]. Under metabolic stress conditions, MOTS-c translocates from the mitochondria to
the nucleus. MOTS-c binds to Antioxidant Response Elements (ARE) on the nuclear DNA
and interacts with NRF2 to activate transcription of stress response genes [154]. Humanin
is a 24-amino acid peptide encoded with the mitochondrial 16S ribosomal RNA [155]. Hu-
manin can bind cell surface receptors that activate signaling pathways for cell proliferation
and survival, as well as block apoptosis, decrease inflammation, and reduce oxidative stress
in various aging models [155]. MOTS-c and humanin increase during senescence and in-
crease senescence-associated secretory phenotypes. Furthermore, this increases respiration
via fatty acid oxidation [155]. SHLPs are six, 20–38-amino acid peptides encoded within the
16S ribosomal RNA [152]. Although SHLPs have been studied less, it has been shown that
they have organ-specific expression [152]. SHLP 2 and 3 appear to have a cytoprotective
role, while SHLP 6 increased apoptosis [152].

Although there have been several studies studying the response to humanin, the origin
of the peptide is still controversial. MtDNA gene sequences are present in the nucleus and
several species, including macaques, showed that the peptide would likely not be produced
in the mitochondria, as it lacks the initiator methionine [156].
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3.2.5. mtDNA

The mtDNA also acts as a signaling molecule. It has previously been shown that
cytoplasmic mtDNA and mtRNA activate the cGAS-STING-TBK1 pathway, stimulating an
antiviral immune response [157,158]. Wu et al. developed a Tfam+/− MEF cell line that, due
to its reduced expression of TFAM, exhibited elongated mitochondria, enlarged nucleoids,
and increased basal release of mtDNA [159]. When exposed to mitochondrial stressors,
Tfam+/− MEFs were more resistant to cell death compared to wild-type cells [159]. Through
DNA-damage response induction/repair studies, it was found Tfam+/− MEFs had faster
nDNA repair kinetics, an effect not seen in ρ◦ cells, due to their lack of mtDNA [159].
Upregulation of PARP9, an Interferon Stimulated Gene, played a major role in the DNA
repair pathway [159].

MtDNA stress signaling may also have negative effects, as seen by Hamalaninen et al.
Mutation of the mtDNA replicase, Polg, not only increases mtDNA mutations but also
stalled the cell cycle and increases the frequency of double-stranded DNA breaks [160].
Although nucleotide pools increase up to tenfold in preparation for the S phase, total
cellular dNTP pools were significantly diminished in mutator iPSCs [160]. The dNTP
pools, especially dTTP and dATP, were preferentially sequestered into the mitochondria
for mtDNA maintenance [160]. As the Polg mutation induced a stress-related phenotype,
the frequency of mtDNA replication was increased, driving the demand for nucleotides up
and destabilizing the nuclear genome [160].

3.2.6. Non-Coding RNAs

Non-coding RNAs (ncRNAs) are RNAs of varying lengths that do not code for a
protein. These are not RNA turnover products, but rather ncRNAs are generated by
ribonucleases [161]. ncRNAs have cell-specific expression patterns and bidirectional sig-
naling [162]. Although the majority of ncRNAs are encoded by the vast nuclear genome,
the mtDNA encodes mitochondrial ncRNAs as well [163]. Both nuclear and mitochondrial
ncRNAs were reported to localize in the mitochondria [163]. More recently, mitochondrial
ncRNAs have been suspected of playing a role in retrograde signaling. Nonetheless, this is
also a controversial topic, as the possible mechanisms associated with their production and
function are not known [164].

mito-ncR-805 is a non-coding RNA that maps to the light-strand promoter D-loop
regulatory region of mtDNA [165]. It is a 70 bp transcript that has a granular form,
concentrated in the perinuclear region [165]. In alveolar epithelial Type-I (AETII) cells,
upon cigarette smoke exposure, mito-ncR-805 was suggested to localize in the nucleus,
where it regulates a subset of nuclear-encoded mitochondrial genes, particularly TCA cycle
enzymes and respiratory chain complex subunits [165]. Again, it is unclear whether this
RNA originates from nuclear pseudogenes.

microRNAs (miRNAs) are the most studied ncRNAs. They are around 22 nucleotides
and regulate the translation of mRNAs into proteins [166]. It has already been suggested
that miRNAs can regulate anterograde signaling, for example, through modulating COX1
expression and mitochondrial morphology, but less has been published about miRNAs
in the retrograde response [167]. Although transcribed by the nuclear DNA, miR-663 acts
as a regulator of retrograde signaling [167]. miR-663 regulates OXPHOS complex activity
by controlling the expression of nuclear-encoded OXPHOS subunits and assembly fac-
tors, as well as stabilizing supercomplexes [167]. In oxidative stress conditions, increased
ROS levels and hypermethylation of the miR-663 promoter resulted in decreased expres-
sion of miR-663 [167]. This, in turn, reduces OXPHOS gene expression and ultimately
OXPHOS capacity [167].

Other interesting ncRNAs involved in mito-nuclear communication include the Telom-
erase RNA TERC, SncmtRNA, and tRFs. Telomerase RNA TERC was reported to be imported
into the mitochondria, then processed into TERC-53 before being exported back into the
cytosol [168]. The cytosolic levels of TERC-53 reflect the mitochondrial state—mitochondrial
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dysfunction leads to the accumulation of TERC-53 [168]. TERC-53 regulates GAPDH
translocation into the nucleus and appears to play a role in cellular senescence [169].

Sense mitochondrial encoded ncRNA (sncmtRNA) is a 2374 bp transcript that con-
tains a loop forming inverted repeat, jointed at the 5′ terminus of the 16S mitochondrial
ribosomal RNA [170]. It is expressed in proliferating cells and tumor cells, localizing in the
mitochondria, the cytoplasm, and the nucleus [171]. Within the nucleus, Landerer et al.
observed an association of sncmtRNA with heterochromatin, where it may play an epige-
netic role on cell cycle progression [171]. tRNA fragments (tRFs) are nucleotide fragments
produced from nuclear- and mitochondrial-encoded tRNA loci [172]. There are five types
of tRFs—5′ fragments, 3′ fragments, 5′ halves, 3′ halves, and internal tRFs [172]. Like most
ncRNAs, tRFs are very specific to many conditions, including cell type, tissue type, disease,
and an individual’s characteristics [172]. tRFs have been shown to influence apoptosis,
translation, and the viral response [173]. Although the exact role of mitochondrial tRFs has
yet to be elucidated, their detection in various pathophysiological conditions suggests a role
in the cellular stress response [172–176]. Definite proof that these RNAs migrate from the
mitochondria to the nucleus is not available, as the presence of hundreds of mitochondrial
DNA pseudogenes in the nucleus makes this assumption controversial.

3.2.7. Integrated Stress Response

The Integrated Stress Response (ISR) is a signaling network that helps the cells adapt to
environmental and pathological conditions [177]. Triggers of the ISR include the unfolded
protein response, nutrient deprivation, viral infection, oxidative stress, and mitochondrial
dysfunction [177,178]. The stresses are sensed by four kinases, HRI, GCN2, PERK, and PKR,
that phosphorylate eukaryotic translation initiation factor (eIF2α) [177,179]. This results
in the reduction in protein synthesis while also stimulating the translation of ISR-specific
mRNAs that inhibit transcription initiation [179]. Below we will briefly discuss some of
these triggers and the major players in their pathways in relation to the mitochondria.

UPRmt

The mitochondrial unfolded protein response (UPRmt) is a protective transcriptional
response triggered by mitochondrial proteotoxic stresses, including the accumulation of
unfolded or misfolded proteins and mitochondrial dysfunction [180]. This pathway was
elucidated in C. elegans, but it probably differs somehow in mammalian cells [181]. The
dual localizing transcription factor, ATFS-1 is imported into the mitochondria where its
mitochondrial targeting sequence (MTS) is cleaved; however, defects in mitochondrial
import of ATFS-1 lead to trafficking of the transcription factor into the nucleus [182].
Within the nucleus, ATFS-1 activates transcription of genes that promote mitochondrial
proteostasis genes and OXPHOS complex assembly [183]. Additionally, mitochondrial
accumulated ATFS-1 binds to the mtDNA and limits mtDNA transcription of mitochondrial-
encoded mRNAs, ultimately coordinating biogenesis and the proteostasis capacity [183].
General Control Nonderepressible 2 (GCN2) is the eIF2α kinase responsible for responding
to amino acid depletion and oxidative stress [184]. It acts in a complementary pathway to
ATS-1, where ATS-1 regulates mitochondrial chaperones while GCN-2 phosphorylation
of eIF2α and subsequent activation of activating transcription factor 4 (ATF4) leads to
attenuation of global translation [184]. In mammals, ATF5 is regulated and acts similarly
to ATFS-1 [185]. It localizes to the mitochondria in the absence of stress and traffics to the
nucleus in stress conditions to activate mitochondrial protein homeostasis machinery [185].

CCAAT/enhancer-binding protein (C/EBP) homology protein (CHOP) is a transcrip-
tion factor activated during mitochondrial proteotoxic stress, as well as amino acid depri-
vation and glucose starvation [186]. Its transcriptional targets overlap with ATF4, another
major transcription factor in the ISR. ATF4 and CHOP interact to induce genes involved in
protein synthesis, like the chaperones Hsp60 and Hsp10, mtDnaJ, and Clp [187]. CHOP
also acts to regulate ATF4 expression to prevent excessive activation of the ISR [186]. Loss of
CHOP leads to disruption of mitochondrial integrity and supply of critical metabolites [186].
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Additionally, there appear to be different UPRmt responses depending on the mito-
chondrial compartment—one that is activated by matrix stress, as described above, and a
different response to intermembrane space (IMS) stress [188]. The latter is stimulated by
ROS overproduction, which activates Akt and phosphorylates estrogen receptor α (ERα).
In turn, ERα leads to an increase in NRF1 transcription and ultimately biogenesis [189].
This response elevates levels of the proteasome and OMI, a protein that is essential for
protein quality control and limiting IMS stress [188].

Interestingly, induction of ATF4, although activated during mitochondrial translation
inhibition, does not lead to UPRmt, but simply the ISR gene expression [190]. UPRmt
remains not well understood, with several questions remaining [101].

Mitochondrial Dysfunction and Oxidative Stress

While other ISR pathways are becoming clear, mitochondrial dysfunction and ox-
idative stress appear to stimulate the ISR in different ways, depending on cell type and
physiological conditions [191]. Mitochondrial dysfunction and oxidative stress often go
hand in hand, making it difficult to discuss one without the other.

In five conditional knockouts of mtDNA expression and maintenance genes (Twinkle,
Tfam, Polrmt, Lrpprc, and Mterf4), mice suffered from mitochondrial cardiomyopathy,
changes in mtDNA copy number, and decreases in respiratory activity [192]. A tran-
scriptomic and proteomic study revealed that eIF2α signaling was enriched, specifically
with ATF4, Myc, CHOP, and ATF5 upregulated [192]. In addition to ISR activation, mi-
tochondrial one-carbon metabolism was upregulated, and this remodeling occurs early
in the stress response [192]. A secondary deficiency in coenzyme Q (CoQ) develops and
progresses through the disease state [192].

Many labs have observed the cytokine fibroblast growth factor 21 (Fgf21) upregulated
during the stress response and have indicated it as a potential disease biomarker [191,193].
As a key regulator of lipid and glucose metabolism, it is not surprising that Fgf21 may
play a role in the progression of the ISR. Forsström et al. described three temporal stages
of ISR where initial respiratory deficiency modulates Fgf21 expression as well as ATF5
and remodeling of the one-carbon cycle [191]. The second stage is Fgf21-dependent and
is characterized by the activation of de novo serine biosynthesis, glucose uptake, and
transsulfuration, as well as upregulated expression of ATF4 [191]. Serine is a major source
of one-carbon units in folate metabolism, and its upregulation via ATF4 induction may
act to maintain cellular one-carbon availability following metabolic remodeling [194]. The
final stage, a mild UPRmt, is independent of Fgf21 [191].

Inhibition of respiratory complexes can activate different branches of the ISR depend-
ing on the cell type and the affected complex [178]. In myoblasts, inhibition of complex I
and III, by piericidin and antimycin, respectively, led to an increase in the NADH/NAD+
ratio in both the mitochondrial and the cytosol, hindering aspartate synthesis and deplet-
ing asparagine [178]. This activates the ISR via the eIF2α kinase GCN2, which primarily
senses amino acid deficiency [178]. ATF4 was the most enriched protein, upregulating
cytosolic tRNA synthetases and translation factors, amino acid transport, and biosynthesis
genes [178]. Gene enrichment analysis also identified downregulation of cell proliferation,
cell cycle, DNA replication, and cholesterol biosynthesis [178]. This response was not
seen in myotubes [178]. In contrast, inhibition of ATP synthetase activated a strong ISR in
myotubes and not myoblasts, and through a completely distinct mechanism, more related
to IMM hyperpolarization [178]. Another study used CCCP, a potent uncoupler of the respi-
ratory chain, to activate the ISR in HepG2 cells [195]. In this case, the ISR was mediated by
HRI and had crosstalk with the UPR, mTORC1 activation of AMPK, and autophagy [195].
Separate studies by Fessler and Guo have better defined this pathway [196,197]. CCCP-
mediated stress disrupts the mitochondrial membrane potential and triggers the activation
of the mitochondrial protease OMA1 [196]. OMA1 cleaves DELE1, a poorly characterized
mitochondrial protein thought to play a role in apoptosis [197]. The shortened form of
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DELE1 then accumulates in the cytosol, where it binds and activates HRI and initiates the
ISR [196,197]. ATF4 and CHOP induction follows [195–197].

Altered mitochondrial dynamics have also been seen to activate the ISR via the ER
stress branch led by PERK. In separate studies, Mfn2 and Drp1 were ablated [193,198].
Because ER-MAMs are intimately involved in mitochondrial dynamics, ablation of the
related proteins affects both organelles [193,198]. Ablation of Mfn2 resulted in swollen
mitochondria, enhanced ROS production and calcium overload, and reduced respira-
tion [198]. Silencing PERK restored proper mitochondrial function and morphology [198].
Muñoz et al. propose the Mfn2 negatively regulated PERK via physical contact as loss of
Mfn2 enhanced PERK phosphorylation and the ISR response [198]. In a Drp1 forebrain
neuron-specific knockout, ATF4 was found to be upregulated, inducing the expression of
Fgf21 in the brain [193]. Both authors propose that the ER stress also activated additional
branches of the stress response, including pathways stimulated by impaired amino acid
metabolism and heme biosynthesis, and the UPRer [193,198]. Hindered mitophagy, via
Miro1 knockout, upregulates mitofusins and produces a hyperfused mitochondrial net-
work [199]. Although it is unclear which kinase is responsible in this model, it results in
hyperactivation of ISR, which can have pathological consequences, including implications
in neurodegeneration [193,199,200].

3.2.8. Heat Shock Response

Although the name implies a response solely to temperature, the heat shock response
(HSR) is induced by other stresses, including oxidative stress and heavy metals [201].
Following stress, heat shock transcription factor 1 (HSF1) activates transcription of heat
shock proteins (HSPs) that act as chaperones to refold and clear accumulated misfolded
proteins [201]. Agarwal et al. found that cells exposed to 42 ◦C for one hour showed
increased mitochondrial localization in the perinuclear region [201]. This clustering re-
solved in the recovery hours following [201]. They suggest that increased proximity to the
nucleus allows for augmented ROS levels in the nucleus, activating HIF-1α, as described in
Al-Mehdi et al. [23]. However, in this pathway, HIF-1α induces HSF1 activation, leading to
the HSR [201].

Heat shock also increases the expression of mitochondrial single-strand DNA-binding
protein 1 (SSBP1), which forms a complex with HSF1 [202]. SSBP1 is involved in the replica-
tion and maintenance of mtDNA, but upon heat shock, it translocates to the nucleus [202].
This translocation is triggered via heat shock-induced PTP opening and aided by cyto-
plasmic HSF1 [202]. SSBP1-HSF1 complex upregulates chaperone expression and protects
cells from proteotoxic stress during heat shock [202]. Downregulation of SSBP1 leads to
decreased mtDNA copy number and activates calcineurin-mediated pathway [203].

3.2.9. Mitochondrial Metabolism and Epigenetic Modifications

Epigenetics refers to chemical modifications on DNA or histones that affect their
expression. More often, these include histone acetylation, deacetylation, and methylation,
as well as direct DNA methylation. Histone acetylation is associated with euchromatin,
while deacetylation is associated with heterochromatin, corresponding with transcription
and gene repression, respectively. Histone methylation creates a docking site for chromatin-
associated proteins that can then recruit other chromatin-modifying proteins. The effect
of histone methylation on gene expression varies based on the number of methyl groups
added. Finally, DNA methylation is a modification to the DNA itself. It is a more stable
modification but can change during embryogenesis and aging. Interestingly mtDNA can
be methylated; however, the literature is significantly lacking [204,205].

While nuclear epigenetic modifications can affect mitochondrial function, mitochon-
drial function and substrates can also affect the nuclear epigenome. In particular, TCA
cycle intermediates have been shown to influence cellular physiology through epigenetic
modifications, which we will discuss below [125].
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Acetyl-CoA

Acetyl-CoA is a metabolite intermediate produced in the TCA cycle and used further
in the TCA cycle, as well as the synthesis of fatty acids and sterols [125,130]. Addition-
ally, Acetyl-CoA is utilized for histone acetylation and, therefore, gene activation [130].
High levels of Acetyl-CoA lead to increased histone acetylation, promoting cell growth
and proliferation [125]. In fasted states, acetyl-CoA is generated or transported into the
mitochondria for ATP synthesis [130]. This will result in lower pools of acetyl-CoA in the
cytosol and nucleus, limiting fatty acid synthesis and histone acetylation [130]. Depletion
of mtDNA diminished TCA cycle activity and, therefore, the available pool of acetyl-CoA,
decreasing acetylation of specific histone H3 marks [206].

α-Ketoglutarate

In addition to being a key intermediate of the TCA cycle, FE (α-KG) is a co-substrate
for 2-oxoglutarate-dependent dioxygenases (2-OGDD), a superfamily of enzymes involved
in many biological processes, including the hypoxic response and chromatin modifica-
tions [125]. As a substrate of some chromatin-modifying enzymes, the availability of α-KG
influences gene expression by regulating histones and DNA demethylases [125]. It has an
especially important role in macrophages, promoting an anti-inflammatory pathway via
histone modification while repressing the pro-inflammatory response via the NK-kB path-
way [125]. 2-hydroxyglutarate (2-HG), a metabolite derived from α-KG, will be discussed
later regarding its implications in carcinogenesis.

Succinate and Fumarate

Succinate is a TCA cycle metabolite and a product of 2-OGDD reactions [125]. Accumu-
lation of succinate inhibits 2-OGDDs, and through this feedback, its availability influences
histone and DNA methylation [125]. Succinate-mediated inhibition of 2-OGDD allows for
the stabilization of HIF-1α and thereby influencing metabolic gene expression [125]. It has
also been shown to induce the transcription of cytokines in activated macrophages [125].
Fumarate is a TCA cycle metabolite formed by the oxidation of succinate. Fumarate is also
able to inhibit 2-OGDDS, therefore acting as a HIF-1α stabilizer [125]. It can also act as an
immunomodulator by inducing histone modifications [131].

NAD+/NADH

Nicotinamide adenine dinucleotide is a key electron carrier in the electron transport
chain. The ratio of NAD+ to NADH is an indicator of metabolic status, typically maintained
100:1 [127]. NAD+ is a co-enzyme and co-substrate for many NAD+-dependent enzymes,
including sirtuins and PARPs [126]. Both sirtuins and PARPs use NAD+ as a co-substrate
in DNA repair pathways and histone modifications [126]. As a cofactor for sirtuin, NAD+
levels influence the activation of PGC1α through deacetylation and downstream tran-
scriptional responses, such as mitogenesis and fatty acid oxidation [125,127]. Circadian
oscillations of NAD+ have also been observed [128,129]. Through these fluctuations, NAD+
is able to activate nuclear sirtuins and further influence daily cycles of energy storage and
utilization [128]. PARPs use NAD+ in the ADP-ribosylation of histones, marking it for
DNA repair, and have associations with DNA modifications [126]. A deficiency of NAD+
can promote DNA methylation through this and other pathways [126].

FAD

Flavin adenine dinucleotide is a metabolite derived from the vitamin riboflavin. It is
produced in the mitochondria and acts as an electron carrier. FAD also acts as a cofactor for
lysine demethylases [126]. The lysine demethylase LSD1, in particular, regulates mitochon-
drial respiration and energy expenditure, and therefore alterations in the FAD/FADH ratio,
which fluctuates with other metabolic activities like fatty acid oxidation and the TCA cycle,
can affect LSD1-mediated demethylation [126,132].
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mtDNA

Although not a metabolite, it is interesting to note that mtDNA depletion was found to
alter nuclear genome methylation patterns in cancer genomes [207,208]. The mitochondrial
mass itself influences mRNA abundance, translation through chromatin modifications, and
alternative splicing [209].

3.2.10. Other Players

G-Protein Pathway Suppressor 2 (GPS2) is a regulator of inflammation and lipid
metabolism. It is a dual localizing protein, where its nuclear presence plays roles as core-
pressor and coactivator of several transcription factors. Cardamone et al. identified it as
a mediator in retrograde signaling [102]. Upon depolarization of the mitochondria mem-
brane, GPS2 translocates from the mitochondria to the nucleus and activates transcription
of nuclear-encoded mitochondrial genes and stress-response genes [102]. Loss of GPS2
promotes tumor growth through the activation of AKT signaling [210].

Other dual localizing proteins include COQ7, PDC, and Nrf2. Coenzyme Q7, Hy-
droxylase (COQ7) in the mitochondria is involved with the biosynthesis of ubiquinone.
In response to high levels of ROS, COQ7 is trafficked to the nucleus, where it associates
with chromatin to regulate cellular ROS levels by promoting glutamine metabolism and
suppressing a subset of UPRmt genes [211]. Pyruvate dehydrogenase complex (PDC) is
an enzyme that converts pyruvate to Acetyl-CoA. In addition to this role, PDC links mito-
chondrial metabolism with nuclear gene expression to regulate cell growth. In response to
impaired oxidative phosphorylation, PDC was reported to translocate from the matrix to
the nucleus to generate pools of Acetyl-CoA for histone acetylation [212]. PDC could also
translocate in response to growth signals [212]. Nuclear factor erythroid 2-related factor 2
(Nrf2) is localized on the outer mitochondrial membrane in a complex with KEAP1 and
PGAM5 [213]. Increased levels of ROS triggers NRF2 to localize in the nucleus to activate
antioxidant defenses [212]. Additionally, decreased mTOR activity via long-term exposure
to rapamycin increases the turnover of autophagy adaptor p62/SQSTM1, displacing KEAP1
from Nrf2 [214]. An increase in nuclear Nrf2 results in upregulation of NRF1 and TFAM
and, therefore, mitogenesis [214].

Mitochondrial-derived vesicles have been identified as intracellular transporters be-
tween mitochondria and peroxisomes, but it is possible that the mitochondria could com-
municate with other organelles, such as the nucleus, in this manner as well [215,216].

4. Pathological Consequences

Mitochondrial diseases are a group of genetic diseases caused by mutations in nu-
clear DNA or mtDNA encoding for mitochondrial proteins and RNAs, especially tR-
NAs [217,218]. The mitochondrial genome has a mutation rate 10–17 fold higher than
nuclear DNA, and over 250 pathogenic mutations have been identified [219]. Primarily,
the mutations affect OXPHOS [217]. These diseases are often multisystemic and mostly
affect tissues with high energy demand, such as muscle and the brain [217,220]. While
mitochondrial diseases are hereditary, they have complex genetics—nuclear mutations can
be inherited in an X-linked, dominant, or recessive fashion, whereas mtDNA mutations are
maternally inherited [217]. Age-related accumulation of mutations also may contribute to
mitochondrial dysfunction [221]. This becomes more complicated with the heteroplasmic
nature of mtDNA. Because each cell contains thousands of copies of mtDNA, there may
be a mixed population of wild-type and mutated mtDNA [222]. If heteroplasmy favors
wild-type mtDNA, there will be little to no clinical signs of mitochondrial disease. When
the mutated mtDNA levels hit a biochemical threshold, symptoms will be prevalent and
typically increase in severity as the percent of mutated mtDNA increases [220].

4.1. Defects of mtDNA Maintenance and Expression

Maintenance and expression of mtDNA heavily rely on nuclear-encoded factors, as
discussed earlier in the review. Defective mtDNA maintenance or mitochondrial gene
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expression prevents proper assembly of the respiratory chain complexes and the defective
oxidative phosphorylation [218]. The resulting pathology is tissue-specific and can range
from muscle weakness to stroke-like episodes and nervous system disorders in adults [218].

Like nuclear DNA, mtDNA has its own repair pathways. The main repair pathway is
base excision repair (BER), and it is largely repairing ROS-induced lesions [223,224]. Other
repair pathways, such as mismatch repair, translesion synthesis, and single- and double-strand
break repairs, are less efficient or have not been shown to occur in mitochondria [224,225].

4.2. Mitochondrial Function in Carcinogenesis

Cancer cells illustrate how mitochondrial function can affect the nuclear control of
cell growth. Cancer cells develop mutations and adapt to grow uncontrollably, and spread
throughout the body. One of these adaptions is metabolic reprogramming, known as the
Warburg Effect. The major concept of the Warburg Effect is an increase in glucose uptake
and lactate production in cancerous cells. While this can be true, mitochondria do not lose
the ability to create ATP via oxidative phosphorylation in cancer cells; in fact, it would not
be beneficial for the cells to have defective mitochondria. Metabolic reprogramming is an
essential step in tumor proliferation.

As discussed earlier, mitochondrial metabolites play a role in epigenetic expression.
This is also the case in tumorigenesis, with the cell using mutations to its advantage.
Mutations in the mitochondrial metabolic enzymes, isocitrate dehydrogenase (IDH1/2),
succinate dehydrogenase (SDH), or fumarate hydratase (FH), results in an abundance
of oncometabolite (D-2-HG, fumarate, and succinate, respectively) [226]. FH and SDH
each undergo a loss of function, while IDH has a gain of function [226]. All three of these
oncometabolites can inhibit a-ketoglutarate enzymes, which will alter the expression of
genes involved in cell differentiation and malignant transition [226]. Hypermethylation
is a common epigenetic modification in cancer cells [226]. Through these modifications,
further dysfunction of mitochondria may occur, increasing the production of ROS thought
to aid in tumor progression [226]. Oncometabolites can also induce a pseudohypoxic
response [125]. D-2-HG and succinate both act as inhibitors to PHDs, allowing HIFs
to accumulate in the nucleus and promote the hypoxic response [125]. Succinylation, a
post-translational modification by fumarate, can impair protein function and thereby alter
downstream signaling [226]. Uncoupling proteins (UCPs) are proteins that accumulate in
the IMM and alter the mitochondrial membrane potential to metabolically shift to another
source of energy [227]. It was first shown during cold acclimation when the cells utilized
fatty acid oxidation instead [227]. UCP2 appears to be overexpressed in many chemo-
resistant cancers [227]. High rates of glycolysis not only supply energy for the cell but
also replenish intermediates required for mitochondrial fatty acid oxidation [227]. One of
these intermediates is Acetyl-CoA, which can elevate histone acetylation and promote cell
growth and proliferation in cancer cells [125]. Tumor cells are able to interchangeably use
energy sources in response to their fluctuating microenvironment [228].

As described earlier in Biswas et al., depletion of mtDNA leads to calcium dysregula-
tion and retrograde signaling. Mitochondrial DNA deletions and depletions are common
in cancers, making this pathway relevant to carcinogenesis [229]. In human pulmonary
carcinoma A549 cells, Amuthan et al. observed that calcium dysregulation activated two
major pathways: Ca2+-Calcineurin and Ca2+-PKC [105,230]. The former pathway regu-
lates the activation and translocation of nuclear transcription factors [105]. Alteration of
this pathway led to an increase in anti-apoptotic markers and consequently resistance to
apoptosis [105]. They also observed an increase in invasive behavior that they believed
to be associated with Ca2+-PKC pathway [230]. Another notable change in these cells
was induction of glycolysis and gluconeogenesis [105]. Guha et al. further found that
the mtDNA stress-activated calcineurin led to increased activity of insulin-like growth
factor-1 receptor and increased glucose uptake, supporting the idea of a metabolic shift
in tumor proliferation [231]. The change is mediated by Akt1, an AKT Serine/threonine
kinase, which mediates transcription activation via phosphorylation of transcriptional
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coactivators, in this case, those involved in the mitochondrial stress response [232]. One
of those co-activators is HnRNPA2 which regulates oncogenes via alternate splicing and
modulates many genes involved in tumor metabolism [109,111,233].

Depletion of mtDNA has also been associated with epithelial-mesenchymal transition
(EMT) [234]. Using MCF7, a malignant mammary cell line, Guha et al. induced mito-
chondrial stress and dysfunction by depleting mtDNA copy numbers [235]. As previously
described, this activated Ca2+-Calcineurin signaling and induced pathways involved with
EMT [235]. These cells have increased migratory capacity or invasive behavior due to an
increase in transcription factors Snail, Slug, and Twist, which transcriptionally represses
the epithelial cell adhesion marker cadherin, and an increase in matrix mettaloprotease,
which aids in the breakdown and removal of the extracellular matrix [235].

In general, persistent oxidative stress leads to DNA damage, which can accelerate can-
cer growth and metastasis [236]. The majority of sequenced cancers harbor some mtDNA
mutations [236]. Surprisingly, many of these mutations do not result in an apparent phe-
notype; however, they may be involved in increased ROS production [236]. ROS not only
can further damage DNA but stimulates signaling cascades that promote cell proliferation,
growth, and resistance to apoptosis [228,236]. For example, defects in Complex I lead to an
accumulation of ROS, which activates Akt [237]. An increase in Akt signaling results in an
upregulation of HIF-1α and anti-apoptotic proteins [237]. The Akt signaling pathway is
also stimulated under hypoxia. Cancer cells, especially those in the core of the tumor, can
undergo hypoxic conditions as they outpace their oxygen supply. In hypoxic conditions,
Akt is recruited to the mitochondria at a higher rate where it phosphorylates pyruvate
dehydrogenase kinase 1 (PDK1) [238]. The Akt-PDK1 axis is important for metabolic
programming and tumor cell proliferation, and increased activity has been associated with
a poor prognosis [238].

Mitochondria have become a promising focus for cancer therapeutics. Both mtDNA
and mitochondrial stress signaling pathways pose as targets for therapeutic interven-
tion [239,240]. In particular, it may be beneficial to target Akt, HnRNRA2, calcineurin,
and even the UPRmt as an anti-cancer strategy [233,239,240]. Mutations in mtDNA could
be approached via mitochondrial transplantation—increasing the population of healthy
mitochondria—allotopic gene expression (expression of a mitochondrially encoded gene
from nucleus transfected constructs), or even mtDNA editing enzymes [239,241–244]. For
a more in-depth look at specific mtDNA mutations and their role in cancer, the follow-
ing literature provides a comprehensive view (Chatterjee et al. 2006, Girolimetti et al.
2020) [243,245].

4.3. Nuclear-Mitochondrial Dysfunction in Neurological Disorders

Mitochondrial diseases disproportionately affect tissues with high energy demands,
meaning the nervous system is at particularly high risk. Primary mitochondrial diseases
affecting the nervous system include Leigh syndrome, Alpers–Huttenlocher syndrome,
Leber’s hereditary optic neuropathy (LHON), mitochondrial encephalopathy, lactic acidosis,
and stroke-like episodes (MELAS). Impaired mitochondrial dynamics are also implied in
the phenotype of several neurodevelopmental disorders and possibly also neuropsychiatric
disorders such as schizophrenia [246]. In addition to the nervous system being affected in
primary mitochondrial diseases, dysfunction mitochondria are also thought to play a role
in other neurological and adult-onset neurodegenerative diseases, such as Parkinson’s and
Alzheimer’s diseases. Below we will briefly describe how mitochondrial dysfunction and
retrograde signaling play a role in neurodegenerative diseases.

4.3.1. Parkinson’s Disease

Parkinson’s disease (PD) is a progressive nervous system disorder that affects move-
ment, characterized by tremors and impaired posture and balance. The disease can be
genetic or environmentally triggered; however, both are distinguished by the death of
dopaminergic neurons in the basal ganglia. Several mitochondria-associated genes have
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been seen to be mutated in rare juvenile-onset PD, including mitophagy genes PINK1
and Parkin and the chaperone DJ-1 [246,247]. Mitophagy is not discussed at length in this
review; however, it is a key component of mitochondrial quality control. Recently, TSPO,
described earlier as an aid in nuclear-mitochondrial contacts, was found to be upregulated
in PD [228]. Frison et al. used neurotoxins, rotenone, 6-OHDA, and MPP+ increased
ROS in SH-SY5Y cells. ROS-activated ERK phosphorylation led to an increase in TSPO,
which can then prevent mitochondrial ubiquitination and impair mitophagy [248,249].
An accumulation of defective mitochondria can result in chronic activation of retrograde
signaling pathways and damage-inducing mtROS production.

Complex I deficiency appears to be a major factor in PD pathogenesis [247]. A 2011
study showed a significant association of PD with the use of pesticides classified as complex
I inhibitors, such as rotenone [250]. Even though rotenone is thought to have a short half-
life, research suggests that short-term exposure can induce PD-like effects in rodents later in
life [250]. Oxidative stress is through to play a role in PD pathogenesis, with mitochondria
being both the main source and a target [251]. mtROS induced damage of the mitochondria
enhances ROS production, further contributing to neuronal cell death [251].

HtrA2, a serine protease in the intermembrane space, is thought to be a component
of the stress sensing pathway with PINK1 [252]. Knockout of HtrA2 increased sensitivity
to mitochondrial stress, enhanced apoptosis, and upregulated CHOP expression [252].
Increased CHOP expression has previously been associated with neurodegeneration trig-
gered by ischemia and Charcot Marie Tooth 1B neuropathy, as well as neurotoxin models of
parkinsonism [252,253]. HtrA2 KO affects the correct folding of inner membrane proteins,
including respiratory complexes, leading to an increase in damaging ROS and accumu-
lation of proteins [252]. Surprisingly, this does not activate CHOP-mediated UPRmt, but
rather the ISR, which can be detrimental when chronically activated [246,252]. Antioxidant
treatment of HtrA2 KO mice suppressed neurodegeneration and decreased their akinetic
phenotype, indicating antioxidant therapy as a potential PD treatment [251,252].

4.3.2. Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized
by memory deficits and cognitive decline. The major hallmarks are the accumulation
of beta-amyloid (Aβ) plaques and neurofibrillary tangles. Regional hypometabolism
is common in AD, initially suggesting deficits in mitochondrial function [254]. Indeed,
complex I deficiencies are consistently observed in AD patients [255]. In addition to
OXPHOS dysfunction, increased oxidative stress and decreased antioxidant defenses are
observed [255]. AD mitochondria have reduced mitogenesis, as well as impaired mitophagy
and increased fission, leading to decreased mtDNA copy numbers while allowing for
damaged organelles to accumulate [246,255,256]. Proteostasis is also impaired, triggering
UPRmt and ISR transcriptional responses [246,255].

Dysregulation of mitochondrial calcium homeostasis has long been implicated in AD
pathology. Cellular calcium concentration must be highly regulated for proper cellular
functions. In neurons, Ca2+ plays different roles depending on spatial localization and
neuronal type [257]. Regulation of Ca2+ is important for both synaptic transmission and
vesicle recycling [258]. Calcium overload, as induced by prolonged stimulation of glutamate
receptors, consequently results in cell death, a process termed excitotoxicity [18]. In AD,
impaired homeostasis may be due to increased ER-MAM contacts or altered expression of
mitochondrial ion exchangers, such as NCLX (Na+/Ca2+ exchanger) [259]. An increase in
mitochondrial Ca2+ can stimulate ROS production and decrease ATP production, both of
which can activate retrograde signaling pathways, as well as provoke PTP opening and
induce apoptosis [259]. AD brains have an increase in Aβ-containing mitochondria, which
can augment respiratory deficiency and further enhance ROS production [247,254]. While
mitochondrial dysfunction is common in AD and likely plays a role in disease progression,
some authors suggest mitochondrial deficits as the primary insult in sporadic AD pathology,
known as the mitochondrial cascade hypothesis.
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4.3.3. Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease charac-
terized by motor neuron degeneration in the brain and spinal cord. Approximately 90% of
cases are sporadic (sALS), while only 10% are familial (fALS). A few of the major mutations
linking mitochondrial dysfunction and ALS are mutations in SOD1, TDP-42, and FUS [246].
These mutations activate the UPRmt, and may also play a role in pro-apoptotic signal-
ing [246,260]. Although there are differences in mitochondrial characteristics between the
types, both display decreased mitochondrial membrane potentials, altered mitochondrial
morphology, and decreased respiratory activity [261,262]. Mitochondria appear swollen
with a fragmented network [260]. Delic et al. recorded abnormal mitochondrial distribution
and density in sALS motor neurons, which could affect signaling between the mitochondria
and the nucleus [262]. Both types also showed increased intracellular calcium levels [261].
Dysfunctional calcium regulation, as we have discussed, can activate a variety of retrograde
signaling pathways. Increased ROS and ROS-associated damage have been observed in
ALS cell lines [260].

5. Conclusions and Perspectives

Mitochondria act as signaling hubs in the cell, interacting with other organelles
through signaling pathways and direct contact sites. The relationship between the mi-
tochondria and the nucleus is critical for cell survival, influencing energy production,
metabolism, cell proliferation, and more. Signaling from the mitochondria to the nucleus,
or retrograde signaling is facilitated by a variety of molecules and pathways. Calcium and
ROS have been described most in detail, but newer literature has shown roles for ncRNAs,
metabolites, and mtDNA itself.

As mitochondrial dysfunction heavily affects tissues and cells with high energy de-
mand, it can be expected that disruption of retrograde signaling would disproportionately
affect the same tissues. However, there are many different pathways and outcomes of retro-
grade signaling. Retrograde signaling is best characterized in proliferative cells; however, it
is thought to play a role in all cell types, albeit not ubiquitous. Further research is needed to
discern the pathways present in each cell type and how they are altered in disease models.
By understanding the major molecules and proteins involved, therapeutics can be designed
to target the activated pathways and curtail disease phenotypes.

Having established that mitochondria share both functional and physical interactions
with other organelles, it is not irrational to hypothesize, at the very least, close contact
between the mitochondria and the nucleus, potentially facilitating signaling. Some liter-
ature has described an increase in proximity between the mitochondrial and the nucleus
under various conditions; however, it has yet to be concretely described or microscop-
ically captured that the two organelles share direct contacts. Through reporter assays,
transcriptomics, and super-resolution imaging, we can not only analyze conditions that
stimulate mitochondrial re-localization to the perinuclear region but better understand how
mitochondrial distribution affects retrograde signaling and potentially identify docking
proteins in cases of close proximity.
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sporadic and familial forms of ALS based on mitochondrial characteristics. FASEB J. 2018, 33, 4388–4403. [CrossRef]

262. Delic, V.; Kurien, C.; Cruz, J.; Zivkovic, S.; Barretta, J.; Thomson, A.; Hennessey, D.; Joseph, J.; Ehrhart, J.; Willing, A.E.; et al.
Discrete mitochondrial aberrations in the spinal cord of sporadic ALS patients. J. Neurosci. Res. 2018, 96, 1353–1366. [CrossRef]
[PubMed]

http://doi.org/10.1038/s41536-020-00107-x
http://doi.org/10.1038/s41380-021-01050-z
http://doi.org/10.4161/15548627.2014.991665
http://doi.org/10.1289/ehp.1002839
http://doi.org/10.1016/j.bbadis.2013.09.007
http://doi.org/10.1038/cdd.2008.166
http://www.ncbi.nlm.nih.gov/pubmed/19023330
http://doi.org/10.1074/jbc.M211821200
http://www.ncbi.nlm.nih.gov/pubmed/12598533
http://doi.org/10.1111/bph.14585
http://doi.org/10.1186/s13024-020-00376-6
http://doi.org/10.1186/s40035-021-00261-2
http://doi.org/10.3389/fgene.2012.00200
http://doi.org/10.1007/s10571-018-0584-7
http://doi.org/10.1038/s41467-019-11813-6
http://doi.org/10.1016/j.neulet.2017.06.052
http://doi.org/10.1096/fj.201801843R
http://doi.org/10.1002/jnr.24249
http://www.ncbi.nlm.nih.gov/pubmed/29732581

	Mitochondrial Form and Function 
	Physical Interactions of Mitochondria with the Nucleus 
	Functional Interactions between the Mitochondria and the Nucleus 
	Nuclear Control 
	Retrograde Signaling 
	Calcium 
	Free Radicals 
	Metabolic Sensors 
	Mitochondrial Derived Peptides 
	mtDNA 
	Non-Coding RNAs 
	Integrated Stress Response 
	Heat Shock Response 
	Mitochondrial Metabolism and Epigenetic Modifications 
	Other Players 


	Pathological Consequences 
	Defects of mtDNA Maintenance and Expression 
	Mitochondrial Function in Carcinogenesis 
	Nuclear-Mitochondrial Dysfunction in Neurological Disorders 
	Parkinson’s Disease 
	Alzheimer’s Disease 
	Amyotrophic Lateral Sclerosis (ALS) 


	Conclusions and Perspectives 
	References

