
Deriving symptom networks from digital
phenotyping data in serious mental illness
Ryan Hays, Matcheri Keshavan, Hannah Wisniewski and John Torous

Background
Symptoms of serious mental illness are multidimensional and
often interact in complex ways. Generative models offer value in
elucidating the underlying relationships that characterise these
networks of symptoms.

Aims
In this paper we use generative models to find unique interac-
tions of schizophrenia symptoms as experienced on a moment-
by-moment basis.

Method
Self-reported mood, anxiety and psychosis symptoms, self-
reported measurements of sleep quality and social function,
cognitive assessment, and smartphone touch screen data from
two assessments modelled after the Trail Making A and B tests
were collected with a digital phenotyping app for 47 patients in
active treatment for schizophrenia over a 90-day period. Patients
were retrospectively divided up into various non-exclusive sub-
groups based on measurements of depression, anxiety, sleep
duration, cognition and psychosis symptoms taken in the clinic.
Associated transition probabilities for the patient cohort and for
the clinical subgroups were calculated using state transitions
between adjacent 3-day timesteps of pairwise survey domains.

Results
The three highest probabilities for associated transitions across
all patients were anxiety-inducing mood (0.357, P < 0.001),
psychosis-inducing mood (0.276, P < 0.001), and anxiety-indu-
cing poor sleep (0.268, P < 0.001). These transition probabilities

were compared against a validation set of 17 patients from a pilot
study, and no significant differences were found. Unique symp-
tom networks were found for clinical subgroups.

Conclusions
Using a generative model using digital phenotyping data, we
show that certain symptoms of schizophrenia may play a role in
elevating other schizophrenia symptoms in future timesteps.
Symptom networks show that it is feasible to create clinically
interpretable models that reflect the unique symptom interac-
tions of psychosis-spectrum illness. These results offer a
framework for researchers capturing temporal dynamics, for
clinicians seeking to move towards preventative care, and for
patients to better understand their lived experience.
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Serious mental illnesses, such as schizophrenia, which are still often
diagnosed using largely static symptom reports, are increasingly
viewed as network illnesses1 existing along a spectrum of symptoms,
severity and time. The dynamic and multidimensional nature of
psychosis is clear,2 but the static labels and current diagnoses are
unable to capture this complexity. New tools and approaches,
such as smartphone digital phenotyping,3 offer promise in more
effectively characterising these dynamic illnesses.

When approaching psychosis spectrum illnesses through a
network model, comorbid conditions such as mood and anxiety dis-
orders are not static labels but rather impermanent states that a
patient may experience with varying frequency along the course
of illness. These comorbidities affect one another across time, as
high rates of anxiety and depression in those at risk for developing
psychosis suggest these conditions may be related to the underlying
psychopathology,5 and a wealth of cross-sectional data confirms
anxiety and depression are related to psychosis severity.5

A network model allows psychosis symptoms to be viewed in the
context of other mental health symptoms that are concurrently
assessed, providing a conceptual framework for how a patient’s
prior symptoms may be related to future ones. For example, eco-
logical momentary assessment (EMA) research suggests that psych-
osis’ impact on quality of life is mediated through depression and
social functioning6 as well as anxiety.7 Research also suggests that
depressive symptoms may act as a moderator between psychosis
and suicidality8 and that mood itself may predict psychosis

symptoms.9 Teasing apart the causal effects within networks of
mental health symptoms is complex, but has strong potential for
personalised and preventative psychiatric care.

Digital phenotyping

One useful tool to embrace this complexity is digital phenotyping.
This method uses smartphones to capture EMA data, such as self-
reported symptoms, as well as functional data from sensors embed-
ded in mobile devices,3 such as step count and survey response time
for each EMA question. For example, information from smartphone
screen interactions (for example latency) can be used as a proxy for
cognitive state10 andmeasurements of sleep/physical activity/seden-
tary activity can be derived from a smartphone’s accelerometer.11,12

Additionally, this novel smartphone data are captured longitudin-
ally, enabling the observation of temporal dynamics across different
physical and social environments.

Current applications of digital phenotyping in mental health
research are expanding. In schizophrenia, they have already been
used to explore the relationships between anticipation and experi-
ence of pleasure13 as well as geolocation and mood.14 However,
few studies have explored how the relationships between the vari-
ables measured with digital phenotyping tools can be coalesced
into a single context – i.e. a symptom network.15 In prior work,
our team has combined different digital phenotyping signals using
anomaly detection to predict a specific event (relapse),11,16 and
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another team’s digital phenotyping work on suicidal ideations has
suggested unique clusters of phenotypes.17 Still, there is a need to
model and understand symptom interactions in their own right,
without having to consider a prediction or clustering task that
seeks to inform a single clinical outcome.

Generative models

Discriminative models, such as logistic regression and support vector
machines, use data to discern between discrete outcomes – for
example whether an exercise regimen will prevent a future stroke.
However, they do not provide information regarding the underlying
distribution of the data. Generative models, on the other hand, are
able to provide information regarding the distribution of two or
more variables, and from this distribution new samples can be gener-
ated – for example a cancer patient’s oncogenomic profile can be used
to predict what their profile will look like 1 month into the future.
With their ability to learn the distributions of longitudinal, multivari-
ate data, generative models may be able to elucidate the underlying
relationships that characterise networks of mental health symptoms,
as experienced on a moment-by-moment basis. The neuroscience
research community has already realised the potential of generative
models18 and has used such as a foundation for computational-
based approaches to neuropsychiatry.19,20 However, the potential of
this digital phenotyping approach is unknown and challenging to
explore because few studies have offered the tools or code to enable
others to reproduce experiments or data pipelines.

Study aims

In this paper we explore how generative models utilising digital phe-
notyping data can be used to capture unique symptom interactions
in severe mental illness. Utilising open source digital phenotyping
tools and fully sharable methods, we present an example of replic-
able research in the hope others will expand, challenge and adapt
our efforts.

Method

Recruitment and participation

For this study, 47 patients in active treatment for schizophrenia
were recruited from a community mental health centre in the
metro Boston area, USA and from several satellite programmes
that patients in care at this community health centre attend
during the day. A total of 43 healthy controls were recruited from
Craigslist and local colleges. Four patients were removed from the
study because of study drop-out, and one patient was removed
because of complete non-engagement – i.e. they completed no
digital assessments. Five controls were removed from the data-set
because of study drop-out. Demographic information for the
remaining participants is listed in Table 1.

Clinical diagnoses of schizophrenia were confirmed with the
treating psychiatrists, and healthy controls were screened for
current or previous mental illness. Inclusion criteria for those with
schizophrenia included: age 18 or older, in active treatment at a com-
munity mental health centre, owning a smartphone able to run the
study app and the ability to sign informed consent. Comorbid
illness was not an exclusion factor. Inclusion criteria for study con-
trols were: age 18 or older, no reported mental illness (both current
and prior) and owning a smartphone able to run the study app.

All procedures involving human patients were approved by
both the Beth Israel Deaconess Medical Center and State of
Massachusetts Department of Mental Health Institutional Review
Boards. Written informed consent was obtained from all
participants.

In the initial visit, participants were asked to take a series of
surveys assessing their lifestyle and physical and mental health,
including the Patient Health Questionnaire (PHQ-9),21 Generalized
Anxiety Disorder (GAD-7),22 Social Functioning Scale,23 Short
Form Health Survey,24 Behavior and Symptom Identification Scale
24,25 Warning Signals Scale26 and Pittsburgh Sleep Quality Index
(PSQI).27 For the patient group, the Brief Assessment of Cognition
in Schizophrenia (BACS)28 battery was performed, and the Positive
and Negative Syndrome Scale (PANSS)29 was used to record
symptoms.

The mindLAMP smartphone app,3 a digital health platform
developed by our group, was downloaded onto participants’
phones. The code and instructions are available online at digitalp-
sych.org/lamp. Each weekday, participants were notified via the
app to undertake a batch of surveys. Notifications for mood, sleep
and social functioning surveys were sent to users on Mondays,
Wednesdays and Fridays and notifications for anxiety, psychosis
and social functioning surveys were sent on Tuesdays and
Thursdays. Participants were also prompted on weekdays to com-
plete smartphone-based cognitive assessments, modelled after the
Trail Making A and B tests used in prior neuropsychiatric
research.30 Although symptom expression may change faster than
on a day-by-day basis, previous smartphone studies also assessing
longitudinal trajectories have used a similar resolution.31

Complete assessment information, including question content and
the notification schedule, are listed in Supplementary Table 1 avail-
able at https://doi.org/10.1192/bjo.2020.94.

After 90 days, study participants were asked to return to the clinic
for a follow-up visit, including the same surveys and batteries as at the
first visit. Their participation in the study concluded at this time.

EMA data from a previous pilot study of 17 patients with
schizophrenia were also used as validation data.11 This study
assessed mood, anxiety, psychosis and sleep via self-reported
surveys similar to those in main study. Sociability and cognition
were not assessed in the pilot study. Details for how this data was
used to validate results from the main study are listed in the
Statistical analysis section below.

Data normalisation and discretisation

Using the LAMP application programming interface,32 participant
data was preprocessed so that daily values were found for each par-
ticipant in every data domain. Because data was collected naturalis-
tically, meaning users could engage with the app as they saw fit,
there were instances where a participant completed a particular
survey more than once on a given day. If this was the case, the

Table 1 Demographic information for patient and controlsa

Control
group

Patient
group P

n 38 42
Age, years: mean (s.d.) 32.30 (16.36) 38.09 (14.64) 0.1
Male gender, n (%) 20 (52.6) 23 (54.8) 1
Ethnicity, n (%) <0.001

American Indian or Alaskan
Native

0 (0.0) 2 (4.8)

Asian 26 (68.4) 0 (0)
Black or African American 4 (10.5) 15 (35.7)
Multiracial or other 3 (7.9) 2 (4.8)
White 5 (13.1) 23 (54.8)

a. Patients in active treatment for schizophreniawere recruited from severalmental health
community centres in the metro Boston area, and healthy controls were recruited from
Craigslist and local colleges. Participants were removed from the study because of study
drop-out or complete non-engagement – i.e. they completed no digital assessments. The
participants who were removed are not included in the demographic information.
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daily value for the given survey was set to the average of all com-
pleted surveys of that type on that day.

Data in each domain was normalised to zero mean and unit
variance across the patient cohort. Using the domain means and
variances derived from the patient group, the control and validation
cohorts were also normalised. For each patient, normalised daily
survey results were grouped into 3-day bins, as patients were
expected to report symptoms in each domain once every 2–4 days
(Supplementary Table 1). If there existed several results in a given
domain and a given bin, the average of the results was used; if
there were no events in a given domain and a given bin, imputation
was performed by taking the mean of the bin directly preceding and
following the bin in question; if both adjacent bins were empty, the
bin was ignored.

Scores for each bin were discretised into one of two states: ele-
vated or stable:

(a) elevated results are those that are equal to or greater than one
s.d. above the domain mean;

(b) stable results are those that are less than one s.d. above the
domain mean.

Although we acknowledge that this threshold has its limitations,
as it does not necessarily differentiate between acute psychiatric

episodes and innocuous symptom fluctuation, this 1 s.d. threshold
has been used in previous papers to dichotomise EMA results into
commonly stable and uncommonly elevated states.33

Transition probabilities

Adapting from Betzel & Bassett,18 we calculated transition probabil-
ities for each domain (Fig. 1). We define a ‘transition’ as the ele-
vated/stable state of an assessed domain at a specified time unit
compared with the state of the domain in the subsequent timestep.

All combinations of pairwise adjacent bins were generated for
all participants in the cohort, and the transition events were
counted across all of these pairs, for each domain. Conditioning
on the initial state in each pair, the transition events were converted
into probabilities:

P½x0dt1 ¼ I j x0dt0� ¼
# events (xdt0 ¼ x0dt0 AND xdt1 ¼ x0dt1)
# events (xdt0 ¼ x0dt0 AND xdt1 ¼ x0dt1)þ
# events (xdt0 ¼ x0dt0 AND xdt1 ≠ x0dt1)

where xt
d is a binary elevated or stable score in domain d at timestep

t ∈ {t0, t1}; x’
d
t is a cohort-wide variable, being one of the two dichot-

omous elevated/stable states in domain d at timestep t ∈ {t0, t1}; and
I is a dummy variable indicating a certain state I ∈ {elevated, stable}.
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Fig. 1 Generating transition events from semi-continuous ecological momentary assessment (EMA) data.

Self-reported symptom scores were categorised as being elevated (dark green) or stable (light green) based on the predefined threshold of 1 s.d. above the study mean (a); scores
were grouped into 3-day windows, and window state categorisations were determined from the mean of all scores in the respective window (b). Pairs of adjacent windows were
generated, and similar pairs were grouped together based on the category of both the initial window and the next 3-day window (c). Probabilities were then calculated based on the
initial (time t0) state (d).
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The mean elevated bout duration, or the number of days in which a
participant is expected to remain in an elevated state, was calculated
for each domain across the cohort.

After calculating the transition probabilities within each domain
(Fig. 2(a)), we calculated the transition events of domain pairs (Fig. 2
(b)). By looking at transition events in a pairwise fashion, we double
the number of initial states, as well as double the number of states in
the (t + 1) timestep. While the number of states grows exponentially
with the number of domains in the joint set – 2n, where n is the
number of domains that are being observed concurrently – we
reduced this set size by only looking at a subset of transition events
– specifically, those in which a stable domain at time t transitions
to an elevated stated in the t + 1 time period, with the complement
domain already existing in an elevated state at time t. We call these
events associated transitions, as the presence of an elevated state in
one domain and the occurrence of a future elevated state in a comple-
ment domain suggests that the former domain may be associated
with a pathological change in the latter.

Probabilities were calculated for these associated transitions, for
patients and controls. Associated transition probabilities for
patients were compared with those of the validation cohort, which
consisted of 17 patients from a pilot study.

Clinical subgroups

In order tomove towards personalisation while still retaining enough
data to find associated transitions, models were produced for sub-
groups of participants experiencing similar symptoms. Participants
were divided into these subgroups based on the following in-clinic
measures: PHQ-9 (mood/depression), GAD-7 (anxiety), PSQI
Sleep Duration (sleep duration), BACS (cognition), composite
PANSS (psychosis) and component PANSS (positive and negative
symptoms). Participants with more severe symptoms – those

scoring at or above the cohort median for the given measure –
were grouped together, and those below the cohort median were
also grouped together for further analysis. Subgroups are non-exclu-
sive, so participants can belong to any number of groups (Fig. 3). For
each subgroup, mean elevated bout duration and associated transi-
tion probabilities were calculated.

Statistical analysis

When comparingmean survey scores and bout lengths, 2-sided t-tests
were performed, with a 5% level of significance. Chi-squared was per-
formed to determine the significance of associated transition probabil-
ities, with the null hypothesis stating that the likelihood of a
pathological transition in one domain is agnostic to the state of the
complement domain. In order to further validate the associated tran-
sition probabilities of the patient group, we compared them with the
associated transition probabilities of the validation group – i.e. the 17
patients from the pilot study. This comparison was performed with a
χ2-test, in which a two-way table was used to classify all of the asso-
ciated and ‘non-associated’ transition events of both the ‘patient’
and ‘validation’ groups. The null hypothesis stated that both the
patient set and the validation set would have the same frequencies
of transition events, and failure to reject the null hypothesis suggests
that the frequencies of transition events does not significantly differ
between the patient and validation groups.

All statistical analysis was performed with the SciPy library in
Python.

Results

Self-reported survey scores were higher in patients than in controls,
in every domain (Fig. 4(a)). The greatest difference occurred in self-

Psychosis
Stable

Psychosis
Elevated

Psychosis
Stable

Psychosis
Stable

Anxiety
Stable

Anxiety
Stable

Anxiety
Elevated

Anxiety
Elevated

Psychosis
Elevated

Psychosis
Elevated

Psychosis
Elevated

Psychosis
Elevated

Psychosis
Stable

Anxiety
Stable

Anxiety
Stable

Anxiety
Elevated

Anxiety
Elevated

Psychosis
Elevated

Psychosis
Elevated

Psychosis
Elevated

Time = t

Time = t

Time = t + 1

Time = t + 1
(a) (b)

Anxiety
Stable

Psychosis
Elevated

Anxiety
Elevated

Psychosis
Elevated

Anxiety
Stable

Psychosis
Elevated

Fig. 2 Transitions between adjacent time states.

When generating transition events for a single domain (a), there are two initial domain states, fromwhich there are each two possible paths; in the two-domain case (b), the number
of initial states and possible paths per state each double, increasing the possible transitions by a factor of 4 (the total number of transition is 2n, where n is the number of domains). By
using the subset of associated transitions – those in which there exists only one elevated domain in the initial timestep, followed by an elevated score in the complement domain in
the next timestep – we narrow the transition space, focusing on the most clinically relevant transitions.
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reported psychosis and sleep. Self-reported survey scores were also
higher in validation participants than in controls. The mean
elevated bout duration of patients tended to be higher than that of
controls (Fig. 4(c)); however, this difference could not be deter-
mined statistically, as there were very few (if any) elevated bouts
in controls. There was no significant difference in mean elevated
bout length between patients and validation participants. See
Supplementary Table 1 for details on participant engagement.

There was no significant difference in attention scores between
patients and controls for the easier attention task (the one modelled
after Trails A smartphone cognitive assessment). However, patients
performed significantly worse than controls at the more complex
task, modelled after Trails B smartphone cognitive assessment
(Supplementary Table 2). There were no significant associated
transitions found between either of the cognitive scores and
associated transitions between these cognitive measures and other
self-reported symptom domains. Thus, aside from Fig. 5, we do
not utilise this data further in figures and analysis.

Elevated PHQ-9, GAD-7, PANSS composite, and PANSS
positive subgroups reported higher self-reported survey scores

in all five assessed domains compared with the general patient
cohort (Fig. 4(b)). The poor sleep subgroup reported the lowest
number of significantly elevated self-reported survey scores relative
to the patients, with only anxiety and mood being elevated relative
to the patient cohort. There was no significance difference in mean
elevated bout length between patients and any of the subgroups
(Fig. 4(d)).

For single domain transitions, psychosis had the highest prob-
ability of remaining in an elevated state in the following timestep,
whereas sleep had the lowest (Supplementary Table 3). However,
the psychosis domain had the lowest probability of transitioning
into an elevated state.

The three highest probabilities for associated transitions were
anxiety-inducing mood (0.357, P < 0.001), psychosis-inducing
mood (0.276, P < 0.001) and anxiety-inducing poor sleep
(0.268, P < 0.001), respectively (Fig. 5). The three lowest prob-
abilities for associated transitions were psychosis-inducing
social (0.09, P < 0.02), mood-inducing psychosis (0.162, P <
0.001) and sleep-inducing psychosis (0.189, P < 0.189). There
were even lower transition probabilities for various other
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domain pairs – notably those including social functioning – but
they were non-significant.

None of the probabilities for associated transitions in the patient
set were significantly different than those in the validation set,
although the validation probabilities did trend to higher values
(Supplementary Table 4).

Discussion

Main findings

In this article we have shown that using digital phenotyping data,
it is feasible to create generative models based on transition
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probabilities for patients with psychosis. Our results suggest that
patients with elevated symptoms in specific domains may experi-
ence downstream effects in other symptom domains, with
anxiety-inducing mood as the highest probability of associated
transitions (Fig. 5). Our finding suggests that psychosis may be

a moderator of mood symptoms, while itself being induced by
anxiety, supporting a network approach towards understanding
real-time and dynamic psychopathophysiology. Although the
probabilities of associated transitions between either of the
smartphone cognitive measures and other self-reported
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symptoms were not significant, the ability to utilise multimodal
data allows future studies to assess new digital measures in a clin-
ically interpretable context.

Clinical relevance

Our results offer eventual clinical relevance in their ability to offer
both patients and clinicians generative models to guide preventative
psychiatric care. Clinical experience supports heterogeneity in inter-
actions between and severity of mood, anxiety and psychosis symp-
toms, which are reflected in our transition probability models
(Fig. 6(b)). Although the population-level results presented in this-
paper reflect broad interactions applicable to all patients (Fig. 6(a)),
the numerous symptom-specific models (Fig. 6(b)) offer a tool that
could help guide an individual’s care.

For example, patients in the GAD-7 subgroup, who reported
high anxiety symptoms in clinic, had a 50% higher chance of
elevated mood symptoms inducing elevated anxiety compared
with the cohort (Fig. 6). This conceptual framework may (a) offer
a target for prevention and (b) guide treatment goals towards mini-
mising risk of future transitions.

Although our generativemodels are not causal, as associated tran-
sitions do not account for other variables which may confound – for
example the state of other complement symptoms; physical and
social activity, measured passively; and demographic information –
they offer insights beyond the correlational, cross-sectional relation-
ships. By considering the initial state of the induced symptom
domain, they account for autocorrelative effects that may confound
results from other correlational models. Prior results on symptoms
causality in psychosis supports our finding that both mood and
anxiety have an impact on the severity of psychotic symptoms.4,5,7,8

While we report a range in the probabilities of associated symptoms
(Fig. 5), all symptoms interactions could potentially induce elevated
states in one another. This highly connected symptom network high-
lights the potential for creating more personalised models (Fig. 6(b)).

Although our results are novel, they are also reproducible. This
is especially important as network approaches to psychopatho-
logical symptom networks are complex, and the ability to re-
analyse such data often leads to novel insights and competitive
interpretations.34,35 Thus, our results can be explored in future
studies from a neuroscience perspective, as the generative models
presented here may offer targets for generative models of the
brain proposed in the Bayesian brain hypothesis36 and structural
as well as functional brain networks. These digital phenotyping-
derived generative models could thus serve as a bridge between
units of analysis in the National Institute of Mental Health’s
Research Domain Criteria model,37 especially self-reported symp-
toms/behaviour and circuits.

Ethics

As a clinical tool, digital phenotyping offers potential advantages as
well as ethical considerations that cannot be ignored. The ability to
collect data remotely from a patient’s smartphone has become
more relevant during the coronavirus disease 2019 (COVID-19)
pandemic and the increasingly digital world of mental healthcare.
The generative models built on this data add clinical utility by
helping clinicians understand symptom patterns and, potentially,
guide preventative care. However, before offering any new models
or data in a clinical setting, one must take into account workflow
considerations so as not to overburden clinicians or patients and
impede care. Issues around clinical, legal, and ethical duties to
respond to real-time data such as that generated in this study
remain in flux. We suggest that use of this data may be best utilised
in the context of an entirely new clinical workflow and clinic
designed to support the integration of digital data – the digital

clinic. Our team has outlined our experiences and implementation
of this new pilot clinic38 and how we build trust and therapeutic alli-
ance when using the mindLAMP app.

As digital phenotyping becomes commonly integrated into
remote and in-person care, it is important to consider the perspective
and ethical concerns of the primary stakeholder – i.e. the patient –
who is meant to benefit from digital phenotyping.

One concern may be that remote observation presents privacy
risks, as the data collected remotely via digital phenotyping may
be used unethically. This risk is dependent on the type of data
being collected. The cognitive monitoring and use of surveys in
this study present less privacy risks than other sensors, such as
GPS (global positioning system). In the care setting, these ethical
considerations require including patient input directly in the devel-
opment of these tools and the usage of this data. For example, in
developing the mindLAMP app, we worked with patients to under-
stand their needs around trust, control and community.3 In our
digital clinic, where we use mindLAMP to augment care, we offer
it as an adjunctive tool and work with patients to explain why
they can trust it and how they control their data, and to co-create
the community with whom they want to share their data (often
just the clinician, but at times family). Further details on the
ethical use of mobile health technology in clinical care are outlined
in our prior works.39–42

Limitations

In our model, associated state changes were derived from symptoms
pair at 3-day intervals, offering a window large enough to offer a
valid transition probability but still small enough to enable early
clinical intervention. Our choice of pairwise symptoms enables us
to move towards causality while allowing the models to remain
clinically interpretable. These pairwise symptom interactions are
not independent and may occur concurrently, which could mask
more complex symptom interactions. However, a model that utilises
more specific combinations of symptoms may not be feasible
without a substantially large amount of data. Defining relevant
states that are both data-driven and clinically actionable will be
necessary for feasible generative models.

Results from validation on a distinct data-set of 17 different
patients with schizophrenia show similarity in the duration of ele-
vated symptoms and the interactions connecting them (Figs 5(c)
and 6). Findings that transitional probabilities for the training set
tend to be lower than those of the validation set may be related to
the small size of the latter. Definitions for elevated self-reported
clinical states were derived from retrospective data collection,
given the lack of prior research using these methods.

Future directions

In this study we focused on active data from surveys as well as
passive data from cognitive measures to generate clinically inter-
pretable and actionable models. Future efforts with prospective
methods will expand this work to include more multivariate data
with sensors that have been used in previous digital phenotyping
studies, such as passively derived physical activity,43 GPS44 and
sleep measurements.45

Although the generative models presented here are feasible and
clinically relevant, other models may further elucidate symptom
interactions in severe mental illness. In generating associated tran-
sitions, we consider only a 3-day time lag. However, mental health
symptoms may affect future symptoms at varying timescales, and
these effects, as a function of the time lag, may be nonlinear and
non-stationary. A hiddenMarkov model, another type of generative
model that works on discrete states, may better learn the longitu-
dinal nature of the data in its entirety, as it considers more than
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just adjacent pairwise events. An autoregressive model, such as the
autoregressive integrated moving average, may characterise the
time-lagged effect that a symptom may have on itself – i.e. the
‘memory’ of symptoms. Future efforts will implement these
models to provide deeper insight into severe mental illness as quan-
tified through digital phenotyping.

In our clinical subgroups, we clustered patients based on similar
symptomology, retaining clinical interpretability. However, there
are other methods of clustering that may better characterise
patients’ disease states and thus move closer toward personalisation.
For example, latent class analysis clusters patients by transforming
observed, co-dependent variables – such asmental health symptoms
– into underlying classes, which are independent of one another.46

These classes may be used as a new method for diagnostic label-
ling,47,48 offering a data-driven approach to psychiatric nosology.

Digital phenotyping and probabilistic transitional models based
on associated state change offers a feasible means to approach
network interactions of symptoms in a clinically actionable
manner. Further research with larger sample sizes using the founda-
tion and sharable tools outlined in this article offers a method
towards generating models personalised to each patient, supporting
preventative care and improving clinically relevant knowledge.
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