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ABSTRACT

Prostate cancer is the second most common malignancy in males and the leading cause of cancer death. Prostate cancer is

initially androgen dependent and relies upon the androgen receptor (AR) to mediate the effects of androgens. The AR is

also the target for therapy using antiandrogens and LHRH analogues. However, all cancers eventually become androgen

independent, often referred to as hormone refractory prostate cancer. The processes involved in this transformation are

yet to be fully understood but research in this area has discovered numerous potential mechanisms including AR amplification,

over-expression or mutation and alterations in the AR signaling pathway. This review of the recent literature examines the

current knowledge and developments in the understanding of the molecular biology of prostate cancer and hormone

refractory prostate cancer, summarizing the well characterized pathways involved as well as introducing new concepts that

may offer future solutions to this difficult problem.
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Prostate cancer is the commonest malignancy in men,
accounting for 24% of all cancers in the UK in 2003.[1]

The treatment of prostate cancer varies with the disease
stage at diagnosis and includes surgical, radiotherapeutic
and medical interventions. Initially, prostate cancer
requires androgens such as testosterone, or the more
potent dihydrotestosterone (DHT), for growth and is
therefore referred to as androgen dependent.[2] Steroidal
androgens exert their effects by binding to the androgen
receptor (AR) in the cytoplasm of cells promoting
nuclear translocation. Once in the nucleus the AR binds
to specific DNA sequences androgen response elements
(ARE’s) and promotes transcription of androgen-
regulated genes that control cellular growth,
differentiation and apoptosis. One such gene is prostate
specific antigen (PSA) the well characterized marker of
prostate cancer.

As a result, treatment for locally advanced and
metastatic prostate cancer targets the AR by reducing
the levels of androgens or by inhibiting the activation of
the AR. Androgens are removed by either surgical or

chemical methods using luteinising-hormone-releasing-
hormone (LHRH) analogues with or without the addition of
antiandrogens. Initially, prostate tumors regress in response
to androgen deprivation in up to 80% of cases.[3] However,
tumors eventually begin to grow, despite continued
antiandrogen treatment, progressing to metastatic and
ultimately fatal prostate cancer within 24-48 months.[4] Tumor
growth in these late stages is termed androgen independent
or hormone refractory. The mechanism of progression from
androgen dependent to independent disease remains poorly
understood.[5-7] It is thought that tumor cells either bypass or
alter the AR activation pathway to allow continued growth,
e.g., by AR amplification, mutation or modification or that
hormone refractory cells may express aberrant levels of
cofactors or activate the AR via  alternative signaling pathways.
This review examines the current knowledge of the molecular
biology of prostate cancer and hormone-resistant prostate
cancer focusing on the putative pathways involved in the
progression to hormone refractory disease.

THE ANDROGEN RECEPTOR (AR)

Androgens are essential to the normal development and
biology of the prostate. The majority of testosterone is
produced by the testes, with a smaller contribution of
androgens (5%) from the adrenal glands. These androgens
are metabolized by 5α-reductase to dihydrotestosterone
(DHT) which binds to the androgen receptor (AR). Ligand
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binding initiates phosphorylation, homodimerisation of the
AR and dissociation of heat-shock proteins, allowing
translocation of the AR complex to the nucleus. Here the
AR binds to specific DNA sequences called androgen response
elements (ARE) promoting transcription of androgen-
responsive genes. Such genes control a range of cellular events
such as growth, differentiation and apoptosis [Figure 1]. The
AR is a member of the steroid receptor superfamily and
functions as a ligand-dependent transcription factor. The
majority of the nuclear receptors, including the AR, share a
common structure composed of four domains: an N-
terminal domain (NTD), central DNA-binding domain
(DBD), hinge region and C-terminal ligand-binding domain
(LBD) [Figure 2]. Transcription is mediated by two activation
function domains (AF-1 and AF2). The AF2 is contained
within the LBD and the binding of the hormone induces the
conformational changes necessary for its activation. However,
unlike other steroid receptors the AF-1 region of the AR has
been shown to be most important for transactivation and can
be activated even in the absence of hormone.[8] This is
supported by recent data demonstrating that activation of
AF-1 alone is responsible for AR activation in hormone
refractory cells, even in the presence of antiandrogens.[9] This
would clearly be possible if the ligand binding does not effect
conformational changes in the NTD.

As hormone refractory prostate cancer continues to grow in
the presence of antiandrogens the term hormone
independence may be misleading as it implies that the AR is
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Figure 1: Intracellular metabolism of androgens. AR - androgen receptor,
T - Testosterone, DHEA - Dehydroepiandrosterone, DHT-
Dihydrotestosterone, hsp -  heat shock protein, ARE - Androgen response
elements

no longer required for growth. However, the AR is expressed
throughout the progression of prostate cancer, including
>80% of hormone refractory tumors, suggesting that AR
signaling remains essential.[10,11] It has also been shown that
over-expression of the AR alone is sufficient to promote
hormone refractory disease.[12] Indeed, the persistence of AR
in the metastatic LNCaP cell line and continued nuclear
expression of hormone refractory tumor samples is indicative
of continued AR involvement.[13]

Amplification of the AR gene is rarely identified in untreated
cases of prostate cancer. Using comparative genome
hybridization (CGH) and fluorescent in-situ hybridization
(FISH), 30% of treated cases exhibited AR amplification.[11,14,15]

Patients exhibiting amplification have been shown to have an
improved response to hormone manipulation with a relapse
time of >12 months.[14] Identical techniques were also used to
identify chromosomal aberrations, among which 8q
amplification was the most consistent finding in up to 90% of
locally advanced and metastatic tumors.[16] Amplification of
the AR gene does not always result in over-expression of AR
mRNA or protein.[16] However, several studies have shown a
correlation between AR amplification and AR protein
expression.[17,18] Conversely, AR over-expression does occur
in the absence of AR amplification[11] and there is growing
evidence that in all except the small minority of small cell
prostate tumors AR is ubiquitously expressed. In particular,
AR expression is known to be increased in hormone refractory
disease allowing activation by adrenal androgens. Using
micro-array genome-wide profiling of xenograft models
comparing androgen ablation treated and untreated prostate
cancer, Chen et al demonstrated that over-expression of AR
cDNA, mRNA and protein levels were the only consistent
and significant differences.[12] In patients, AR over-expression
conferred a better response to combined androgen blockade
but despite this it also correlates with poorer outcome.[19]

Despite medical or surgical castration, tumor levels of
androgens in human prostate samples, in particular DHT, have
been shown to remain at levels sufficient to transactivate the
AR in cell line studies.[20] Although serum testosterone is
reduced by 95% following castration, tissue levels of DHT
remain as high as 40%[21] suggesting that through intracrine
processing within the prostate, adrenal androgens are
transformed into the 10 times more potent DHT[20] [Figure 3].
Following studies in androgen-regulated cell lines which
indicated an increase in apoptosis and reduction in
proliferation, the use of 5α-reductase inhibitors are currently
being assessed as a potential adjuvant agent.[22]

Mutations in the AR are uncommon (0-4%) in untreated
prostate cancer and those treated with surgical castration.
However, in hormone refractory tumors the incidence of
mutations increases by up to 50%.[12] Over 70 AR mutations
have been found in association with prostate cancer with the
majority being point mutations resulting in a single amino

Figure 2: Schematic representation of androgen receptor showing the
NTD - N-terminal domain, DBD - DNA-binding domain, LBD - ligand-
binding domain, AF - activation function domains 1 in N-terminus and
2 in LBD
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acid substitution.[24] Within the AR, mutations predominantly
occur in the ligand-binding domain including T887A which
is also found in LNCaP, a prostate cancer cell line derived
from lymph node metastases.[25-28] This mutation permits
binding and activation of the AR by a wide variety of ligands
including antiandrogens and estrogens, permitting
cyproterone acetate and flutamide to bind and activate the
AR and altering the nuclear translocation of bicalutamide-
bound AR.[29] When T877A is found in association with
another mutation L701H, glucocorticoids can bind and
activate the receptor.[30] The H874Y mutated AR has also
been shown to bind flutamide and the adrenal androgen
dehydroepiandrosterone and become activated.[31] These
gain-of-function mutations of AR lead to the failure of
conventional antiandrogen therapies.[32] There is growing
evidence suggesting that antiandrogens can select for mutated
receptors capable of activation. Taplin demonstrated that only
6% of patients treated with monotherapy exhibited AR
mutated compared to 31% in patients on a combined regime
containing flutamide.[27] A similar study with bicalutamide
saw 36% of patients with mutated ARs.[33] In both studies the
mutated receptors were capable of being activated by the
antiandrogens, suggesting that cells containing mutated
receptors may be selected by antiandrogen treatment.

Modulation of AR activity by co-repressors and co-activators
The ARE-bound AR binds a number of proteins to enable
efficient recruitment of the basal transcriptional machinery
and transcription of androgen-regulated genes. The
transcriptional activity of the AR is enhanced by co-activators
and inhibited by co-repressors although some proteins can
either promote or repress transcription depending upon the
cellular context.[34] Co-activators are essential for effective
steroid receptor-mediated transcription. After binding to the
liganded AR in the nucleus, co-activators catalyze the

recruitment of chromatin-remodeling proteins such as histone
acetyl-transferases (HATs). The HAT proteins modify histone
tails giving rise to a more open chromatin structure capable
of binding the transcription initiation machinery.[35]

Recruitment of co-activators is regulated by AR acetylation
by proteins such as p300 and Tip60, which is itself upregulated
by androgen ablation.[36] It has been suggested that over-
expression of co-activators may provide a mechanism for
transition to hormone refractory prostate cancer by
amplifying the response to adrenal androgens. ARA70 was
first identified as an AR-specific co-activator although it has
since been shown to co-activate other steroid receptors.[37,38]

Probably the most extensively studied group of AR co-
activators is the p160 family which includes steroid receptor
co-activator -1 (SRC1), glucocorticoid receptor-interacting
protein -1(GRIP-1) also known as transcriptional
intermediary factor-2 (TIF-2) and receptor-associated co-
activator-3 (RAC-3).

The p160 co-activators are known to interact with CREB-
binding protein (CBP) and its homologue p300 which have
intrinsic HAT activity.[39,40] The primary role of CBP/p300
when bound to p160 co-activators is to act as a co-integrator,
collating multiple proteins into an integrated HAT response
at promoters.[41] Immunohistochemical studies of CBP
expression of in-tumor samples were inconclusive with Debes
et al[42] showing an increase in hormone refractory disease
whereas Linja et al found no significant difference in
expression.[43] As yet no studies have looked at matched
samples pre and postandrogen ablation therapy. The CBP has
been shown to enhance the agonistic properties of flutamide,
increasing AR transactivation in the prostate cancer cell lines
LNCaP and DU145.[44]

Probably the best characterized co-activator of the AR is
SRC-1. In cell line studies reduction of SRC-1 expression
significantly reduced growth and altered AR target gene
regulation in the LNCaP cell line whereas it had no effect on
the growth of the AR-negative PC-3 and DU145 prostate
cancer cell lines, further emphasizing the need for an intact
AR.[45] In a study of cell lines and clinical prostate samples
SRC-1 was expressed at higher levels in high-grade prostate
cancer samples and this was supported by significant over-
expression of both SRC-1 and TIF-2 in hormone refractory
compared to hormone-naïve prostate cancer.[45,46] However,
Linja et al found a decrease in the median expression of SRC-
1 suggesting that sample collection, processing and the
sensitivity of the detection method may influence co-activator
expression studies.[43]

GRIP-1/TIF-2 has previously been shown to bind the steroid
receptors including the AR via its LBD and promote
transcription of androgen-regulated reporter genes. The AR
mutation N727K results in sub-fertility at least in part by
abrogating GRIP-1/TIF-2 binding. Using domain constructs
it was shown that GRIP-1/TIF-2 enhances AF-2 but not AF-

Figure 3: Schematic representation of adrenal, testicular and prostatic
intracrine androgen metabolism. CYP17 - steroid 17-alpha-hydroxylase,
CYP11a - steroid 11 - alpha - hydroxylase, DHEA  dehydro-
epiandrosterone, 5a - A-5-androstane-3, 17 dione, DHT -
dihydrotestosterone, 5a-diol - 5a androstane-3, 17 diol
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1 mediated AR transactivation.[47] Bicalutamide has been
shown to block recruitment of GRIP-1/TIF-2, presumably
by preventing the formation of a co-activator binding
surface.[48] Using reverse transcriptase PCR GRIP-1/TIF and
RAC-3 were found at low levels in prostate cancer
specimens[49] suggesting it may not be as significant as SRC-1
in prostate cancer progression.

Expression of RAC-3 (also known as SRC-3) was higher in
prostate cancer cell lines expressing the AR and has been shown
to promote ligand-independent activation of the Akt
pathway. RAC-3 mRNA and protein expression in prostate
cancer cells has been shown to correlate with tumor grade
and stage and increased expression correlates with poor
survival in clinical studies.[50]

Adaptor proteins associated with receptor internalization at
the cell surface have also been reported to be prostate cancer
biomarkers and to act as transcriptional co-regulators. Two
examples of these proteins are Huntingtin Interacting Protein
1 (HIP1) and cyclin G-associated kinase (GAK), both of which
were initially implicated in clathrin-mediated receptor
trafficking.[51,52] Subsequently, they were shown to be over-
expressed in prostate cancer and in the case of GAK to be
upregulated following prolonged androgen ablation therapy
(greater than six months).[53,54] It was then proposed that
changes in their expression could prevent the cell from
effectively internalizing activated growth factor receptors for
degradation and so potentiate signaling.[55,56] Both GAK and
HIP1 have however been reported to associate with the AR
and to co-activate the receptor.[54,57] The degree to which
adaptors directly affect steroid hormone receptor signaling,
as opposed to indirectly through the perturbation of growth
factor receptor trafficking and signaling in prostate cancer,
remains to be resolved.

Steroid receptor activity can also be modified by co-repressors
which inhibit transcription by blocking co-activators binding
and recruiting histone deacetylases (HDACs) and repressor
proteins such as Sin3A.[58] This HDAC complex gives rise to a
more condensed chromatin structure, hindering the
recruitment of the basal transcription machinery. There is
also evidence of co-repressor recruitment by antagonist-
bound receptors suggesting that a loss of co-repressor
expression could lead to increased AR transactivation. Silencing
mediator for retinoid and thyroid hormone receptors (SMRT)
and nuclear receptor co-repressor (N-CoR) have been
identified as co-repressors of AR. The SMRT interacts with
both liganded and unliganded forms of AR reducing
transactivation. Recruitment is enhanced in the presence of
cyproterone acetate and bicalutamide.[59,60] However, as yet
there is no evidence that expression differs with prostate cancer
progression. Recently, HDAC-7 has been shown to repress
AR transactivation in the presence of DHT. Both cyproterone
acetate and bicalutamide-bound AR co-localized with HDAC-

7 in nuclear bodies suggesting it may be essential for inhibiting
AR function.[61]

LIGAND-INDEPENDENT ANDROGEN RECEPTOR
ACTIVATION

Classically, activation of the AR via the binding of androgens
initiates receptor phosphorylation and/or acetylation,
homodimerization dissociation of heat-shock proteins,
allowing translocation of the AR complex to the nucleus. The
AF-1 region of the N-terminal of the AR can be activated
even in the absence of ligand thereby circumventing current
hormonal therapies. Ligand-independent activation induces
phosphorylation and acetylation of the AR altering its
conformational and subsequent transactivation.
Phosphorylation increases AR stability and stabilizes AR
homodimers increasing AR signaling without ligand.[62]

However, phosphorylation needs to occur at specific sites to
permit the conformation change necessary for nuclear
translocation. Many pathways have been identified as being
involved in this process with the best characterized being
mitogen-activated protein kinase (MAPK) and
phosphoinositol 3-kinase (PI3K)-Akt [Figure 4]. Both
pathways can be initiated by growth hormones such as insulin-
like-growth factor (IGF), epidermal growth factor (EGF) and
Her-2/Neu – an EGF-related molecule.

The PI3K-Akt pathway is involved in processes controlling
cell growth, survival, cycle regulation and apoptosis. Following
growth receptor activation, PI3K phosphorylates

Figure 4: Schematic representation of the interactions between androgen
receptor, MAPK and Akt signalling. IGFR - insulin-like growth factor
receptor, EGFR - epidermal growth factor receptor, FGFR - fibroblast
growth factor receptor, MAPK mitogen-activated protein kinases, MAPKK
-  MAPK kinases, MAPKKK - MAPKK kinases, DLK -  Dual leucine zipper
bearing kinase , MEK - Mitogen-activated protein kinase/ERK kinase,
ERK - extracellular signal-related kinase, JNK -  c-Jun-N-terminal
kinases, PI3K- phosphoinositol 3-kinase, PIP - phosphatidylinositol
phosphate,  AR - androgen receptor,  P - phosphorylation, ARE -
androgen response elements
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phosphatidylinositol (3, 4)-bisphosphate (PIP2) to
phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3). Akt and
its activating kinases, phosphoinositide-dependent kinases 1
and 2 (PDK1 and PDK2), then localize to the membrane.
Here, activated Akt can activate a myriad of substrates and
consequently a vast number of intracellular events including
phosphorylation of AR.[63] A recent study investigating the
expression of the three isoforms of Akt demonstrated
differential staining during prostate cancer progression. Akt1
correlated with high prostate specific antigen (PSA) whereas
Akt3 correlated with invasion, metastases and hormone
refractory disease.[64] PTEN is a phosphatase that opposes the
function to PI3K, dephosphorylating PIP3 and deactivating
Akt, thus operating as a tumor suppressor. Loss of PTEN results
in Akt activation and a subsequent reduction in apoptosis.
Loss of PTEN has been shown to correlate with tumor
recurrence and progression to androgen independence.[65] In
a model using PTEN ± mice, usually susceptible to the
development of multiple tumors, the inhibition of Akt
reduced the onset of malignancy, most significantly in prostate
cancer reinforcing the role of Akt in prostate carcinogenesis.[66]

Mitogen-activated protein kinases (MAPK) are a family of
serine/threonine protein kinases involved in many cellular
programs such as cell proliferation, cell differentiation and
apoptosis. The MAPK signaling cascades are organized
hierarchically into three-tiered modules: MAPK-kinase
kinases (MAPKKKs) are in activated by interaction with the
family of small GTPases and/or other protein kinases.
MAPKKKs are phosphorylated and activate (MAPKKs),
which in turn phosphorylate and activate MAPK-kinases
(MAPKs). The MAPK pathways terminate with the proteins
JNK, ERK and p38 which are known to be involved in both
anti- and pro-apoptotic processes. There is conflicting
evidence regarding the significance of the MAPK pathway in
prostate cancer progression. Initial reports suggested a
significant correlation between the activation of MAPK
enzymes ERK1 and ERK2 and tumor grade, with 70% of
high-grade tumors exhibiting activation.[67] In two patients
with matched pre and postablation therapy they
demonstrated absence and presence of activation respectively.
However, Uzgare et al reported that although there was a
slight increase in ERK and p38 in well-differentiated cancers,
cells from hormone refractory prostate cancer had reduced
or absent activated expression of isoforms.[68] Furthermore,
Malik et al found a decrease in activated form phospho-
MAPK/ERK in high-grade tumors.[69]

Her-2/Neu is known to play a significant role in the progression
of breast cancer raising interest in this molecule as a potential
target in prostate cancer. Her2/Neu can activate AR via the
MAPK and PI3K-Akt pathways and over-expression in LNCaP
cells inhibits growth arrest by 35% compared to wild-type
LNCaP cells. The potential importance of Her-2/Neu was
highlighted in a xenograft model used to produce progressively
more androgen-independent tumors, in which the level of Her-

2/Neu expression increased 25-fold. This is reinforced by
human immunohistochemical studies that demonstrate a
significantly positive correlation between Her-2/Neu expression
and hormone independent status when comparing hormone-
naïve and advanced hormone refractory disease.[70,71]

Growth factors and their receptors have previously been
shown to be essential for prostate growth and differentiation
during development, in particular FGF-7 and 10.[62] FGF-8
and receptors 1 and 4 in particular have also been linked to
prostate cancer[72] and shown to activate the MAPK and PI3K
pathways. Insulin-like growth factor (IGF) is essential for the
normal development and transformation of cells. IGF can
activate the AR to levels similar to DHT possibly by
dephosphorylation of AR serine 650 which prevents its nuclear
export.[73] Activation of the AR was blocked by bicalutamide
suggesting that the activation is mediated through the AR.[74]

Cell studies comparing different stages of prostate cancer have
also demonstrated IGF receptor (IGFR) protein expression
changes. Initially IGFR is over-expressed driving malignant
transformation but levels in hormone refractory prostate
cancer are reduced[75] - a finding confirmed at the mRNA
level in a transgenic mouse model.[76] EGF binding to the EGFR
on the surface of cells is known to activate the MAPK pathway
and potentiate GRIP1 co-activation of the AR.[77] Many
studies have looked at the expression of EGFR (also known as
ErbB1). Hernes et al compared biopsy samples from the same
patient taken before and after the development of hormone
refractory disease and found a significant increase in EGFR
from 23 to 43% after hormone relapse.[78] Other studies have
found no significant differences between the expression of
EGFR and Her-2/Neu in matched hormone-sensitive and
hormone-relapsed tumors. There was also a significant
decrease in survival time following hormone treatment with
increased expression of either EGFR or Her-2/Neu.[79] While
the data suggests there is some variation in the significance of
growth factor signaling in prostate cancer, a growing body of
evidence supports the hypothesis that it is likely to be important
in progression to hormone independence.

In addition to growth factor signaling other extracellular
proteins are known to activate cell surface receptors and
the AR. The best characterized of these proteins is
interleukin-6 (IL-6), a cytokine previously linked to a
number of malignancies including renal, myeloma and
prostate. IL-6 has wide-ranging cellular effects consistent
with activation of multiple pathways including MAPK and
PI3-Akt. Cell studies have confirmed that IL-6 can induce
ligand-independent AR transactivation via a mechanism
which is blocked by bicalutamide and inhibitors of MAPK
and protein kinase A.[80] When IL-6 expression was examined
in patient serum[81] and prostate tissue[82] both demonstrated
upregulation in hormone refractory cancers. IL-4 has also
been shown to be upregulated in the serum of hormone
refractory prostate cancer patients via activation of the AF-
1 region of the AR.[83]
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THE ROLE OF PROSTATE CANCER STEM CELLS IN
HORMONE REFRACTORY DISEASE

The classical stochastic model of cancer development is based
on the theory that every cell within a tumor has the potential
to form a new tumor colony. However, the stem cell model
of tumorigenicity proposes that it is a minority of specialized
stem cells that give rise to cancer cells.[84] Prostate cancer
stem cells are reported to be AR-negative making them
resistant to androgen ablation. The surviving stem cell is then
able to proliferate resulting in a resistant tumor recurrence.[85]

This would account for the heterogeneity of tumor masses
whereby the stem cells then go on to develop to different
degrees of differentiation and molecular characteristics and
would suggest that in order to accurately characterize and
treat prostate cancer, it is necessary to focus on the stem cells.
Techniques have been developed to identify stem cells within
tumors and primary prostate cancer cell lines by utilizing the
over-expression of the integrin α

2
β

1 
and CD133 as markers.[85]

However, the limited number of prostate cancer stem cells
available (<0.1% of tumor bulk) has limited profiling studies
to date. The potential of being able to target the tumor-
initiating cells provides an exciting prospect for diagnosis and
targeted therapies.

SUMMARY

The development and progression of prostate cancer is a
complex process. The androgen signaling pathway and its
interaction with other pathways impacts on cellular processes
from growth, cell cycle, differentiation to growth arrest and
apoptosis. Through adaptation and alteration cells become
tumorigenic. Initially this process can be halted by
manipulating the cells’ requirement for androgens although
eventually this treatment fails and cancer cells resume growth.
The terms ‘androgen independent’ and ‘hormone refractory’
may be misnomers as the AR appears to maintain a role in
cancer progression as demonstrated by its continued and even
increased expression. There is also evidence that despite
castration, both surgical and medical, the prostate retains a
level of androgen that is high enough to induce AR
transactivation in prostate cancer cell lines. The AR mutations
and over-expression also enable transactivation to occur at
low levels of androgen as well as decreasing ligand specificity.
The upregulation of co-activators and possible
downregulation of co-repressors further potentiate these
effects. Alternative pathways involving growth factors and
receptors and IL-6 have been shown to interact with the
androgen signaling pathway enabling transactivation to occur
even in the absence of ligand.

These processes are unlikely to operate independently. In
fact the heterogeneity of prostate cancer, both hormone-
naïve and hormone refractory, indicate that a multifactorial,
multistep process is the most plausible. This could be a double-
edged sword. The presence of numerable potential targets

and markers is encouraging, particularly if tumor profiling
can be utilized. However, it is also an indication of the likely
complexities to be faced when designing therapies for the
multiple types of prostate cancers. Recent advances have
highlighted many potential and targets for pathway inhibition.
By targeting multiple pathways, including AR signaling, it is
feasible that it may possible to treat patients with tumor-
specific ‘tailor-made’ therapies in the future.
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