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Aim. In this paper, we aimed to develop and validate a risk prediction method using independent prognosis genes selected robustly
in prostate cancer. Method. We considered 723 samples obtained from TCGA (the Cancer Genome Atlas), GSE46602, and
GSE21032. Prostate cancer prognosis-related genes with P < 0:05 were selected using Univariable Cox regression analysis. We
then built the lowest AIC (Akaike information criterion score) optimal gene model using the “Rbsurv” package in TCGA train
set. The coefficients were obtained by Multivariable Cox regression analysis. We named the new prognosis method CMU5. The
CMU5 risk score was verified in TCGA test set, GSE46602, and GSE21032. Results. FAM72D, ARHGAP33, TACR2, PLEK2, and
FA2H were identified as independent prognosis factors in prostate cancer patients. We built the computing model as follows:
CMU5 risk score = 1.158∗FAM72D+ 1.737∗ARHGAP33− 0.737∗TACR2− 0.651∗PLEK2− 0.793∗FA2H. The AUC of DFS was
0.809 in the train set (274 samples), 0.710 in the test set (273 samples), and 0.768 in the complete set (547 samples). The benign
prediction capacity of CMU5 was verified by GSE46602 (36 samples; AUC = 0:6039) and GSE21032 GPL5188 (140 samples;
AUC = 0:7083). Using the cut-off point of 2.056, a significant difference was shown between high- and low-risk groups.
Conclusion. A prognosis-related risk score formula named CMU5 was built and verified, providing reliable prediction of
prostate cancer outcome. This signature might provide a basis for individualized treatment of prostate cancer.

1. Introduction

Prostate cancer (PCa) is the second most common male
malignant tumor [1]. The mortality of PCa patients was
reported as 40% over ten years, and the overall biological
recurrence rate was 30.4% [2, 3]. PCa has strong heterogene-
ity. Its incidence is affected by factors such as age, ethnicity,
and genetics. Tumor biological characteristics and prognosis
vary greatly among individuals. Some slow-growing, weakly
aggressive, low- and medium-risk tumors do not affect life
expectancy [4]. Active local treatment of such patients may
increase the occurrence of complications and affect quality
of life; instead, active monitoring and other treatment
methods can be adopted [5]. By contrast, other prostate can-
cer patients display high degrees of invasiveness and rapid
progress. Therefore, it is important to stratify PCa patients
with reasonable risk according to clinical and pathological
parameters and to make clinical decisions based on life

expectancy, health status, and subjective desires, then to for-
mulate individualized treatment and follow-up plans. After
radical prostatectomy, prostate cancer patients were treated
with antiandrogenic drugs, and the PSA level was monitored
trimonthly. Although the pathological stage and Gleason
score were lower during surgery in patients, PSA increased
quickly after surgery. Therefore, we urgently need an inde-
pendent prognostic prediction method to assist us in group-
ing high- and low-risk patients in different stages and guide
medication such as antiandrogens.

Advances in high-throughput sequencing and open
source databases of tumors such as TCGA (the Cancer
Genome Atlas) have enabled us to investigate the relation-
ship between genes and prognosis. For example, HOXB5,
GPC2, PGA5, and AMBN were used to establish an overall
survival scoring model with AUC = 0:904 [6]. SMIM22,
NINL, NRG2, TOP2A, REPS2, and TPCN2 were shown to
be biological recurrence prediction factors [7]. A methylation
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score formula consisting of HSPB1, CCND2, TIG1, DPYS,
PITX2, and MAL was formulated to predict overall survival
with AUC = 0:710 [8]. Another study demonstrated that 60
miRNAs, 1578 mRNAs, and 61 lncRNAs were differentially
expressed by a coexpression network [9]. These findings pre-
dicted prognosis using various methods and models. In this
paper, we aimed to conduct the most reliable disease-free
survival prediction model of prostate cancer. In addition,
the degree of freedom of the prediction model should be lim-
ited, which reduced prediction costs. The robust method
selects genes using the partial likelihood of the Cox model
and identifies the optimal model using the lowest AICs
(Akaike information criterion scores). Therefore, the robust
method has more clinical significance, compared with the
multivariable Cox proportional hazard method.

In this article, we have constructed a prediction method
for the prognostic risk of prostate cancer patients, which is
more accurate than TPSA. The prediction method was
applied in different pathological stages and Gleason score
subgroups and can effectively distinguish patients with differ-
ent prognostic risk, providing a new method for actively
monitoring prostate cancer patients.

2. Materials and Methods

2.1. Sample Source. The gene expression matrix and clinical
follow-up information of PCa were obtained from TCGA
(the Cancer Genome Atlas) database (https://www.cancer
.gov/) [10]. In total, 547 samples were applied to this study,
including 52 nontumor tissue samples and 495 tumor tissue
samples. The days of new tumor events were considered
DFS (disease-free survival) data. Patients were randomly
assigned to a train set (n = 274) containing 22 nontumor tis-
sue samples and 252 tumor tissue samples and a test set
(n = 273). The final gene expression data were transformed
by log2(exp+1); 36 samples with biochemical recurrence time
were obtained from GSE46602 on the GPL570 Affymetrix
Human Genome U133 Plus 2.0 Array [11]. A total of 140
samples with disease-free survival time and clinical stage
were obtained from GSE21032 on the GPL5188 [12] plat-
form in cBioPortal (http://www.cbioportal.org/) [13].

2.2. Prognosis-Related Gene Selection. The variation genes in
each sample was identified as follows: the median and vari-
ance of the expression levels of a gene were greater than
20% of all genes. Subsequently, the relevance level between
gene expression and disease-free survival status was evalu-
ated in the train set. Univariable Cox regression analysis
between gene expression and the disease-free survival state
was performed using R with the “Survival” package [14].
The prognosis-related genes were determined with P < 0:05
using “Survdiff” commands in R, and the prognosis correla-
tions were analyzed using Kaplan–Meier survival curves
and the ROC curve in GraphPad Prism 8.0 [15]. The Human
Protein Atlas (HPA) (http://www.proteinatlas.org/) is an
open source database. Expression of independent prognosis
factors was evaluated on transcriptional and translational
levels [16].

2.3. Pathway and Function Enrichment Analysis. The
Database for Annotation, Visualization and Integrated
Discovery (DAVID, v6.8) is a function enrichment tool
that supplies biological explanations of gene lists and pro-
teomic studies obtained from high-throughput sequencing
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Figure 1: The flow diagram of this paper.

Table 1: Univariable Cox regression of top 20 genes related to DFS
survival.

Gene symbol HR HR.95L HR.95H P value

PLEK2 0.490 0.391 0.614 5.80E-10

SPRED3 2.586 1.852 3.611 2.45E-08

TACR2 0.567 0.459 0.699 1.14E-07

RSPH10B 2.301 1.687 3.138 1.42E-07

TRIM73 2.033 1.549 2.670 3.22E-07

AMZ1 1.891 1.481 2.414 3.23E-07

FA2H 0.588 0.479 0.721 3.24E-07

ARHGAP33 2.373 1.694 3.324 4.94E-07

CPNE9 1.472 1.263 1.716 7.23E-07

C20orf203 1.564 1.309 1.868 8.63E-07

DPP4 0.699 0.605 0.807 1.01E-06

ASIC4 1.641 1.340 2.010 1.69E-06

CCDC180 1.950 1.483 2.564 1.71E-06

SEC61A2 3.051 1.925 4.837 2.09E-06

AL157935.2 2.018 1.509 2.698 2.15E-06

MXD3 1.933 1.471 2.539 2.23E-06

KMT5C 2.749 1.808 4.180 2.24E-06

SOX8 1.804 1.412 2.305 2.35E-06

FAM72D 1.751 1.378 2.224 4.52E-06

HR: hazard rate; DFS: disease-free survival.
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Figure 2: Continued.
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Figure 2: (a) KEGG pathway enrichment of prognosis-related genes with <0.05. (b) Heatmap of the genes selected robustly. The Kaplan–
Meier survival curve of cluster 1 and cluster 2 separated by hierarchical clustering analysis.
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[17]. Enrichment analysis for Gene Ontology [18] and
KEGG pathway [19] was performed using DAVID, v6.8.
Histogram was performed using the “ggplot2” package in R
to show results [20]. P < 0:05 indicated significance. GSEA
(http://software.broadinstitute.org/gsea/index.jsp) was applied
to show different pathways enriched in high- and low-risk
groups.

2.4. Robust Selection of Prognostic-Related Genes. To establish
the most reliable prognostic assessment model with the low-
est degree of freedom, the robust principle and AICs were
used to identify the best prognostic-related genes. The
Rbsurv package in R was used to conduct robust likelihood-
based survival analysis among survival-associated genes with
the parameter as follows: iteration times = 100 and max
concern genes = 20 [21, 22]. Cluster analysis and expression
levels of the best survival-associated genes were performed
in the train set by running the “pheatmap” package [23].
Kaplan–Meier survival curves were used to evaluate survival
differences between the two clusters [24]. Subsequently,
prognosis factors were evaluated in TCGA using box plots
between disease-free and adverse events. ROC curves and
Kaplan–Meier survival analyses were applied to illustrate
the independent prognosis values of the prognostic factors.

2.5. Risk Scoring System Establishment and Validation.
CMU5 was established using the best prognosis-related
genes. The estimated regression coefficients of each gene
were calculated using multivariate Cox proportional hazard
regression with the method “enter.” Log½hðtiÞ/h0ðtiÞ� = β1X1
+ β2X2 + β3X3 +⋯βKXK, where hðtiÞ is called the hazard
function, and h0ðtiÞ is the baseline hazard. Terms X1, X2,
X3,⋯Xk are covariates and β1, β2,⋯βk are the corre-
sponding regression coefficients. Based on the score formula
analysis, the ROC curve was performed to evaluate the for-
mula and calculate the best cut-off score with the maximal
sensitivity and specificity in the train set [25]. Using same
best cut-off point, ROC and Kaplan–Meier curves were gen-
erated in the test and complete sets to validate the risk score
model and the cut-off point. The various risk groups were
compared using the log-rank test [26]. Subsequently, the
train set in TCGA, GSE46602 in the GEO database,
GSE21032, and GPL5188 were used to verify the predictive
ability of CMU5. Finally, the risk score formula CMU5 was
fitted in various Gleason scores and stages in the complete
set (547), and we validated the evaluative ability of the risk
score formula using the log-rank test.

3. Results

3.1. Identification Prognosis-Related Genes. The overall pro-
cess is presented in Figure 1. In total, 2707 protein coding
genes were confirmed as prognosis-related genes using Cox
proportional hazard regression with P < 0:05 in TCGA train
set (Table 1). The result of the KEGG enrichment analysis is
shown in Figure 2(a), ordered by gene ratio. The 2707 genes
were significantly enriched in the MAPK signaling pathway,
neuroactive ligand-receptor interaction, focal adhesion,
calcium signaling pathway, and cell cycle.

3.2. Identification of Robust Prognosis-Related Genes. To
generate an optimal model with survival associated genes
that were selected robustly, we selected 20 genes with the
largest values of negative log-likelihoods. We obtained 20
prognosis-related gene signatures based on these 20 genes.
The first model was generated using gene A with the largest
value of negative log-likelihoods; the second model was gen-
erated using A+B, with B being the gene with the largest value
of negative log-likelihoods except for that of A. The third
model was generated by A+B+C, and others. The AICs [27]
were calculated for each signature. The signature with the
lowest AICs was selected, and it was considered to be the
most reliable and feasible model with the minimum degree
of freedom. The result is shown in Table 2, where the genes
in the optimal signature are marked as (∗). Tachykinin
receptor 2 (TACR2), a family with sequence similarity
72-member D (FAM72D), pleckstrin-2 (PLEK2), fatty acid
2-hydroxylase gene (FA2H), and rho GTPase activating pro-
tein 33 (ARHGAP33) were strictly selected. Based on the
expression level of the five genes, cluster analysis was per-
formed in the train set to show the expression levels of the
five prognosis-related genes (Figure 2(b)). Two clusters were
identified based on the expression level, and the survival-
related analysis showed that patients in cluster 2 had
significantly higher risk than those in cluster 1 (Figure 2(c)).
Subsequently, the box plots of the five genes between different
statuses were generated in TCGA (547 samples). We found
that FAM72D and ARHGAP33 were overexpressed in the
adverse event group, and TACR2, FA2H, and PLEK2 were

Table 2: The best prognosis-related model results selected by
“Rbsurv” package in R.

Order Gene nloglik AICs Selected

0 0 275.87 551.73

1 TACR2 261.70 525.41 ∗

2 FAM72D 255.02 514.03 ∗

3 PLEK2 251.31 508.62 ∗

4 FA2H 248.07 504.15 ∗

5 ARHGAP33 243.38 496.76 ∗

6 TRIM74 242.55 497.11

7 TRIM73 242.03 498.05

8 SCNN1D 242.01 500.02

9 KRTAP5-1 241.66 501.32

10 CCDC180 240.98 501.97

11 MXD3 240.97 503.94

12 GPC2 239.75 503.5

13 SSPO 239.74 505.48

14 CPLX1 239.59 507.19

15 AL157935.2 237.49 504.99

16 SOX8 236.62 505.24

17 FGF17 233.77 501.53

18 SPRED3 233.21 502.42

19 SEC61A2 232.82 503.63

AIC: Akaike information criterion score; nloglik: negative log-likelihood.
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Figure 3: Continued.
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expressed in low amounts in the adverse event group
(Figures 3(a)–3(e)). The AUC of TACR2, FAM72D, FA2H,
PLEK2, and ARHGAP33 were 0.6155, 0.6615, 0.6613,
0.6613, and 0.6767, respectively (Figures 3(f)–3(j)). Kaplan–
Meier survival analysis of the five genes showed higher
survival risk in the high-expression group, suggesting that
these factors are independent prognosis prediction factors
(Figures 3(k)–3(o)). The five genes showed clinical correlation
with the clinical stage and Gleason score (Figures 3(p)–3(y)).
Based on the analysis mentioned in Figure 3, FAM72D and
ARHGAP33 were considered to be positive risk factors and
TACR2, FA2H, and PLEK2 were considered to be protective
factors. The HPA database indicated that the color intensity
of FAM72D and ARHGAP33 was higher in cancer tissue than
in normal tissues, while TACR2, FA2H, and PLEK2 were the
opposite (http://www.proteinatlas.org/) (Figure 4).

3.3. Risk Score Formula Establishment. To determine the
relationship between signature and prognosis status, we
built the risk score formula CMU5 using Cox proportional
hazard regression with the method “enter”: log ½hðtiÞ/h0ðtiÞ�
ðCMU5Þ = 1:158 ∗ FAM72D + 1:737 ∗ ARHGAP33 − 0:737
∗ TACR2 − 0:651 ∗ PLEK2 − 0:793 ∗ FA2H. Each patient

risk score was calculated in both the train and test sets in
TCGA. The risk score curves and heatmaps of the train and
test sets are shown in Figure 5. An ROC curve was generated
to evaluate the risk score in the train set. We found that the
AUC of CMU5 was 0.809 (Figure 6(a)), and the optimal
threshold score with the maximal sensitivity and specificity
was 2.0559. Subsequently, the ROC curve of TPSA, Gleason
score, age, and stage were calculated in the train set
(Figure 6(a)). The AUC of CMU5 was higher than that of
the TPSA, Gleason score, age, and stage, suggesting that the
CMU5method better predicted the prognosis of PCa patients.
Based on the threshold of 2.0559, the patients in the train set
(274) were divided into a high-risk group (168) and a low-
risk group (106). The Kaplan–Meier curve and log-rank test
showed significant differences between the two groups
(P = 3:7979e−12, HR = 6:604) (Figure 6(b)). The univariable
Cox proportional hazard analyses of age, Gleason score, and
stage were performed in the train set (Table 3). We found that
stage was a prognostic factor related to DFS. No significant
survival risk was found for either the Gleason score or age.
Based on these findings, we evaluated the predictive ability of
CMU5 among various Gleason scores and stages in the train
set. CMU5 risk increased as the stage and Gleason score
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Figure 3: The data mentioned in this paper from TCGA PRAD datasets. (a–e) The box plots between disease-free and adverse event statuses
of TACR2, FAM72D, PLEK2, FA2H, and ARHGAP33. (f–j) The ROC curve of TACR2, FAM72D, PLEK2, FA2H, and ARHGAP33 related to
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Figure 4: (a, c, e, g) Normal prostate tissue sections of FAM72D, PLEK2, FA2H, and ARHGAP33 in the Human Protein Atlas. (b, d, f, h)
Prostate cancer sections of FAM72D, PLEK2, FA2H, and ARHGAP33 in the Human Protein Atlas.
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Figure 5: (a, b) Risk curve of the TCGA train set and test set. (c, d) Scatterplots of the TCGA train and test sets. (e, f) The heatmap of the
expression profiles of the five protein coding genes in the TCGA train and test sets.
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increased (Figures 6(c) and 6(d)). CMU5 was also found to
have good clinical relevance and prognostic ability in various
subgroups (P < 0:05) (Figures 6(e)–6(j)).

3.4. Risk Score Formula Evaluation. To evaluate the risk score
formula and threshold score, the complete set was applied to
evaluate the results. The AUC of the complete set (547) was

0.768 (Figure 7(a)). Using the same cut-off point as 2.0559,
the complete set was divided into the low-risk group and
the high-risk groups. We found a significant survival risk dif-
ference (P < 0:0001, HR = 4:269, Figure 7(b)). In addition,
CMU5 showed good prognostic ability and close clinical
relevance in various subgroups in TCGA complete set
(Figures 7(c)–7(j)).
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Figure 6: (a) The ROC of CMU5 in the train set, CMU5 risk score best cut‐off = 2:056, and the AUC of CMU5 = 0:809. The AUC of
stage = 0:6346, the AUC of age = 0:5015, the AUC of TPSA = 0:7101, and the AUC of Gleason score = 0:6649. (b) DFS: CMU5 in the train
set P = 3:7979E − 12, HR = 6:604. (c, d) The box plot of the risk score of CMU5 in different stages and Gleason score, and the CMU5
clinical correlation was shown. (e–j) The KM survival curves for the different subgroups of CMU5.
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3.5. Test Set and External Data Validation. The AUC of the
test set (273 samples) was 0.710 (Figure 8(a)). Using the
cut-off point of 2.0559, the test set was divided into low-
risk and high-risk groups. There was a significant survival
risk difference (Figure 8(b)) (P = 0:0007,HR = 2:649). Subse-
quently, the CMU5 was shown to have a positive correlation
with the stage and Gleason score (Figures 9(c) and 9(d)).
Based on this analysis of TCGA data, CMU5 showed good
prognostic value. To further confirm the significance of
CMU5, we adopted two external datasets. The ROC curve
(AUC = 0:7083) and Kaplan–Meier curve (P = 0:0004,
HR = 3:773) of GSE21032 (140 samples) are shown in
Figures 8(e) and 8(f). The ROC curve (AUC = 0:6039) and
Kaplan–Meier curve (P = 0:0073, HR = 2:976) of GSE46602
(36 samples) are shown in Figures 8(i) and 8(j). The clinically
relevant phenotypic analysis also illustrated the positive
correlation of CMU5 with the stage and Gleason score in
GSE21032 and GSE46602 (Figures 8(g), 8(h), 8(k), and
8(l)). Based on the verification of these two external data sets,
we had once again identified the prognostic value of the risk
evaluation model CMU5 in PCa patients. Taken together, the
data suggest that the CMU5method showed good prognostic
prediction ability in PCa patients.

3.6. GSEA. To investigate the changes of the pathway in the
low-risk and high-risk groups, GSEA analysis was used.
The results are shown in Figure 8. The homologous-
recombination pathway, the DNA-replication pathway, the
mismatch-repair pathway, the cell-cycle pathway, and the
base excision repair pathway were significantly related to
the high-risk group, suggesting an active cell proliferation
process occurring in the high-risk group (Figures 9(a)–

9(e)). In the low-risk group, the arginine and proline metab-
olism pathway, the butanoate-metabolism pathway, the
glycosaminoglycan-degradation pathway, the propanoate-
metabolism pathway, and the valine and isoleucine-
degradation pathway were significantly enriched, suggesting
that lowmetabolic levels might contribute to better prognosis
compared with the high-risk group (Figures 9(f)–9(j)).

4. Discussion

PCa is the most common malignant tumor of the male gen-
itourinary system. According to the 2018 GLOBOCAN sta-
tistics of the World Health Organization, the incidence of
PCa ranks the second among all male malignancies world-
wide, second only to lung cancer [28]. PSA testing is recom-
mended for patients with a life expectancy of more than 10
years, and further risk assessment should be conducted
for asymptomatic patients with normal DRE and a PSA
level < 10 ng/ml [29]. In this paper, we constructed a
method to supplement the prognostic risk of patients and a
prediction method with higher accuracy than TPSA. Our
scoring method was effective in differentiating patients with
different prognostic risks through three validation correla-
tions, providing a new method for active surveillance of PCa.

With the maturity of bioinformatic analysis in recent
years, there have appeared many methods to predict the risk
of PCa based on gene expression. We summarize the existing
prediction models and improve their shortcomings. Xu et al.
built a prediction model of overall survival including four
mRNA (AUC = 0:904) [6] and conducted a projection for
overall survival analysis. Statistical indicators were signifi-
cant; however, there was lack of external validation analysis
of data sets. In addition, we found in the follow-up data of
TCGA death events which occurred in only nine samples;
therefore, in our article, we selected disease-free survival
analysis. The CAPRA score constructed by Ahmad et al. [8]
predicted the risk of early PCa with AUC 0.710 for 10 years;
however, we obtained a more accurate prediction model
(AUC = 0:809) and verified it in two other cohorts. There-
fore, to the best of our knowledge, we have obtained a predic-
tion model with the lowest degree of freedom, the highest
accuracy, and consistently good prediction in various cohorts
and subgroups.

TACR2, FAM72D, PLEK2, FA2H, and ARHGAP33 were
first proposed as independent predictors of PCa in this paper.
We built the CMU5 score based on these five protein coding
genes. We applied the days to new tumor events as the
parameters of disease-free survival, which were related to
tumor recurrence and another adverse events. The robust
method was applied because it builds multiple gene models
sequentially with survival-associated genes selected robustly.
The risk score formula and the best cut-off point were both
verified using the Kaplan–Meier curve and log-rank tests in
the test and complete sets.

TACR2, PLEK2, and FA2H were considered protec-
tive factors in PCa. Tachykinin receptor 2 (TACR2), also
called NK2R, is one of the family of genes that encodes
receptors for tachykinins and interacts with G proteins and
seven hydrophobic transmembrane regions. Tachykinins

Table 3: Univariable Cox regression of age Gleason score and stage.

Term Count HR (95% CI) P value

Age

<60 121 1

≥60 153 0.821 (0.491–1.373) 0.450

Gleason score

6 20 1

7 122 0.740 (0.187–2.938) 0.632

8 29 2.049 (0.647–6.486) 0.268

9–10 81 2.820 (1.243–6.397) 0.072

N 22

Stage

Normal 22 1

II 78 3.714 (0.565–24.40) 0.172

III 164 3.249 (1.764–6.538) 0.003

IV 5 12.830 (1.253–131.327) 0.032

NA 5

Risk

Low 168 1

High 106 6.604 (3.842–11.351) <0.001
CI: confidence interval; HR: hazard ratio; DFS: disease-free-survival.
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Figure 7: Continued.
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are modulators of the immune system, related to the genera-
tion, activation, development, and migration of immune cells
[30]. Tachykinins also mediate T cell differentiation; Zhang
et al. found that CD8+ T cells were significantly decreased
after treatment with tachykinin antagonist CD8+ T cells
which play crucial roles in cellular immunity, providing pro-
tection from tumor cell infiltration. Pleckstrin-2 (PLEK2) is
associated with membrane-bound phosphatidylinositols
generated by phosphatidylinositol 3-kinase. Bach et al. sug-
gested that pleckstrin-2 binds to membrane-associated phos-
phatidylinositols regulated by PI3K, thereby promoting the
actin cytoskeleton in lymphocyte spreading and immune
synapse formation [31]. Fatty acid 2-hydroxylase (FA2H)
was shown to play a crucial role in regulating hedgehog sig-
naling and the suppression of gastric tumor growth. Down-
regulation of the hedgehog signaling pathway also
suppressed PCa cell proliferation and invasion [32]. These
findings suggest that TACR2, PLEK2, and FA2H provide
protection from tumor invasion; they were applied as protec-
tive factors in our risk score method.

FAM72D and ARHGAP33 are risk factors for PCa.
The family with sequence similarity 72member D (FAM72D)
is also known as GCUD2; it is a poor prognostic gene of mye-
loma and control cell proliferation and survival in the FOXM1
transcription factor network [33]. FAM72 paralogs are upreg-

ulated in tumor cells and are related tomitotic cell cycle genes
that promote the formation of centrosomes and mitotic spin-
dles and act as prognostic biomarkers for glioblastoma [34].
Rho GTPase activating protein 33 (ARHGAP33) is a high-
affinity receptor for the brain-derived neurotrophic factor
[35]. Chen et al. [36] suggested that ARHGAP9, 15, 18, 19,
25, and 30 were associated with breast cancer. To our best
knowledge, ours is the first study to identify ARHGAP33
and PLEK2 as PCa prognosis factors. Nevertheless, the mech-
anisms underlying the effects of these genes on prognosis in
PCa require further research.

In this study, we established a risk score called CMU5
that divides PCa patients into different groups, and we pro-
vided the disease-free survival prediction time in high-risk
and low-risk groups. With the CMU5 score support, we
can distinguish high-risk patients with low Gleason scores
to provide patients with individualized treatment. The
CMU5 score was verified to be reliable in two other external
datasets. These data suggest that both CMU5 and the
threshold value make sense in terms of disease-free survival
time and status. Nevertheless, because of the limitations of
our research methods, there was no in-depth study mecha-
nism of action of the factors in the scoring model, and the
scoring algorithm requires further verification based on
basic science research.

Gleason score 8

P = 0.2851
HR = 1.748

D
ise

as
e-

fre
e s

ur
vi

va
l

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000
Time (days)

Low risk (27)

High risk (37)

(g)

Gleason score 9

P = 0.0641
HR = 1.823

D
ise

as
e-

fre
e s

ur
vi

va
l

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000
Time (days)

Low risk (53)

High risk (85)

(h)

Stage II

D
ise

as
e-

fre
e s

ur
vi

va
l

0

20

40

60

80

100

P = 0.0021
HR = 3.964

0 1000 2000 3000 4000 5000 6000
Time (days)

Low risk (140)
High risk (46)

(i)

Stage III

HR = 2.750
P < 0.0001

D
ise

as
e-

fre
e s

ur
vi

va
l

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000
Time (days)

Low risk (157)
High risk (135)

(j)

Figure 7: (a) The ROC of CMU5 in the complete set, CMU5 risk score best cut‐off point = 2:056, and the AUC of CMU5 = 0:768. (b) DFS:
CMU5 in complete set P < 0:0001, HR = 4:269. (c, d) The box plot of the risk score of CMU5 in different stages and the Gleason score in the
complete set, and the CMU5 clinical correlation was shown. (e–j) The KM survival curve in different subgroups of CMU5 in the complete set.
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Figure 8: (a, b) The ROC curve and DFS survival analysis in the TCGA test set. (c, d) The clinical correlation between the CMU5 risk score to
stages and the Gleason score in the TCGA test set. (e, f) The ROC curve and DFS survival analysis in GSE21032. (g, h) The clinical correlation
between the CMU5 risk score to stages and the Gleason score in GSE21032. (i, j) The ROC curve and BCR survival analysis in
GSE46602. (k, l) The clinical correlation between the CMU5 risk score to stages and the Gleason score in GSE46602.
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Figure 9: Continued.

17International Journal of Genomics



Ranking metric scores

0
–0.50

–0.25

0.00

0.25

0.50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10,000 20,000 30,000
Rank in ordered dataset

Enrichment plot: KEGG_mismatch_repair

Enrichment profile
Hits

40,000
‘I’ (negativety correlated)

En
ric

hm
en

t s
co

re
 (E

S)

‘h’ (positivety correlated)

Zero cross at 25752

50,000

Ra
nk

ed
 li

st 
m

et
ric

 (s
ig

na
l2

no
ise

)

(c)

Ranking metric scores

Enrichment plot: KEGG_cell_cycle

0
–0.50

–0.25

0.00

0.25

0.50

0.0

0.1

0.2

0.3

0.4

0.5

10,000 20,000 30,000
Rank in ordered dataset

Enrichment profile
Hits

40,000
‘I’ (negativety correlated)

Ra
nk

ed
 li

st 
m

et
ric

 (s
ig

na
l2

no
ise

)
En

ric
hm

en
t s

co
re

 (E
S)

‘h’ (positivety correlated)

Zero cross at 25752

50,000

(d)

Figure 9: Continued.

18 International Journal of Genomics



Enrichment plot: KEGG_base_excision_repair
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5. Conclusions

We developed a five-gene signature for survival prediction in
PCa patients from TCGA. A five-gene signature (TACR2,

FAM72D, PLEK2, FA2H, and ARHGAP33) named CMU5,
with genes selected robustly, was identified using the
“Rbsurv” package. Based on the cut-off of 2.056, high-risk
and low-risk groups were identified. Based on the verification
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Figure 9: GSEA analysis. (a–e) Top five significant results of the KEGG pathways for the high-risk group. (f–j) Top five significant results of
the KEGG pathways in the low-risk group.
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of the benign nature and evaluation effect, the CMU5 score
might have potential prognostic and therapeutic implications
for PCa patients.
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