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OBJECTIVE—The global epidemic of metabolic syndrome and its
complications demands rapid evaluation of new and accessible inter-
ventions. Insulin resistance is the central biochemical disturbance in
the metabolic syndrome. The citrus-derived flavonoid, naringenin, has
lipid-lowering properties and inhibits VLDL secretion from cultured
hepatocytes in a manner resembling insulin. We evaluated whether
naringenin regulates lipoprotein production and insulin sensitivity in
the context of insulin resistance in vivo.

RESEARCH DESIGN AND METHODS—LDL receptor–null
(Ldlr�/�) mice fed a high-fat (Western) diet (42% calories from
fat and 0.05% cholesterol) become dyslipidemic, insulin and
glucose intolerant, and obese. Four groups of mice (standard
diet, Western, and Western plus 1% or 3% wt/wt naringenin) were
fed ad libitum for 4 weeks. VLDL production and parameters of
insulin and glucose tolerance were determined.

RESULTS—We report that naringenin treatment of Ldlr�/�

mice fed a Western diet corrected VLDL overproduction, amelio-
rated hepatic steatosis, and attenuated dyslipidemia without
affecting caloric intake or fat absorption. Naringenin 1) increased
hepatic fatty acid oxidation through a peroxisome proliferator–
activated receptor (PPAR) � coactivator 1�/PPAR�-mediated
transcription program; 2) prevented sterol regulatory element–
binding protein 1c–mediated lipogenesis in both liver and muscle
by reducing fasting hyperinsulinemia; 3) decreased hepatic cho-
lesterol and cholesterol ester synthesis; 4) reduced both VLDL-
derived and endogenously synthesized fatty acids, preventing
muscle triglyceride accumulation; and 5) improved overall insu-
lin sensitivity and glucose tolerance.

CONCLUSIONS—Thus, naringenin, through its correction of
many of the metabolic disturbances linked to insulin resistance,
represents a promising therapeutic approach for metabolic
syndrome. Diabetes 58:2198–2210, 2009

T
he metabolic syndrome is a burgeoning epidemic
and represents an important predisposing factor
for diabetes and atherosclerosis. It is defined as
a cluster of abnormalities including abdominal

obesity, hypertension, glucose intolerance, and dyslipide-
mia characterized by hepatic overproduction of VLDLs
(1,2). Insulin resistance is central to the pathophysiology
of the metabolic syndrome and results from the inability of
insulin to normally signal to its receptor kinase and/or
downstream targets (3,4). Although defective insulin sig-
naling has been causally linked to these metabolic abnor-
malities, few available therapeutic strategies effectively
correct insulin resistance with normalization of glucose
tolerance and dyslipidemia (5).

Hepatic VLDL secretion is regulated through triglyceride
and cholesterol availability and the transfer of lipid onto
the apolipoprotein (apo) B100 (apoB) backbone via the
rate-limiting microsomal triglyceride transfer protein
(MTP) (6). Under normal conditions, insulin targets apoB
for intracellular degradation, resulting in acute inhibition
of VLDL-apoB secretion (7,8). Insulin also inhibits the
secretion of apoB from cultured hepatocytes through
activation of both the phosphatidylinositol 3-kinase (PI3K)
and mitogen-activated protein kinase–extracellular regu-
lated kinase (MAPKerk) signal transduction pathways,
upregulating the LDL receptor (LDLR) (9,10) while sup-
pressing expression of MTP (11,12).

Several mechanisms have been proposed to account for
the increased VLDL secretion observed in type 2 diabetes
and the metabolic syndrome. Peripheral insulin resistance
gives rise to increased free fatty acid flux to the liver,
enhanced triglyceride synthesis, decreased apoB degrada-
tion, and increased VLDL secretion (13,14). Furthermore,
with insulin resistance, hyperinsulinemia drives hepatic
hyperstimulation of sterol regulatory element–binding
protein (SREBP) 1c–induced lipogenesis, leading to in-
creased fatty acid synthesis and triglyceride accumulation
(15). ApoB becomes resistant to degradation (16), and
MTP fails to be downregulated (16), resulting in increased
VLDL-apoB secretion (16,17). Thus, in states of hyperinsu-
linemia, availability of lipid is a key factor regulating
VLDL-apoB secretion. In mice with complete deficiency of
liver insulin receptors (LIRKO mice) (18) or very few
hepatic insulin receptors (L1B6Ldlr�/�) (19), the hyperin-
sulinemia failed to stimulate SREBP1c-induced lipogene-
sis, resulting in greatly diminished VLDL-triglyceride
secretion. Studies in humans support this concept, as
patients with mild hyperinsulinemia harboring a defect in
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protein kinase B (PKB)-� (AKT2), but not patients with
insulin receptor mutations, manifest increased lipogene-
sis, elevated liver fat content, triglyceride-enriched plasma
VLDL, and hypertriglyceridemia (20).

The citrus-derived flavonoid, naringenin, has both lipid-
lowering and insulin-like properties. In streptozotocin-
induced diabetic rats, a diet supplement of naringenin
7-O-D-glucoside reduces blood glucose and improves
plasma lipids (21). In cholesterol-fed rats, naringenin
lowers plasma cholesterol by inhibiting hepatic choles-
terol synthesis and esterification (22). In HepG2 hepatoma
cells, naringenin, like insulin, inhibits apoB100 secretion
resulting from both enhanced intracellular degradation of
apoB100 and increased LDLR-mediated uptake of mature
particles (23,24). The effect of naringenin does not require
insulin receptor activation (7,9). Furthermore, naringenin
potentiates intracellular signaling responses to low insulin
doses, suggesting that naringenin sensitizes hepatocytes to
insulin (7). Therefore, we hypothesize that naringenin
lowers plasma lipids in vivo through inhibition of VLDL-
apoB100 secretion and regulates insulin sensitivity in the
setting of insulin resistance.

In the present study, we use C57BL/6J Ldlr�/� mice fed
a Western diet, a model of diet-induced insulin resistance.
These mice display many characteristics of the metabolic
syndrome including dyslipidemia, obesity, and insulin re-
sistance (25). Addition of naringenin to a high-fat diet
corrects a wide range of metabolic disturbances associ-
ated with insulin resistance independent of caloric intake
or dietary lipid absorption. Naringenin prevents hyperin-
sulinemia and, subsequently, SREBP1c-stimulated lipogen-
esis; activates hepatic fatty acid oxidation resulting in
prevention of hepatic triglyceride accumulation; and leads
to normalization of VLDL overproduction and ameliora-
tion of dyslipidemia. Finally, in muscle, naringenin pre-
vents lipid accumulation, leading to improved glucose
utilization and increased insulin sensitivity.

RESEARCH DESIGN AND METHODS

Male C57BL/6J and Ldlr�/� mice on the C57BL/6J (Jackson Laboratory)
background were housed in pairs and maintained at 23°C on a 12-h light/dark
cycle. Experiments were approved by the animal care committee of the
University of Western Ontario. Eight- to 12-week-old mice were fed ad libitum
a rodent standard diet (4% of calories from fat, TD8604; Harlan Teklad) or a
high-fat diet (Western diet) containing 42% of calories from fat plus choles-
terol (0.05% wt/wt) (TD96125; Harlan Teklad). Naringenin (Sigma, St. Louis)
was added to the Western diet at 1 or 3% (wt/wt). Ldlr�/� mice were fed for
4 weeks and C57BL/6J mice for 30 weeks. Food intake was measured daily,
and body weight was measured biweekly. Mice were fasted for 6 h before
intervention.
Blood samples, tissue collection, and tissue histology. See online sup-
plement for details (available at http://diabetes.diabetesjournals.org/cgi/
content/full/db09-0634/DC1).
Plasma and tissue lipids, blood glucose, insulin, and liver enzymes.

Plasma triglycerides and total cholesterol (Roche Diagnostics, Laval, Canada)
and plasma nonesterified fatty acids (NEFAs) (Wako Chemicals, Richmond,
VA) were determined enzymatically (26). Blood glucose was determined using
an Ascensia Elite glucometer (Bayer Healthcare, Toronto, Canada). Plasma
insulin and leptin were measured using ultrasensitive mouse-specific enzyme-
linked immunosorbent assays (Alpco Diagnostics, Windham, NH). Liver
enzymes (aspartate aminotransferase, alanine aminotransferase, and alkaline
phosphatase) were measured using the kinetic rate method. Tissue lipids and
oleate incorporation into triglycerides and cholesteryl ester were determined
as previously described (26). Homeostatic model assessment for insulin
resistance (HOMA-IR) was calculated as a surrogate for insulin resistance, as
described previously for mice (27). Plasma cholesterol and triglyceride
distributions were evaluated by size exclusion chromatography (26).
Lipid absorption, triglycerides, and apoB secretion. Intestinal triglycer-
ide and cholesterol absorption was determined using a modified fecal isotope

ratio method, and the intraperitoneal Tyloxapol method was used to measure
triglyceride and apoB secretion. See online supplement for details.
Glucose and insulin tolerance tests and glucose uptake. Mice were
administered glucose (intraperitoneally or gavage) or insulin (intraperitone-
ally). Blood glucose was measured up to 180 min postinjection. Glucose
uptake was determined following intraperitoneal injection of 2-deoxy-D-[1-3H]-
glucose. See online supplement for details.
Fatty acid and cholesterol synthesis, fatty acid oxidation, and lipopro-

tein lipase activity. Fatty acid and cholesterol synthesis were measured
following an intraperitoneal injection of [1-14C]-acetic acid. Fatty acid oxida-
tion was determined by conversion of 3H-palmitate to 3H2O. Lipoprotein lipase
(LPL) activity (LPLA) was assayed in postheparin plasma. See online supple-
ment for details.
Energy expenditure. Energy expenditure (EE) was determined using an
indirect open-circuit calorimeter (Oxylet; Panlab, Cornella, Spain). See online
supplement for details.
Gene expression and mtDNA measurement. Tissue mRNA and mtDNA
levels were determined by quantitative real-time RT-PCR. See online supple-
ment for details.
Cold test. Whole-body temperature was assessed rectally (Harvard Homeo-
thermic Blanket Control Unit), initially at room temperature, then hourly (6 h)
following transfer to a 4°C room.
Statistical analysis. Data are presented as means � SE. Analysis was
performed using the Statistical Package for Social Science (SPSS version
14.0). Significant differences between groups were determined by a one-way
ANOVA. Multiple comparisons were made using a post hoc Tukey’s test, and
differences were identified between groups at P � 0.05. Differences between
groups for body weight, food consumption, glucose tolerance tests, and
insulin tolerance tests were calculated using general linear modeling for
repeated measures.

RESULTS

Naringenin does not affect food intake but sup-
presses diet-induced weight gain. The metabolic effects
of naringenin were initially evaluated in Ldlr�/� mice fed
a Western diet containing 1 or 3% naringenin for 4 weeks.
Western-fed mice gained significantly more weight than
standard diet–fed mice. Naringenin dose-dependently at-
tenuated weight gain so that the 3% naringenin group was
not different from the standard diet group (Fig. 1A).
Among groups, there were no significant differences in
caloric intake (Fig. 1B) or liver enzyme levels (data not
shown). Intestinal triglyceride and cholesterol absorption
were �90 and 40%, respectively, and were unaffected by
any diet (Fig. 1C and D). Intestinal total, free, and cho-
lesteryl ester concentrations were unchanged (data not
shown). Intestinal triglycerides were elevated fourfold in
Western diet–fed mice and dose-dependently decreased by
the addition of 1% (�50%) and 3% (�90%) naringenin
(Fig. 1E).
Naringenin attenuates dyslipidemia and corrects
VLDL secretion. The Western diet elevated fasting
plasma cholesterol threefold compared with standard
diet–fed mice (Fig. 2A). Naringenin at 1 and 3% decreased
plasma cholesterol by 17 and 30%, respectively, compared
with Western diet–fed mice (Fig. 2A). The Western diet
increased peak levels of both VLDL cholesterol and LDL
cholesterol relative to standard diet–fed mice, confirming
the profile observed previously (25). Addition of 3% narin-
genin reduced VLDL cholesterol and LDL cholesterol,
while HDL cholesterol was unaffected (Fig. 2C).

Plasma triglycerides were significantly elevated 3.8-fold
in Western diet–fed mice compared with standard diet–fed
mice. Naringenin at 1 and 3% decreased plasma triglycer-
ides by 36 and 68%, respectively (Fig. 2B), which was
primarily due to a reduction in VLDL-triglycerides (Fig.
2D). In metabolic studies, the Western diet significantly
increased triglyceride secretion by 50%, which was com-
pletely prevented by 3% naringenin (Fig. 2E). Western
diet–fed mice secreted twofold more radiolabeled apoB
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into plasma compared with standard diet–fed mice (Fig.
2F), whereas apoB secretion was reduced significantly by
36% in mice fed 3% naringenin. ApoB48 secretion was
reduced similarly (data not shown). Postheparin LPLA
increased 3.5-fold in Western diet–fed mice, which was
increased a further twofold by 3% naringenin (Fig. 2G).
Fasting plasma NEFAs were not different among the
dietary groups (Fig. 2H).
Naringenin prevents hepatic triglyceride accumulation.
Hepatic total cholesterol and cholesteryl ester concentra-
tions were significantly elevated by 1.7- and 3.5-fold,
respectively, in Western diet–fed compared with standard
diet–fed mice. Total cholesterol and cholesteryl ester were
decreased by 50% with 1 and 3% naringenin (Fig. 3A).
Hepatic triglyceride levels were significantly elevated 1.9-
fold in Western diet–fed mice and were markedly reduced
by 1% naringenin (�40%) and by 3% naringenin (�67%)
(Fig. 3B and C). The Western diet increased liver Srebp1c
expression by 3.9-fold compared with standard diet–fed
mice. Srebp1c was reduced dose dependently by 1%
(�35%) and 3% naringenin (�65%) (Fig. 3D). Hepatic fatty
acid and cholesterol synthesis increased twofold and
threefold in Western diet–fed mice, which were attenuated
by 3% naringenin (Fig. 3E and F). The 1.5-fold increases
in hepatic triglyceride and cholesteryl ester synthesis in
Western diet–fed mice were also reduced by 3% naringenin
(Fig. 3G and H). No diet altered hepatic mRNA expression
of Mttp, Acat1/2, or Dgat1 or protein expression of FoxO1
(data not shown).
Naringenin increases hepatic fatty acid oxidation.
The marked reduction in hepatic triglyceride and VLDL-
triglyceride and VLDL-apoB secretion suggested that
naringenin also increased hepatic fatty acid oxidation.
Peroxisome prolifertor–activated receptor (PPAR) � coac-

tivator 1� (PGC1�) activation can initiate mitochondrial
biogenesis (28). Enzymes involved in mitochondrial and
peroxisomal fatty acid oxidation, including Cpt1� and
Aco, can be upregulated by PPAR� (29). The Western diet
decreased liver Pgc1� mRNA by 18% compared with
standard diet–fed mice. However, 3% naringenin signifi-
cantly increased Pgc1� expression by 30% compared with
Western diet–fed mice (Fig. 4A). Ppar� mRNA (Fig. 4B)
and liver weight (data not shown) were unaffected by any
diet. Naringenin increased Cpt1� expression by 25% com-
pared with the Western diet alone (Fig. 4C). Aco expres-
sion was not affected in Western diet–fed mice, whereas
naringenin significantly increased Aco mRNA by 30% (Fig.
4D). Consistent with these changes, 3% naringenin signif-
icantly increased mitochondrial DNA content (twofold)
and fatty acid oxidation (twofold) compared with Western
diet–fed mice (Fig. 4E and F). These data suggest that
induction of hepatic fatty acid oxidation by naringenin
contributes to the reduction of hepatic triglyceride avail-
ability for VLDL secretion.
Naringenin improves glucose utilization and insulin
sensitivity. Fasting plasma insulin was significantly ele-
vated 2.2-fold by the Western diet and completely pre-
vented by 3% naringenin (Fig. 5A). Plasma insulin
correlated with islet size, as significant hyperplasia was
only identified in Western diet–fed mice (Fig. 5B). Despite
hyperinsulinemia, mild hyperglycemia was observed in
Western diet–fed mice, whereas naringenin at 3% normal-
ized plasma glucose (Fig. 5C). HOMA-IR was significantly
elevated 2.6-fold in Western diet–fed compared with stan-
dard diet–fed mice. HOMA-IR was completely normalized
by 3% naringenin (Fig. 5D). The Western diet impaired
glucose tolerance relative to standard diet–fed mice,
whereas 3% naringenin completely normalized glucose
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utilization (Fig. 5E and F). Normalization by naringenin
was maintained following correction for fasting glucose
concentrations (Fig. 5F). Western diet–fed mice also
showed a blunted response to exogenous insulin, resulting
in a greater area under the curve compared with standard
diet–fed mice. Naringenin completely normalized insulin
sensitivity (Fig. 5G–I).

Intramyocellular lipids are associated with insulin resis-
tance in vivo (30). Western diet–fed mice showed accumu-
lation of both triglyceride and cholesteryl ester in muscle,
whereas 3% naringenin completely prevented lipid deposi-
tion (Fig. 6A and B). In contrast to liver, there was no
change in Pgc1� or Cpt1� expression or fatty acid oxida-
tion (Fig. 6C–E). Furthermore, naringenin had no effect on
uncoupled oxidation as both Ucp1 and Ucp3 mRNA were
unchanged (Fig. 6F and G). However, both Srebp1c and
fatty acid synthesis were significantly increased in West-
ern diet–fed compared with standard diet–fed mice, and
both were decreased by naringenin (Fig. 6H and I).
Western diet–fed mice had impaired deoxyglucose uptake
in muscle compared with standard diet–fed mice, whereas
3% naringenin significantly improved deoxyglucose uptake
(Fig. 6J). These data suggest that naringenin decreases
lipid accumulation in muscle, which may prevent periph-
eral insulin resistance.
Naringenin decreases obesity. Western diet–fed mice
gained significantly more total and visceral adipose tissue
compared with standard diet–fed mice (Fig. 7A and B);
however, lean body mass was unchanged (data not

shown). Naringenin dose-dependently attenuated adipos-
ity so that 3% naringenin–fed mice were similar to stan-
dard diet–fed mice (Fig. 7A and B). Adipocytes in both
epidydimal fat and intrascapular brown adipose tissue
(BAT) of Western diet–fed mice shifted toward a hyper-
trophic phenotype compared with standard diet–fed mice
and 3% naringenin–treated mice (Fig. 7C and D); however,
macrophage infiltration into epididymal adipose stores
was not observed with any diet (Fig. 7D). Plasma leptin
levels correlated well with adipose tissue mass (Fig. 7E).

Energy expenditure decreased with the Western diet
compared with the standard diet. However, consistent
with increased fatty acid oxidation, enhanced glucose
uptake, and decreased lipogenesis, energy expenditure
was significantly higher in mice fed 3% naringenin and was
not different from standard diet (Fig. 7F). The respiratory
quotient was 0.90 for standard diet–fed animals and 0.79
for Western diet–fed mice, whereas an intermediate value
of 0.83 was observed with naringenin treatment, although
differences were not significant. Intrascapular BAT is
responsible for induction of thermogenesis; therefore,
expression of Ucp1 and mtDNA were determined. Ucp1
mRNA was similar among the dietary groups (data not
shown). While the Western diet modestly increased
mtDNA, no further increase was observed in naringenin-
treated mice (data not shown). Heat production was evalu-
ated by a cold-challenge test. The ability of naringenin-
treated mice to maintain body temperature at 4°C did not
differ from standard diet– or Western diet–fed mice (data
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not shown), collectively suggesting that naringenin does
not stimulate adaptive thermogenesis.
Naringenin improves dyslipidemia, hepatic steatosis,

and insulin sensitivity in wild-type mice. To confirm
that the effect of naringenin was not restricted to Ldlr�/�

mice, we performed similar studies in wild-type C57BL/6J
mice fed the same diets for 30 weeks to establish insulin
resistance. The Western diet increased plasma triglycer-
ides and cholesterol compared with the standard diet,
whereas 3% naringenin significantly improved plasma lip-
ids (Fig. 8A–C). Naringenin prevented the significant in-
crease in liver triglycerides and cholesterol observed in
Western diet–fed mice (Fig. 8D–F). The hyperglycemia and
hyperinsulinemia that developed in Western diet–fed mice
were normalized by 3% naringenin. Glucose tolerance tests
revealed that 3% naringenin corrected impaired glucose
utilization and insulin insensitivity observed in Western
diet–fed mice (Fig. 8G–J). The Western diet increased
weight gain and adipose tissue accumulation, which was
significantly attenuated by naringenin (Fig. 8K and L).

DISCUSSION

Mice lacking the LDLR, when fed a Western-style diet,
display many features of insulin resistance including VLDL
overproduction, dyslipidemia, and obesity. Furthermore,
hepatic lipids increase and fasting glucose and insulin
become elevated, resulting from impaired glucose toler-
ance and reduced insulin sensitivity (25). The major find-
ings of this study are that addition of naringenin to a
high-fat diet 1) decreased plasma lipids, 2) reduced over-
production of total triglycerides and hepatic apoB, 3)
decreased liver triglycerides and cholesterol, 4) inhibited
stimulation of hepatic lipogenesis and prevented hepatic
steatosis, 4) increased hepatic �-oxidation, 5) normalized
blood glucose and plasma insulin, and 6) restored glucose
tolerance. These results demonstrate a novel treatment to
correct the metabolic abnormalities associated with diet-
induced insulin resistance.

VLDL secretion is increased in the metabolic syndrome
and contributes to the dyslipidemia associated with insulin
resistance (31). Although regulation of hepatic VLDL se-
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cretion is complex, an important stimulus is lipid availabil-
ity (6). In mouse models of diet-induced insulin resistance,
the concept of selective hepatic insulin resistance has
emerged (32). Hepatic lipogenesis remains sensitive to
insulin. The hyperinsulinemia observed in Western diet–
fed mice greatly increases hepatic SREBP1c, drives lipo-
genesis (15), and increases the contribution of de novo
fatty acids to VLDL-triglycerides (33). In this study, narin-
genin prevents hyperinsulinemia, leading to a reduction in
hepatic SREBP1c and hepatic lipogenesis in the fasted

state. The reduction in hepatic triglyceride availability
contributes to the significant decrease in VLDL-triglycer-
ides and VLDL-apoB secretion and attenuation of dyslipi-
demia. These findings are consistent with recent studies in
mice demonstrating that blocking the ability of insulin to
activate hepatic SREBP1c–induced lipogenesis due
to a complete absence (LIRKO) or very low expression
of (L1B6Ldlr�/�) hepatic insulin receptors greatly dimin-
ished VLDL-triglyceride secretion (18,19). In some mouse
models, however, hepatic apoB secretion is not tightly
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linked to SREBP1c-stimulated triglyceride availability. For
instance, in ob/ob mice, increased hepatic Srebp1c and de
novo lipogenesis were not associated with increased
VLDL-apoB production (34). Liver-specific overexpression
of DGAT1/2 greatly increased Srebp1c, Fas, and triglycer-
ide accumulation; however, VLDL secretion was un-
changed (35). Availability of newly synthesized cholesterol
and cholesteryl ester, which have been shown to influence
VLDL formation and secretion (36,37), were unaffected in
ob/ob mice and hepatic DGAT1/2–overexpressing mice
(34,35). In cultured HepG2 cells, naringenin inhibited ACAT2
expression and cholesterol esterification, leading to inhibi-
tion of apoB secretion (37). In the present study, naringenin
also prevented the increase in hepatic cholesterol, and al-
though Acat2 mRNA was unaffected, cholesteryl ester syn-
thesis was significantly reduced. This demonstrates that
naringenin may not only limit triglyceride availability for
VLDL production but also cholesteryl ester.

The contribution of increased intestinal triglycerides in

Western diet–fed mice to the overproduction of triglycer-
ides into plasma cannot be discounted. In insulin-resistant
hamsters, de novo intestinal lipogenesis results in over-
production of intestinally derived lipoproteins (38).
Prevention of intestinal triglyceride accumulation by nar-
ingenin may result in reduced secretion of intestinally
derived lipoproteins and contribute to the normalization of
triglyceride secretion into plasma. Whether the mecha-
nism in the intestine is similar to that observed in liver
requires further investigation.

Under normal conditions, insulin targets apoB for intra-
cellular degradation in cultured hepatocytes, leading to
acute reduction in VLDL secretion (7,39,40). Whether
increased intracellular apoB degradation is a direct effect
of insulin or is a consequence of reduced apoB lipidation
is not well understood. In insulin-resistant hamsters, apoB
degradation is compromised in hepatocytes obtained ex
vivo (16). Hyperinsulinemic LIRKO mice overproduce cho-
lesterol-rich apoB, even in the absence of insulin-stimu-
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lated SREBP1c expression (18), suggesting that insulin-
mediated degradation of apoB is an important determinant
of VLDL secretion. In contrast, in hyperinsulinemic
L1B6Ldlr�/� mice with very few hepatic insulin receptors,
apoB production was markedly diminished compared with
Ldlr�/� controls, implying that the loss of SREBP1c-
stimulated triglyceride synthesis was the primary determi-
nant for reduced apoB secretion (19). Pulse-chase
experiments in HepG2 cells revealed that naringenin, like
insulin, reduces apoB secretion through rapid intracellular
apoB degradation (7). Enhanced apoB degradation by
naringenin was observed in the presence or absence of
oleate-stimulated triglyceride synthesis and occurred inde-
pendent of insulin receptor activation (7,9). In the present
study, increased hepatic apoB degradation may contribute
to the ability of naringenin to decrease VLDL-apoB secre-
tion in Western diet–fed mice. However, direct experimen-
tal evidence requires further investigation.

The Western diet significantly increased LPLA com-
pared with the standard diet, suggesting that a lipolytic
defect did not contribute to the hypertriglyceridemia.
Naringenin increased LPLA over twofold compared with
Western diet–fed mice. The mechanism for this is unclear,
as LPL mRNA was not different between Western diet–fed
or naringenin-fed animals in liver or muscle (data not
shown). Nevertheless, increased LPLA likely contributed
to the normalization of plasma triglycerides in naringenin-
treated mice.

In mice with diet-induced insulin resistance, SREBP1c-
stimulated lipogenesis contributes to hepatic triglyceride
accumulation. Reduced rates of hepatic fatty acid oxida-
tion may also be involved. Key regulators of hepatic
�-oxidation, including CPT1�, are controlled by a complex
of transcription factors and coactivators, including PGC1�
and PPAR�. PGC1� regulates many metabolic pathways in
liver, including gluconeogenesis, mitochondrial expan-
sion, and fatty acid oxidation (28). Fasted Pgc1��/� mice
accumulated significant amounts of neutral lipid within
the liver due to decreased hepatic fatty acid oxidation and
enhanced SREBP1c-stimulated triglyceride synthesis (41).
Hepatic-specific overexpression of Cpt1� in fat-fed rats
stimulates fatty acid oxidation and corrects liver triglyc-
eride accumulation (42). Here, we demonstrate that the
Western diet decreased hepatic Cpt1� and Pgc1� mRNA
and reduced fatty acid oxidation. Naringenin significantly
increased hepatic Pgc1� mRNA, which coincided with
increased mitochondrial DNA and enhanced fatty acid
oxidation. Furthermore, hepatic expression of PPAR�-
responsive genes, Cpt1� and Aco, were significantly
increased.

In fat-fed Ldlr�/� mice, the PPAR� agonist fenofibrate
increased hepatic expression of Aco and Lpl, while
Srebp1c, Fas, and Dgat2 were reduced (43). In contrast to
a classic PPAR� agonist, naringenin did not increase
hepatic Ppar� expression or liver weight. Naringin, the
glucoside form of naringenin, decreases liver triglyceride
and hepatic fatty acid synthesis in db/db mice, leading to
decreased plasma lipids (44). Treatment of fat-fed ICR rats
with 1% naringenin increased the hepatic activities of
Cpt1� and Aco and increased peroxisomal fatty acid
oxidation (45). These data indicate that naringenin acti-
vates PGC1� and PPAR� target genes to shift the meta-
bolic program in the liver, resulting in a diminished
triglyceride burden compared with Western diet–fed mice.
Furthermore, naringenin-stimulated fatty acid oxidation

likely contributed to the decreased availability of triglyc-
eride for VLDL secretion.

Ldlr�/� mice fed a Western diet become dyslipidemic
and hyperinsulinemic, with a metabolic profile character-
ized by reduced glucose utilization and impaired insulin
sensitivity (25). Intramyocellular triglyceride accumula-
tion has been associated with peripheral insulin resistance
in animals and humans (46,47). Accumulation of fatty acid
derivatives in muscle, derived from both plasma NEFAs
and triglyceride-rich lipoproteins, inactivates insulin re-
ceptor signaling (47). Naringenin prevented the marked
accumulation of triglycerides and cholesterol in muscle
induced by the Western diet. Naringenin also normalized
insulin sensitivity and pancreatic islet morphology, leading
to significantly improved glucose tolerance, including en-
hanced glucose uptake in muscle. Insulin has been shown
to increase Srebp1c and Fas in cultured myotubes (48). In
quadriceps of Western diet–fed mice, we demonstrate that
Srebp1c mRNA and fatty acid synthesis were significantly
increased, indicating that hyperinsulinemia stimulated en-
dogenous lipid synthesis, which contributed to muscle
lipid accumulation and diminished insulin sensitivity. Na-
ringenin attenuated SREBP1c-induced fatty acid synthesis
in muscle, similar to the effect observed in liver. In
contrast to liver, naringenin did not increase Pgc1� ex-
pression, nor did it stimulate fatty acid oxidation. This
suggests that naringenin may not act directly in muscle,
and the reduction in muscle lipid accumulation and im-
proved glucose utilization is instead due to reduced uptake
of lipoprotein-derived lipid, a consequence of decreased
VLDL secretion, as well as reduced de novo lipogenesis,
secondary to normalization of hyperinsulinemia.

Obesity is a component of the metabolic syndrome.
Naringenin treatment resulted in almost complete resis-
tance to diet-induced obesity without affecting lean body
mass. Increased energy expenditure resulted in enhanced
hepatic fatty acid oxidation and/or increased peripheral
glucose oxidation, leading to normalized weight gain.
Increased energy expenditure prevented visceral adipo-
cyte hypertrophy and normalized the size of visceral fat
pads. Naringenin had no effect on lipid metabolism in BAT,
indicating the prevention of obesity was unrelated to
adaptive thermogenesis.

Treatment of fat-fed C57BL/6J mice with another poly-
phenolic compound, resveratrol, increased fatty acid oxi-
dation in gastrocnemius muscle and BAT through
mitochondrial expansion via activation of SIRT1 and
deacetylation of PGC1� (49). In contrast to naringenin,
resveratrol had little effect in the liver. Resveratrol im-
proved insulin sensitivity and glucose tolerance; however,
compared with naringenin, plasma cholesterol was only
modestly reduced and plasma triglycerides were unaf-
fected (49,50). These data suggest that flavonoids have
diverse and distinctive tissue-specific effects likely based
on structural differences and pharmacokinetic behavior.

The protective effect of naringenin was not restricted to
mice with Ldlr deficiency. In wild-type mice, we found that
naringenin significantly reduced plasma and hepatic lipids,
normalized glucose tolerance and insulin sensitivity, and
prevented obesity compared with Western diet–fed mice.

Collectively, these findings demonstrate that naringenin
has marked lipid- and lipoprotein-lowering potential. Nar-
ingenin normalizes hepatic VLDL production, glucose tol-
erance, and insulin sensitivity and prevents hepatic
steatosis and obesity associated with a high-fat diet. The
ability of naringenin to modulate metabolic pathways
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linked to the metabolic syndrome suggests that these
molecules represent valuable tools in the search for regu-
lators of insulin signaling, lipid homeostasis, and energy
balance.
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