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Abstract

Reward-related dopaminergic influences on learning and overt behaviour are well established, but any influence on sensory
decision-making is largely unknown. We used functional magnetic resonance imaging (fMRI) while participants judged
electric somatosensory stimuli on one hand or other, before being rewarded for correct performance at trial end via a visual
signal, at one of four anticipated financial levels. Prior to the procedure, participants received either placebo (saline), a
dopamine agonist (levodopa), or an antagonist (haloperidol). Principal findings: higher anticipated reward improved tactile
decisions. Visually signalled reward reactivated primary somatosensory cortex for the judged hand, more strongly for higher
reward. After receiving a higher reward on one trial, somatosensory activations and decisions were enhanced on the next
trial. These behavioural and neural effects were all enhanced by levodopa and attenuated by haloperidol, indicating
dopaminergic dependency. Dopaminergic reward-related influences extend even to early somatosensory cortex and
sensory decision-making.
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Introduction

A role for dopamine in Pavlovian and instrumental learning, as

well as in consolidating plastic changes in corticostriatal pathways,

is well established [1,2]. Although research on reward has focused

on learning, there is growing interest in a possible reward-

mediated modulation of perception and sensory decision-making

[3–5]. However, it remains unclear whether effects of reward on

human sensory processing are influenced by dopamine.

Here, we examined possible dopaminergic modulatory influences

on neural activity in human primary somatosensory cortex (PSC)

and on sensory decisions. We exploited a new somatosensory

paradigm for which we recently showed that increased financial

rewards not only improve sensory performance, but also modulate

PSC at the point of reward delivery, even when the financial reward

is presented only visually [6]. To examine any contribution of

dopamine to reward modulation of somatosensation, we now

combine the sensory decision-making paradigm with concurrent

functional magnetic resonance imaging (fMRI) (see Materials and

Methods, and Figure 1) in the context of both agonist and

antagonist dopaminergic pharmacological manipulations.

In a placebo-controlled, double-blind, fully randomized design,

participants received pills comprising either 100-mg levodopa, 2-

mg haloperidol, or placebo (see Materials and Methods, and

Figure S2). Levodopa is well established for increasing brain

dopamine levels, as commonly used as therapy for Parkinson

disease [7]. Haloperidol is an antidopaminergic drug (selective D2

receptor antagonist), frequently used to treat psychosis [8].

Results

Influences of Pharmacology and Reward on
Somatosensory Decision-Making

We found a clear impact of dopaminergic modulation on

somatosensory decisions. During scanning, across all reward levels,

percentage correct somatosensory judgments comprised 70.4% of

trials for the placebo group, increased to 76.3% for the levodopa

group, and reduced to 66.4% for the haloperidol group. In terms

of the specifics of reward effects, within the present placebo group

(and in accord with our recent nonpharmacological study [6]),

increased potential reward led to enhanced accuracy of sensory

decisions (Figure 2, top row; linear parametric effect of reward

level F(1,9) = 9.99, p = 0.012) for judgments about the left or right

hand (no significant main effects or interactions with factor of side,

all p.0.99). This effect of reward on somatosensory decisions was

affected by our pharmacological manipulation (see Figure 2,

comparing different rows), leading to a significant interaction

between drug group and reward level (F(2,27) = 3.81, p = 0.035).
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Again, this outcome did not depend on the hand judged (no

significant main effects or interactions involving side, all p.0.5).

Planned comparisons for the impact of the different drugs

showed that under levodopa (middle row in Figure 2), overall

accuracy was significantly higher than for placebo (F(1,18) = 5.68,

p = 0.028), whereas higher reward levels still systematically

increased discrimination accuracy (F(1,9) = 19.16, p = 0.002). By

contrast, haloperidol (bottom row in Figure 2) not only attenuated

the effect of reward level relative to placebo (F(1,18) = 5.32,

p = 0.03), but actually eliminated the impact of reward level

(F(1,9) = 0.03, p = 0.85, n.s.). Thus, these data show that for sensory

decisions involving the left or right hand, agonist and antagonist

dopamine manipulations enhance accuracy or reduce reward-

related effects on somatosensory discrimination performance,

respectively.

We next examined the fMRI data acquired concurrently with

task performance for all three pharmacological groups, analyzing

these with standard approaches (SPM5 software, see Materials and

Methods for details). To anticipate, we observed effects of the

dopaminergic manipulations on brain activity related to reward

and to somatosensory processing that corresponded with the

effects on somatosensory decisions reported behaviourally above,

and that shed light on the neural mechanisms involved.

The Brain Network Involved in the Somatosensory
Decision Task

During the somatosensory discrimination phase of each trial, we

found activation of a task-related network of brain areas including

PSC and secondary somatosensory cortices/parietal ventral

cortex, as well as prefrontal cortex (PFC), supplementary motor

area (SMA), premotor cortex (PMC), posterior parietal cortex

(PPC), insula, caudate nucleus, and striatum in both hemispheres

(see Text S1 and Table S1). This accords with the involvement of

similar areas for related somatosensory tasks in other work [6,9].

Influence of Reward and Drugs on Reward Regions and
on PSC during Reward Delivery

To identify brain regions where dopamine level specifically

influenced reward-related activation, we next focused on blood

Author Summary

The rewards one receives during decision-making has a
profound impact on learning. Much recent interest has
focused on the role of the neurotransmitter dopamine in
the basal ganglia for influencing learning and behaviour.
Here, we ask whether reward can influence low-level
sensory processing, for instance in primary sensory cortex,
and how dopamine mediates this process. We show in
humans that dopamine level, as manipulated with a
dopamine agonist and antagonist in a double-blind
placebo-controlled design, is involved in reward modula-
tion of primary somatosensory cortex. Higher anticipated
reward improved tactile decisions, and receipt of visual
reward signals reactivated primary somatosensory cortex
for the judged hand as measured using functional
neuroimaging. After receiving a higher reward on one
trial, somatosensory activations and decisions were en-
hanced on the next trial, suggesting that reward outcome
provides a form of teaching signal that may be fed back to
task-relevant sensory cortex. All these behavioural and
neural effects of reward on somatosensory decision-
making were strongly modulated by the availability of
dopamine as the mediating neurotransmitter. These
findings raise the tantalising new possibility that reward
manipulations in conjunction with dopaminergic drugs
might be used to enhance pathologically deficient or
lapsed sensory processes, analogous to how rewards can
be used to shape or correct behaviour.

Figure 1. Schematic of somatosensory frequency discrimination task and reward paradigm. There were four possible reward magnitudes
(0, 20, 50, and 80 pennies per correct trial), grouped into miniblocks of four trials. A distinct visual cue signalled the onset of a miniblock (four
different examples shown in the top row). This cue indicated via a visual icon the potential reward for each of the next four trials, and also whether
the right or left index finger was rewarded (conveyed by arrow below the icons). At lower left, a schematic sequence of events is shown for one trial.
Both index fingers were simultaneously stimulated electrically, twice in succession; participants discriminated the frequency of the two successive
stimuli (f1 and f2, f = frequency) for the hand arrowed by the preceding miniblock cue (see top row examples). After the second stimulus (f2),
participants had to indicate whether f1 or f2 was higher (or lower, counterbalanced across participants), by pushing a pedal with both feet once for f1
or twice for f2. Three to 5 s after offset of the second electrical stimulus (randomly jittered in steps of 1 s), and thus 6 to 8 s after onset of the first,
they received visual reward or no-reward feedback via icons (see eight different examples in box at bottom right). This jittered separation of reward
delivery, via visual feedback at trial end, from the preceding somatosensory stimulation/discrimination allowed us (together with performance-
contingent rewarded or nonreward outcomes, and the different reward magnitudes) to isolate hemodynamic responses specific to delivery of
different rewards; see Materials and Methods.
doi:10.1371/journal.pbio.1000164.g001

Dopamine Modulates Sensory Decisions
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oxygen level–dependent (BOLD) signals during the visual reward

outcome presented at trial end (see Figure 1), in the absence of

somatosensory stimulation. When testing for the interaction of

group and outcome (rewarded versus nonrewarded) at trial end,

we observed greater differential BOLD signal in ventral striatum

and orbitofrontal cortex (OFC). Both these regions showed a

reliable group-by-reward interaction, attributable to an enhance-

ment of the reward-related signal for the levodopa (increased

central dopamine) group and an attenuation of reward effects for

the haloperidol (D2 receptor antagonist) group, relative to

intermediate reward-related responses seen under placebo (see

Figure 3, plus Table S2a). Thus, BOLD signals in two key regions

implicated in reward, (i.e., ventral striatum [10] and OFC [11]),

showed a response profile at reward delivery that clearly depended

on dopamine level.

The same comparison (interaction of drug group with reward

versus no reward) also revealed dopamine-related influences on

activity within PSC itself (see Table S2a). Note that this reward-

dependent somatosensory activation was expressed at a time point

corresponding to the delivery of visual rewards at trial end. We

confirmed that these activations originated from PSC, by

restricting our examination of BOLD signals to primary

somatosensory areas BA1, BA2, and BA3b [12], as defined by a

computerized atlas based on cytoarchitectonic data [13] (see

Materials and Methods for further details). These analyses

confirmed a reward effect (relative to nonrewarded trials) in

PSC, at the time point corresponding to visual reward delivery.

Moreover, this somatosensory effect also depended on dopamine

level, as manipulated here pharmacologically (see Figure 4, plus

Table S2a and S2b).

The involvement of PSC in this impact of reward, at the reward

delivery point during a sensory decision task, accords with our

recent nonpharmacological findings [6]. That previous study also

showed that visually signalled financial rewards can ‘‘reactivate’’

PSC in the context of a somatosensory-discrimination task. This

suggests that reward outcome provides a form of teaching signal

that may be fed back to task-relevant sensory cortex. The present

data now show that the effectiveness of reward in influencing PSC

in this way depends on dopamine, as evident in our new

demonstration that the impact on somatosensory cortex itself is

enhanced under levodopa and attenuated under haloperidol (see

Figure 4, Table S2a and S2b), analogously to the effects we found

also for more classic reward-related regions (see Figure 3).

Importantly, these dopaminergic influences on reward effects in

somatosensory cortex were expressed specifically in the PSC that

was required for the preceding decision that led to the reward.

Separate analyses of trials in which the left or right index finger

had been judged revealed that only somatosensory cortex

contralateral to the currently judged hand was affected by reward

delivery and by drug group in this way (Figure 4 and Table S2b;

peak at xyz = 236, 236, 60 for left PSC when judging the right

hand; and at 36, 230, 48 for right PSC when judging the left

hand). This underlines that the dopaminergic reward influences

were indeed specifically expressed only in the portions of PSC that

were relevant for correct performance of the preceding task.

Figure 5 plots the percent signal changes at reward delivery for

reward minus nonreward trials, extracted from independently

defined regions of interest (ROIs, see [14], Materials and Methods,

and Discussion) contralateral to the rewarded index finger, for

each drug group (separate rows in Figure 5). This reveals that our

pharmacological manipulation of dopamine level influenced

BOLD responses in PSC ROIs specifically as a function of the

different financial levels achieved on reward trials (significant

interaction between drug group and parametric reward-level;

F(2,27) = 10.27, p,0.001). Under placebo (top row in Figure 5),

reactivation of contralateral PSC by visual reward feedback

increased systematically with financial magnitude (F(1,9) = 14.34,

p = 0.004). Such an increase was also found under levodopa

(F(1,9) = 15.94, p = 0.003), with a trend towards a steeper slope than

under placebo (F(1,18) = 9.53, p = 0.07). Haloperidol, by contrast

(see bottom row in Figure 5), completely eliminated the impact of a

parametric reward level on PSC at reward delivery (F(1,9) = 0.88,

p = 0.37), with this flat function differing significantly from the

linear increase under placebo in a direct comparison

(F(1,18) = 14.68, p = 0.001). All of these influences of reward level

during visual reward delivery upon PSC were specific to the

positive trials in which financial reward was delivered, with no

effect of financial reward level on somatosensory cortex being

found for nonrewarded trials instead, for all three groups here (all

p.0.2). Thus, these effects are indeed due to the actual receipt of

reward, rather than just general feedback on task performance.

How Reward Enhances Behavioural Performance and
Somatosensory Brain Activity

Our somatosensory decision task allows assessment of whether

(higher) reward delivery on a given trial can enhance behavioural

decisions and related PSC activity on the next trial [6]. Such trial-

to-trial effects of reward delivery could explain why receiving

higher rewards leads to better performance overall. Accordingly,

Figure 2. Percent correct judgments for different reward
magnitudes under placebo, levodopa, or haloperidol. Results
are shown separately for the right (red) and left (green) index fingers,
plotting group means6s.e.m. For placebo (top row), we found a
monotonic effect of increasing potential reward leading to increasing
proportion of correct sensory decisions. This effect was more
pronounced for levodopa (middle row), but attenuated, and indeed
eliminated, for haloperidol (bottom row). These findings indicate that
the impact of the anticipated amount of financial reward on tactile
decision accuracy is modulated by dopaminergic influences.
doi:10.1371/journal.pbio.1000164.g002

Dopamine Modulates Sensory Decisions
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we examined how dopamine may affect such trial-to-trial reward

effects on somatosensory discrimination. We recently reported that

the conditional probability of the next trial being correct after

receiving a reward on the preceding trial is enhanced for higher

rewards [6]. We now show that this behavioural effect is strongly

modulated by dopamine, as manipulated here pharmacologically

(interaction of reward level and the three drug groups, F(2,27) = 7.6,

p = 0.002). Under placebo (see green line in Figure 6A), the

findings confirm our recent nonpharmacological study [6]. The

beneficial impact of receiving reward on a given trial (n21) for

Figure 4. Cortical regions within PSC where BOLD responses to reward were affected by central dopamine level. In those trials in
which either the left or right index finger (IF) had been rewarded for correct judgment, regions within contralateral PSC (including BA1, BA2, and
BA3b) showed changes in BOLD responses reflecting an interaction between central dopamine levels and reward, at the time point corresponding to
when financial reward or nonreward was delivered visually (drug-by-reward interaction thresholded at p = 0.05, FWE-corrected, see Materials and
Methods for further details; LH, left hemisphere; RH, right hemisphere). Reactivation of contralateral PSC by visual reward-delivery (Table S2b; peaking
at 234, 240, 60 for left PSC; and 36, 230, 50 for right PSC) increased with increased central dopamine levels; an effect comparable to the drug effect
seen in ventral striatum and OFC (cf. Figure 3). In contrast to the positive results at the time point corresponding to visual reward delivery, we found
no parametric effect of reward level on PSC for the earlier discrimination phase of trials, when contrasting correct minus incorrect trials there (see
Figure S1, and Text S1). This indicates that the effects on PSC shown here (and in Figure 5) reflect actual reward delivery via the visual feedback, rather
than other factors such as sensory attention during the stimulation; see also [6].
doi:10.1371/journal.pbio.1000164.g004

Figure 3. Cortical regions where BOLD responses to reward were affected by central dopamine level. BOLD responses to reward (all
visual feedback events that indicated reward delivery, compared with the visual nonreward feedback events, at trial end) were affected by central
dopamine level (linear parametric effect of the three drugs ‘‘haloperidol,placebo,levodopa,’’ for drug-by-reward interaction thresholded at p = 0.05
FWE-corrected; left hemisphere [LH]). This test revealed higher activity in ventral striatum and orbitofrontal cortex for rewarded trials when
participants were pretreated with levodopa (i.e., a drug that increases central dopamine levels) and lower activity there when participants were given
haloperidol (i.e., a dopamine receptor antagonist), for reward versus nonreward trials. Both the ventral striatum and orbitofrontal cortex, well
established as key areas of the brain’s reward system, are thus susceptible to changes in central dopamine level. See Table S2a for coordinates, p-
values. and T-scores.
doi:10.1371/journal.pbio.1000164.g003

Dopamine Modulates Sensory Decisions
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accurate performance on the subsequent trial (n) is stronger for

higher reward levels (F(1,9) = 14.62, p = 0.004). This reward level–

dependent trial-to-trial effect was even more pronounced

(F(1,9) = 35.02, p,0.001) under levodopa (see blue line in

Figure 6A), with a significantly steeper slope against the reward-

level factor than for placebo (F(1,18) = 7.49, p = 0.014). Levodopa

also enhanced the overall trial-to-trial effect (pooled over reward

level) relative to placebo (F(1,18) = 4.68, p = 0.044). For haloperidol,

by contrast (see red line in Figure 6A), the parametric increase in

trial-to-trial performance (as a function of reward level obtained

on the preceding trial) was completely eliminated (F(1,9) = 0.102,

p = 0.757) and hence reduced relative to the placebo group

(F(1,18) = 3.16, p = 0.09). Haloperidol likewise reduced the trial-to-

trial effects relative to placebo when pooling across reward levels

(F(1,18) = 4.109, p = 0.05).

This aspect of our behavioural findings thus establishes

dopamine-dependence for the enhancing effect of receiving a

(higher) reward on the previous trial upon sensory decisions for the

next trial, with this enhancement being even more pronounced

under levodopa, but eliminated by haloperidol. Our final results

confirm that such a dopamine-related trial-to-trial effect of reward

Figure 5. Percent signal changes in PSC corresponding to the
time point of visual reward delivery. The ROIs contralateral to the
rewarded right (red) or left (green) index finger are shown in separate
rows for the three drugs groups (group mean6s.e.m.). For placebo (top
row), reactivation in PSC by visual reward delivery increased system-
atically with financial magnitude of the reward received. Under
levodopa (middle row), we found further enhancement of this BOLD
pattern. Remarkably, the effect of reward magnitude on BOLD
responses was attenuated and indeed eliminated after pretreatment
with haloperidol (bottom row). There were no parametric effects of
reward level for the earlier discrimination phase within a trial, for any
pharmacological condition. Instead, the effect of reward level shown
here under placebo, enhanced under levodopa, but eliminated under
haloperidol, were specific to the time point for visual reward delivery.
doi:10.1371/journal.pbio.1000164.g005

Figure 6. Trial-to-trial effects of receiving a higher reward. (A)
shows for each drug group, the conditional probability of being correct
in the somatosensory discrimination on a trial, given that the previous
trial was rewarded. Group means are shown, with whiskers indicating
s.e.m. Note the significantly higher conditional probability of being
correct on the current trial following receipt of a higher reward on the
previous trial for placebo (green line). This effect was even more
pronounced for levodopa (blue line), but attenuated and indeed
eliminated under haloperidol (red line). (B) ROI analysis of PSC (same
ROIs as for Figure 5) reveals increased BOLD signal (group mean6s.e.m.
shown), now during the somatosensory discrimination phase of trials,
when those trials were preceded by actually receiving a higher reward
at end of the prior trial, as compared with being preceded by a
nonreward trial under that monetary level. Comparing placebo (green
line) to levodopa (blue line), we found this trial-to-trial effect on the
response of PSC was even more pronounced under the dopamine
agonist, whereas it was attenuated and indeed eliminated by
haloperidol (red line).
doi:10.1371/journal.pbio.1000164.g006

Dopamine Modulates Sensory Decisions
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level was not only present for sensory performance, but also

impacted on the BOLD response of PSC during somatosensory

discrimination for the next trial (interaction between drug group

and parametric reward level, F(2,27) = 4.48, p = 0.021, see Figure 6B).

Using the same independently defined ROIs for PSC as previously

(see Figure 4, and Materials and Methods for discussion on ROI

selection), we found BOLD signal increases in PSC contralateral to

the judged hand, now during the somatosensory stimulation/

discrimination phase of a given trial, if a higher reward had actually

been received on the previous trial. In line with our predictions [6],

these trial-to-trial enhancements of PSC BOLD response by the

level of reward actually received on the previous trial were present

under placebo (F(1,9) = 11.79, p = 0.007). Our new pharmacological

manipulation revealed that these reward-dependent trial-to-trial

enhancements of PSC were even more pronounced under levodopa

(F(1,9) = 23.58, p = 0.001; F(1,18) = 3.16, p = 0.09 in direct comparison

with placebo), but were completely abolished under haloperidol

(F(1,9) = 0.003, n.s.; F(1,18) = 5.53, p = 0.03 in comparison with

placebo). This pattern of results shows that pharmacologically

manipulated dopamine level modulates the impact of reward for a

given trial upon sensory performance (Figure 6A) and the response

of PSC (Figure 6B) for the subsequent trial.

How Reward Level and Dopaminergic Manipulations
Influence Ventral Striatum and OFC

Figure 7 plots the BOLD responses in ventral striatum for each

financial reward level (OFC showed comparable signal changes for

these comparisons). At the point of reward delivery (see Figure 7A),

the ventral striatum showed a significant reward-by-drug interac-

tion (F(2,27) = 5.59, p = 0.009, for ventral striatum, see Figure 7A;

and F(2,27) = 5.26, p = 0.012, for OFC). At this time point, BOLD

responses under levodopa showed an impact of reward versus

nonreward for ventral striatum (F(1,9) = 5.99, p = 0.03) that was

enhanced relative to placebo (F(1,18) = 5.57, p = 0.03) and likewise

for OFC (F(1,9) = 7.49, p = 0.02; levodopa vs. placebo: F(1,18) = 3.51,

p = 0.07).

However, the effects of reward delivery on ventral striatum and

OFC differed from those observed in PSC (cf. Figure 5). In the

placebo group, neither striatum (F(1,9) = 0.01, p = 0.91) nor OFC

(F(1,9) = 3.6, p = 0.09) showed a significant increase in BOLD

response with rising reward level at reward delivery point (consistent

with [6]). Instead, the impact of reward level on striatum and OFC

at reward delivery was only significant under levodopa (striatum:

F(1,9) = 5.99, p = 0.03; OFC: F(1,9) = 7.49, p = 0.02). We found no

parametric reward-level effect under haloperidol, neither in the

striatum (F(1,9) = 0.59, p = 0.46; haloperidol vs. placebo:

F(1,18) = 0.002, p = 0.96) nor in OFC (F(1,9) = 0.01, p = 0.9; haloper-

idol vs. placebo: F(1,18) = 3.6, p = 0.07) at reward delivery.

During the earlier stimulation/discrimination phase, both these

reward-related regions showed an interaction of drug and reward

level (striatum: F(2,27) = 3.98, p = 0.03; OFC: F(2,27) = 3.42, p = 0.04,

for correct minus incorrect trials, see Figure 7B). For this relatively

early point in the trial, BOLD responses under placebo replicated

our recent nonpharmacological study [6] in showing a monotonic

effect of increased anticipated reward level for ventral striatum

(F(1,9) = 5.12, p = 0.05) and OFC (F(1,9) = 7.38, p = 0.02), in advance

of actual reward delivery. This pattern was also found under

levodopa (striatum: F(1,9) = 7.03, p = 0.02; OFC: F(1,9) = 6.03,

p = 0.03), but it was attenuated, and indeed eliminated, under

haloperidol (striatum: F(1,9) = 0.1, p = 0.75; placebo vs. haloperidol:

F(1,18) = 4.75, p = 0.04; OFC: F(1,9) = 0.02, p = 0.87; placebo vs.

haloperidol: F(1,18) = 6.55, p = 0.02).

Our data indicate that ventral striatum and OFC, both classic

reward-related regions, also show a pattern of dopaminergic reward-

related modulation, but this pattern differed from that seen in PSC.

During the reward delivery phase, an influence of reward level was

observed in ventral striatum and OFC only under levodopa (not

during placebo, as in PSC). However, reward level affected BOLD

signal in ventral striatum and OFC during the earlier stimulation/

discrimination phase (where no effects was seen in PSC). Thus, the

classic reward-related areas in ventral striatum and OFC mostly

showed anticipatory effects of reward level at the earlier stimulation/

discrimination point, whereas PSC was only influenced significantly

by reward level at the later reward delivery phase (see above and

Figures 4 and 5). Nonetheless, all of these effects were typically

enhanced by levodopa but eliminated by haloperidol.

Discussion

How the brain harnesses reward-related information to control

a wide range of overt behaviours [15,16] is a central topic in

Figure 7. Percent signal changes in the ventral striatum
corresponding to the time point of visual reward delivery (A)
and the stimulation/discrimination point (B). (A) Mean BOLD
signal changes (6s.e.m.) for the four financial reward-levels from the
ventral striatum, at the later phase of reward delivery, with the three
drug groups shown separately by row. These data were extracted from
5-mm spherical ROIs centred at xyz = 28, 12, 26, and 10, 18, 24, i.e., at
the peaks for the fully orthogonal effect of reward minus nonreward
feedback in our balanced factorial design. The plot shows that there is
no strictly linear effect of reward level, but under levodopa, enhanced
BOLD signal for the higher two reward levels is apparent. The placebo
and haloperidol groups show flat functions, with this outcome under
placebo replicating our recent nonpharmacological study [6]. (B) Mean
signal changes (6s.e.m.) for the four financial reward levels from the
same ventral striatum ROI, but now for the earlier stimulation/
discrimination point, shown separately for the three drug groups.
Under placebo (top row), there is a monotonic effect of increased
potential reward level, replicating the same anticipatory effect found in
the nonpharmacological study [6]. The middle row shows that this
pattern is also present, and indeed enhanced, under levodopa. By
contrast, haloperidol attenuates and indeed eliminates this effect.
doi:10.1371/journal.pbio.1000164.g007

Dopamine Modulates Sensory Decisions
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decision neuroscience. Much recent discussion concerns the likely

dopaminergic mediation of such effects [1]. An emerging new

question is whether reward may influence early sensory processing

[6,17,18], and if so, whether these influences are dopaminergically

mediated.

Here, we establish a dopamine dependence for reward-based

influences on human PSC in a sensory decision-making task. We

found that participants pretreated with levodopa showed increased

reward-related effects for both tactile decisions and for hemody-

namic responses (or ‘‘reactivation’’) in PSC at the point of reward

delivery (see Figures 4 and 5). Haloperidol, in contrast, eliminated

these influences of reward on somatosensory performance and on

processing in PSC. This demonstrates that dopaminergic neural

processes, enhanced by levodopa but attenuated by haloperidol,

are involved in modulating the impact of reward upon activity and

function for primary somatosensation. There was no parametric

effect of reward level on PSC at the time point corresponding to

the earlier discrimination phase for correct minus incorrect trials

(see Figure S1, and Text S1). Instead, the effect of financial reward

level was expressed only at the end of the trial, timelocked to

positive reward delivery via visual feedback (see Materials and

Methods for how these different phases of the trial were separated).

This confirms that the effects on PSC (as seen in Figures 4 and 5)

must reflect feedback due to reward receipt, rather than

modulation of sensory processing during the stimulation, as

observed during attention [19].

Dopamine is a key neurotransmitter implicated in incentive

motivation [20], memory formation [21,22], and reinforcement

learning [23,24]. Furthermore, dopamine release optimises response

selection in skilled nonautomatic tasks [25] and improves cognitive

function by enhancing information processing [26,27] and atten-

tional accuracy [28–30], possibly via suppression of background

noise and enhancement of task-related signals [31]. However, there

seems to be a trade-off between dopamine levels and performance

since individuals with pathologically increased dopamine activity

(i.e., schizophrenia) have reduced function of attentional and

sensorimotor systems, and administration of strong dopamine

antagonists in these patients ameliorates their deficits [32].

In humans, dopamine-mediated reward effects are well estab-

lished in midbrain, ventral striatum, and OFC; these structures

represent key components of the human reward system [10,11] and

were activated here. However, reward-sensitive areas are tightly

interconnected with other cortical regions, including via thalamo-

cortical loops [18], suggesting that a complex network of

dopaminergic projections [33] can also affect processing in other

brain areas, such as PSC [34,35]. It is tempting to speculate that this

interconnected architecture provides the basis for a pervasive

influence of reward on a wide range of cognitive processes, and our

present results appear consistent with this perspective, extending the

range of influences to include PSC and sensory decisions.

When inspecting our data for effects of reward level on ventral

striatum and OFC, we found dopamine-related anticipatory effects of

monetary incentive arising early in the trial, during sensory processing

and prior to reward delivery (Figure 7B). Note that these effects arose

much earlier than a later effect on PSC, expressed solely when a

reward was actually received (see Figure 5). The finding that ventral

striatum and OFC were affected by reward level more in an

anticipatory than outcome-related fashion may appear at odds with a

number of studies showing reward outcome effects in these structures

(e.g., [36,37]). On the other hand, our findings are compatible with

several other studies showing anticipatory reward effects in ventral

striatum and OFC [38–41]. One possible explanation for our specific

results may be that we used relatively low levels of reward on each

trial (i.e., 0, 20, 50, or 80 pennies per correct trial), since other studies

showing outcome-related effects in OFC and ventral striatum often

used much larger amounts of monetary reward (e.g., 0 to $10 as in

[42]). Furthermore, in our design, reward level was always explicitly

signalled by a visual cue indicating the potential reward for the next

blocked series of trials. The ventral striatum is known to encode not

only reward prediction, like in our study during stimulation/

discrimination period, see also [43], but also reward prediction

errors, which reflect a difference between predicted and received

reward level during feedback/outcome (see also [1,2,44,45]). Thus,

the explicit predictability of reward value in our task (signalled

blockwise via a visual cue) may explain an absent reward effect at the

outcome/feedback point in ventral striatum.

Taken together, our findings suggest that when reward outcome

depends on a veridical sensory decision, reward signals that arise

in putative reward regions (such as ventral striatum during

stimulation/discrimination period here) can be propagated to

early sensory systems that are critical for sensory judgements (in

this case, the PSC). These reward-related modulations reflect the

magnitude of reward actually received, and may thus provide a

possible dopaminergic ‘‘teaching signal’’ based upon reward

delivery. This suggests that dopamine-related interplay between

striatum, OFC, and sensory cortex may allow incentive motivation

and feedback to shape cortical responses [23], in line with the

recent finding [46] that corticostriatal interactions during

processing of incentive stimuli covary with the COMT val158met

polymorphism, which is linked to higher synaptic dopamine levels.

Our present fMRI findings clearly establish that dopamine

levels can affect reward-related influences on PSC. Future invasive

neurophysiological studies in animals may shed further light on the

fine-grained neural mechanisms and circuits involved in reward-

related dopaminergic modulation of PSC function. Some aspects

of our results already provide an initial step towards a mechanistic

account for how reward can impact on somatosensory discrimi-

nation performance. Notably, we found that the ‘‘reactivation’’ in

PSC by reward delivery at trial end influenced both performance

and evoked somatosensory responses for the next trial (Figure 6;

see also [6]). An important new finding here is that this trial-to-

trial effect of reward outcome was also mediated by dopaminergic

transmission, being enhanced by levodopa and abolished by

haloperidol. These modulatory trial-to-trial effects of dopamine on

somatosensory performance and cortical processing specifically

depended on the financial level of reward received, and thus did

not simply indicate some form of general ‘‘resetting’’ for the next

trial [47]. Instead, our results suggest that these effects reflect a

dopamine-mediated learning signal [48], fed back to task-specific

primary sensory cortex [6,17], that enhances the response of

somatosensory cortex and somatosensory performance for the next

trial, thereby leading to enhanced outcomes, and to the

improvement in sensory decisions under higher rewards.

Our findings show that dopamine mediates a reward influence on

early human sensory cortex in a sensory decision-making task.

Recent invasive studies in rats [17,18], and monkeys [4,49,50] had

begun to incorporate reward considerations into mechanistic

accounts for motor choice, and increasingly for perceptual decisions

[5]. The present human study indicates that even basic sensory

discriminations and the function of early sensory structures (here,

PSC) are influenced by dopaminergic transmission [7]. Thus,

dopamine-dependent reward signals arising in classic reward-related

structures appear to be propagated back to early somatosensory

cortex so as to shape basic sensory discrimination, leading to

enhanced reward outcome. This raises the tantalising possibility that

specific pharmacological manipulations (e.g., those affecting dopa-

minergic systems) might modulate reward-related brain processes for

possible neuro-rehabilitation of sensory processing.
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Materials and Methods

Experimental Schedule
Participants first practiced the somatosensory frequency-dis-

crimination task in an initial session inside the scanner, but without

functional images being collected. This practice session had the

same length as the subsequent experiment, but we presented only

0-pence trials to avoid habituation to reward magnitudes.

Participants were then removed from the scanner, and drugs

were administrated in a placebo-controlled, double-blind, fully

randomized design. Since levodopa reaches peak plasma concen-

tration within 1 h after intake, whereas haloperidol peaks 3 h

later, we followed a recently described method [16] to ensure that

peak plasma concentration of both drugs coincided with fMRI (see

Figure S2). Participant always received two pills; the first

immediately after the practise session, and the second 3 h later.

The main experiment involving scanning started 1 h after the

participant received the second pill. If a participant was assigned to

the placebo group, both pills contained placebo. In the levodopa

group, the first pill contained placebo, the second 100 mg of

levodopa. Accordingly, latency between levodopa administration

and main experiment was 1 h, which is the time a single dose of

100 mg needs to reach peak plasma concentration [16]. In the

haloperidol group, the first pill contained 2-mg haloperidol, the

second pill placebo. Thus, latency between haloperidol intake and

main experiment was 4 h, in which time haloperidol is known to

reach peak plasma concentration [16]. This drug administration

schedule thus ensured that the peak plasma concentration of both

drugs was matched across participants, without the necessity for

further pharmacokinetic characterisation.

Event-Related Functional Magnetic Resonance Imaging
Thirty right-handed healthy participants gave written informed

consent in accord with local ethics. Ten participants (seven male)

were included in each group in a fully randomized, double-blind

fashion (placebo: aged between 21 and 35 y, mean 2765.3 y;

dopamine: aged between 19 and 31 y, mean 2663.5 y; haloper-

idol: aged between 20 and 33 y, mean 2764.5 y). All participants

were European students. All females took contraceptives and were

not scanned during menses. All participants were first interviewed

and examined by an experienced physician (B. P.) to exclude any

psychiatric/neurological symptoms and history of significant drug

use.

We used a 3T head-scanner (Magnetom Allegra; Siemens) to

acquire functional and structural brain scans. For functional brain

scans, we used a BOLD-sensitive gradient echo T2* weighted

echo-planar imaging (EPI) sequence (TE = 30 ms, TR = 2.21 s,

flip angle = 90u, in-plane resolution = 363 mm2, slice-thick-

ness = 2 mm, interslice distance = 1 mm) optimized for fMRI

studies of the orbitofrontal cortex (for further information, see

[51]). One MRI scan (or volume) consisted of 34 oblique slices

(transversal-coronal tilt: 210u) covering the whole cerebrum.

During each fMRI session we acquired 875 volumes continuously.

After drug administration, volunteers underwent an fMRI

experiment in which they repeatedly discriminated the frequency

of two electrical stimuli, applied sequentially to the index finger

(both index fingers were in fact stimulated twice in succession on

each trial, but only one hand or the other was judged).

Participants experienced the stimulation as a prickling and

tingling sensation, and reported that their decision was based on

comparing the speed or rhythm of the two stimuli. With each trial,

participants first perceive a stimulus, hold it in working memory,

and finally make a decision by comparing it with a second

stimulus (see also [9,52]). For a detailed description of the fMRI

design and the stimuli used; see [6]. Participants signalled their

judgment via a foot response, and received visual feedback

indicating positive or negative reward outcome (for correct or

incorrect trials, respectively) after a variable temporal delay (see

Figure 1). This temporal separation, and other standard aspects of

event-related fMRI (e.g., [53]), allowed separation of BOLD

signals attributable to somatosensory encoding from those due to

the subsequent visual reward outcome (see Materials and

Methods, and also [6] for in-depth discussion). Thus, any

somatosensory reactivations due to the visual reward delivery

must reflect reward-related signals, not the initial processing or

level of attention during somatosensory input. We examined the

influence of dopaminergic manipulations on reward-related

processes at four different monetary reward levels (0, 20, 50, or

80 pennies per correct trial). These reward levels were organised

into miniblocks of four successive trials (see Figure 1). The onset of

each miniblock was signalled by a distinct visual cue indicating the

potential reward for each of the next four trials, and also whether

the right or left index finger should be judged for all those trials.

Thus, the participant knew both the financial stake and which

hand to judge in advance of each miniblock. Apart from this

miniblock structure, levels of rewards were randomly intermin-

gled, as was judged side. Our design enabled us to examine

dopaminergic dependence of reward-related influences on

somatosensory judgments and on related brain activity, both for

overall effects of reward (regardless of financial level), as well as

(orthogonally) for the parametric impact of increased potential

rewards (i.e., 0, 20, 50, or 80 pence per correct judgment).

For a high-resolution structural brain scan, which was acquired

after the functional MRI session, we used an isotropic 3D spoiled

gradient-recalled (SPGR) sequence with 107 sagittal-orientated

slices covering the whole brain. The anatomical images across

participants were used to calculate a mean group image. For initial

spatial assignment of functional changes, parametric maps

showing the group statistics were superimposed onto this mean

structural image.

Statistical Analyses
We used SPM5 software (http://www.fil.ion.ucl.ac.uk/spm/) to

assess event-related BOLD responses [53]. During the first six

volumes per session, BOLD signal reached steady state. These

volumes were discarded from further analysis. The remaining 869

volumes entered realignment and unwarping to remove move-

ment artefacts [54]. Volumes were then spatially normalized to the

standard template of the Montreal Neurological Institute [55]. As

for our recent nonpharmacological study [6], we smoothed

volumes using a 10-mm (full-width half-maximum) isotropic,

three-dimensional Gaussian filter, in accord with the standard

SPM approach.

To assess reliability of effects across participants, we used

random-effects SPM analysis. We report all brain regions that

survived family-wise error (FWE)-corrected thresholds. We further

assessed whether particular hemodynamic changes could specif-

ically be attributed to PSC, by restricting the analysis to PSC in

both brain hemispheres. For this, we used a cytoarchitechtonic

computerized anatomical atlas [13] (see http://www.fz-juelich.de/

inb/inb-3//spm_anatomy_toolbox) to create masks according to

the broad definition of PSC as encompassing BA1, BA2, and

BA3b, based on separate postmortem data [12,13,56]. This ROI

definition by means of anatomy prevented any selection bias and

hence potential artificial inflation of our ROI statistics [14].

We identified effects attributable to distinct events using distinct

stick functions (convolved with the default HRF in SPM). These

stick functions encoded the timing of tactile stimulation, or of later
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reward feedback for each trial. We also used a stick function

timelocked to the actual pedal response on each trial, and a further

stick function timelocked to the visual cue at the start of each

miniblock. This meant that all event types were coded as distinct

events, except that the successive pair of somatosensory stimuli on

each trial was coded as a single composite event since they were

not jittered relative to each other (see Figure 1). We further

distinguished between event types depending on the rewarded side

(right or left), reward magnitude, and whether the judgment was

correct or not (rewarded vs. nonreward trials). Null trials provided

an implicit baseline. To consider general half-life issues of the

drugs (i.e., haloperidol and levodopa), we followed a recently

described procedure (see above, and [16]) that allowed us to use a

statistical model for our fMRI data without taking pharmacoki-

netic characterization of the different drugs into account.

It was important for our experimental design to distinguish brain

activity attributable to somatosensory stimulation/discrimination,

from that due to later visual feedback signalling reward

presentation. Unlike previous event-related fMRI studies on

reward effects, which were not tailored to distinguish reward

anticipation from sensation effects (see, e.g., [41,57]), trial phases in

our experiment could be separated due to a combination of a

jittered timing (3–5 s intervening; 6–8 s from first somatosensory

input) plus the fact that not all trials were rewarded (only correct)

and reward could reflect four different monetary levels. The critical

regressors for our analysis were demonstrably uncorrelated and

therefore independent/orthogonal (see also [6]). The actual

correlations between critical regressors across all three groups

(levodopa, haloperidol, and placebo) were as follows: for correct

discrimination versus reward feedback: r = 20.02; and for incorrect

discriminations versus no-reward feedback: r = 20.08 (see also [6]).

These vanishingly small (insignificant, null) correlations allowed us

to separate discrimination-related versus feedback-related activity

changes with a standard event-related SPM analysis (see also [58–

60] for similar use of standard methods for decorrelating regressors

in fMRI analyses).

Given other recent results from pharmacological fMRI

involving levodopa and haloperidol [16], and in accord with their

established impact on central dopamine action, we expected

reduced reward-related effects (if dopaminergic) in the haloperidol

group, and enhanced reward effects in the levodopa group, relative

to placebo. Accordingly, on the between-group level, we coded the

groups as three successive steps (haloperidol, then placebo, then

levodopa) for parametric contrasts in the general linear model (i.e.,

weighting them as ‘‘1,’’ ‘‘2,’’ ‘‘3’’). Nonreward trials were equally

coded for all three groups (weighted as ‘‘22’’).

For further analysis of trial-to-trial effects, in terms of whether

performance was rewarded or not on the preceding trial at a

particular monetary level, we had to eliminate the last trial from

each miniblock from consideration of possible effects on the next

trial, as a different miniblock instruction intervened.

Hypothesis-driven ROI analyses [6,61] were implemented using

5-mm spheres centred the peak coordinates for the categorical

reward versus nonreward feedback effect in PSC, contralateral to

the judged side (i.e., at 236, 236, 60 for the right and at 36, 230,

48 for the left index finger, as shown in Figure 4 and Table S2b).

Note that these ROIs were fully unbiased, being derived from a

categorical contrast orthogonal to (and hence independent of) any

parametric effect related to monetary level of reward. In the

context of our fully balanced factorial design, this regressor

orthogonality ensures unbiased ROI statistics [14].

We averaged the signal within these spheres and submitted the

values to conventional tests for significance across participants.

Note that tests for any one particular factor were applied to ROIs

whose location had been defined orthogonally by an independent

contrast, to avoid circularity or bias in ROI selection.

Supporting Information

Figure S1 Percent signal changes in PSC during the
early stimulation/discrimination phase. Data are from

ROIs contralateral to the stimulated right (red) or left (green) index

finger, shown separately in different rows for the three drugs

groups (group mean6standard error of the mean [s.e.m.]). Unlike

activation in PSC for the same ROIs at the later phase of visual

reward delivery (cf. Figure 5), we found no significant parametric

influence of reward level on BOLD responses in PSC during the

earlier stimulation/discrimination phase.

Found at: doi:10.1371/journal.pbio.1000164.s001 (0.80 MB TIF)

Figure S2 Randomized double-blinded drug schedule.
After a practise session (which had the same duration as the fMRI

experiment, but did not vary financial reward level), the

participant always received two pills; the first pill immediately

after the practise session, the second pill 3 h later. The fMRI

experiment started 1 h after the participant received the second

pill. If a participant was assigned to the placebo group, both pills

contained placebo. In the levodopa group, the first pill contained

placebo, the second 100 mg of levodopa. In the haloperidol group

instead, the first pill contained 2-mg haloperidol, the second pill

placebo. We used this procedure to ensure peak plasma

concentration of the drugs during the fMRI experiment; see

Materials and Methods.

Found at: doi:10.1371/journal.pbio.1000164.s002 (0.94 MB TIF)

Table S1 Brain regions activated by tactile discrimina-
tion task (versus baseline). Cortical regions of both

hemispheres involved in the somatosensory frequency-discrimina-

tion task (versus the implicit null-event baseline). Shown are

Montreal Neurological Institute (MNI) coordinates and T-scores

of peak voxels contra- or ipsilateral to the judged index finger,

surviving p,0.05 family-wise error-corrected threshold. PFC,

prefrontal cortex; PMC, premotor cortex; PPC, posterior parietal

cortex; SMA, supplementary motor area; SSC/PV, secondary

somatosensory cortex/parietal ventral cortex.

Found at: doi:10.1371/journal.pbio.1000164.s003 (0.05 MB

DOC)

Table S2 Brain regions activated for reward relative to
nonreward visual feedback. Cortical regions of either

hemisphere activated during reward feedback relative to nonre-

ward feedback, with higher activity for levodopa and lower activity

for haloperidol are compared to placebo: (A) across both index

fingers; or (B) for each index finger separately. Shown are the MNI

coordinates, the T-scores, and the associated p-values (family-wise

error corrected and uncorrected).

Found at: doi:10.1371/journal.pbio.1000164.s004 (0.04 MB

DOC)

Text S1 The somatosensory task and how reward level
and drugs influence PSC in the stimulation/discrimina-
tion phase.
Found at: doi:10.1371/journal.pbio.1000164.s005 (0.03 MB

DOC)
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