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Metagenomic studies unravel details about the taxonomic composition and the functions
performed by microbial communities. As a complete metagenomic analysis requires
different tools for different purposes, the selection and setup of these tools remain
challenging. Furthermore, the chosen toolset will affect the accuracy, the formatting,
and the functional identifiers reported in the results, impacting the results interpretation and
the biological answer obtained. Thus, we surveyed state-of-the-art tools available in the
literature, created simulated datasets, and performed benchmarks to design a sensitive
and flexible metagenomic analysis pipeline. Here we present MEDUSA, an efficient pipeline
to conduct comprehensive metagenomic analyses. It performs preprocessing, assembly,
alignment, taxonomic classification, and functional annotation on shotgun data,
supporting user-built dictionaries to transfer annotations to any functional identifier.
MEDUSA includes several tools, as fastp, Bowtie2, DIAMOND, Kaiju, MEGAHIT, and a
novel tool implemented in Python to transfer annotations to BLAST/DIAMOND alignment
results. These tools are installed via Conda, and the workflow is managed by Snakemake,
easing the setup and execution. Compared with MEGAN 6 Community Edition, MEDUSA
correctly identifies more species, especially the less abundant, and is more suited for
functional analysis using Gene Ontology identifiers.
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1 INTRODUCTION

The recent reduction of sequencing costs, a consequence of
second-generation sequencing technology advances, notably
benefited the metagenomics field. Metagenome shotgun
sequencing became widely used, allowing microbial DNA
sequencing from an environmental sample without
selecting any particular gene. The taxonomic classification
of environmental DNA provides species composition
information for biodiversity studies (Pedersen et al., 2015).
Shotgun data also contains information about the microbial
community functional activity, adding ecological
information to metagenomic studies.

There are two metagenomic analysis approaches: read
classification and metagenomic assembly (Breitwieser et al.,
2019). These approaches share common analysis steps, such as
data preprocessing, the alignment against a reference database,
taxonomic classification, and functional annotation. The
difference is a step to assemble reads into contigs, after the
preprocessing, on the assembly approach. The choice between
direct read classification and assembly-based analysis depends on
the analysis goal and research question. Read classification is
useful for organisms with close relatives represented in the
reference database. For samples collected from exotic
environments, when no close relatives are expected to be
found in the reference database, the assembly approach is
desirable. But one approach does not exclude the other, and
assemblies may be used to support classifications made directly
from the reads. There are several tools available for each analysis
step, with varying accuracies. Therefore, the toolset choice
impacts the analysis results and conclusions (Lindgreen et al.,
2016), and efficiently selecting a toolset to conduct a complete
metagenomics analysis remains challenging.

Some tools are well established, such as the DIAMOND
aligner (Buchfink et al., 2015), which stands out for its speed
and accuracy. Hence, this aligner is commonly used in pipelines
and tools for metagenomics and metatranscriptomics, such as
SAMSA2 (Westreich et al., 2018), MetaErg (Dong and Strous,
2019), HUMAnN2 (Franzosa et al., 2018), eggNOG-mapper
(Huerta-Cepas et al., 2017), and GO FEAT (Araujo et al.,
2018). The DIAMOND aligner performs protein alignments, a
compute-intensive task that produces a functional result with
protein identifiers (IDs) according to the database used as
reference.

As a consequence, these tools and pipelines for metagenomic
analysis present results with specific identifiers. GO FEAT reports
Gene Ontology (GO) identifiers in its results, and eggnog-mapper
reports Orthologous Groups identifiers. Even using DIAMOND
for the alignments in both tools, the different reference databases
used for each one make the intermediate files not exchangeable.
Thus, the alignmentmust be performed for each tool separately to
get the two types of identifiers. To ease multiple executions, some
pipelines for metagenomic shotgun sequences analysis are fully
automated, such as Sunbeam (Clarke et al., 2019) and MetaErg.
Sunbeam, for example, adopts the use of the Snakemake workflow
management software (Köster and Rahmann, 2012) to achieve
reproducibility and automation.

MEGAN 6 is a software widely used for microbiome analysis
that translates protein IDs into others, such as GO and InterPro,
using SQLite databases. MEGAN is available in two versions, the
Community Edition (CE) (Huson et al., 2016) and the Ultimate
Edition (UE). The CE is freely available and allows the download
of an SQLite dictionary mapping NCBI-nr (National Center for
Biotechnology Information—non-redundant) accessions to
taxonomy, eggNOG, and a mix of InterPro and GO IDs.
Whereas the UE requires an annual license and includes
mappings for KEGG, SEED, RDP, and Pfam IDs.

The selection of tools suited for each step of a
metagenomic analysis is a challenge. The standalone
pipelines available in the metagenomics field produce
results containing a specific set of functional identifiers,
narrowing the capabilities to extract insights beyond the
scope of the identifier type reported. Web-based pipelines
might restrain access to intermediate files, useful to conduct
other analyses, and the fine-tuning of tool’s parameters to
achieve a better result. We aim with this work to address these
presented issues by surveying tools from the literature and
benchmarking them to design a fully automated analysis
pipeline that allows functional annotation transfer through
user-built identifier mapping dictionaries.

Here we introduce a new pipeline for metagenomic
analyses. The MEDUSA pipeline performs steps for both
metagenomic approaches, accurate and sensitive taxonomic
classifications, and functional annotations using fast disk
storage repositories created from plain text dictionaries.
The whole pipeline is available as an environment at the
Anaconda Cloud, easing software acquisition and setup via
the Conda package manager. Installing and running details
can be found in the Supplementary Material.

2 MATERIALS AND METHODS

2.1 Pipeline Overview
We surveyed the literature and selected a set of state-of-the-
art tools for each of four analysis steps: preprocessing,
alignment, assembly, and taxonomic classification. Fastp
was chosen for its speed and features, as the interactive
quality control report produced reading the input only
once. Bowtie2 for speed and accuracy, obtaining a low
misclassification rate. Kaiju for achieving the highest
Matthews Correlation Coefficient (MCC) (Chicco and
Jurman, 2020) at the species and genus level. Lastly,
DIAMOND and MEGAHIT for the performance in
published benchmarks. Figure 1 shows the workflow
designed to include these tools and perform all steps
required for a comprehensive metagenomic analysis.

2.2 Datasets
2.2.1 Dataset for Trimming
To assess trimming tools, we downloaded the run SRR5371509
from the Sequence Read Archive (SRA). The original raw reads
from this bovine fecal metagenome were split into files containing
1, 5, 10, and 40 million reads in a paired-end (PE) format.
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2.2.2 Dataset for Decontamination
To assess decontamination tools, we downloaded a human
primary assembly from NCBI (RefSeq NC_000004.12) and
used the InSilicoSeq software (Gourlé et al., 2019) to create
three simulated datasets. The primary assembly
NC_000,004.12 represents the assembled human
chromosome 4, used by InSilicoSeq as the source to
generate human reads for these simulated datasets. The
InSilicoSeq software can download random genomes
directly from NCBI. It is possible to choose between
bacteria, viruses, archaea, or a combination of these options
with the argument --ncbi/-k, as well as the number of genomes
with the argument --n_genomes/-u. For this dataset we
downloaded 200 bacterial genomes with InSilicoSeq, using
--seed 5 to control the random number generation. Each
dataset was created with 4 million reads, with human reads
composing 25%, 50%, and 75% of the dataset, and bacterial
reads generated by InSilicoSeq composing the remaining.

2.2.3 Dataset for Assembly
Critical Assessment of Metagenome Interpretation (CAMI)
(Meyer et al., 2021) provides reads and its respective gold-
standard assembly (GSA). Three datasets, labeled as low,
medium, and high complexity, were created for the first CAMI
challenge using the CAMISIM microbial community and
metagenome simulator. The low complexity dataset has a

small insert size, the medium complexity has differential
abundances of respective organisms, and short and long insert
sizes, and the high complexity dataset is a time series of samples
with a small insert size. The small insert size has 270 bp, and the
long has 5,000 bp. To assess the assembly, we downloaded the
low, medium, and high complexity datasets from the first CAMI
challenge.

2.2.4 Dataset for Taxonomic Classification
Some reads used in metagenome studies end not being assigned
to a taxonomic identifier. This outcome means that these reads
have no matches among the reference database sequences, and as
these reads may be from organisms not present in the reference
database, they are labeled as “unknown organisms.” To assess the
taxonomic classification, we created a dataset containing 509,688
Illumina MiSeq reads following a lognormal distribution with
InSilicoSeq, from which 99,918 are negative control (NC) reads
simulating unknown organisms. Although the number of reads to
be generated was set to 500,000 and 100,000 (20% of the
simulated dataset), respectively, using the --n_reads
InSilicoSeq argument, the output presents a slightly different
number of reads. The metadata from this dataset can be found in
our GitHub repository. This dataset was generated from 394
bacterial, 73 archaeal, and 40 viral sequences, without duplicates,
randomly downloaded by InSilicoSeq. To simulate the unknown
organisms, NC, we used InSilicoSeq and 199 bacterial sequences,
shuffled by the esl-shuffle command from HMMER (HMMER,

FIGURE 1 |MEDUSA analysis workflow. Squares highlight the protocol steps, and third-party tools are depicted as cyan capsules. The python icon represents the
tool implemented for the functional annotation.
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2021) v3.3 (http://hmmer.org/) using non-overlapping windows
of size 500 (-w 500). In what follows, this dataset will be
mentioned as Dataset 1 (D1).

2.2.5 Dataset for Functional Annotation
We selected sequences from 10 bacterial organisms to use as a
source to create 400,433 reads with InSilicoSeq. The GenBank
identifiers from the selected sequences are described in the
Supplementary Material. The UniProt ID mapping API
(https://www.uniprot.org/help/api_idmapping) was used to
convert the GenBank IDs (EMBL_ID) to UniProt IDs (ACC),
allowing to transfer curated UniProtKB/Swiss-Prot GO
information from the UniProt IDs to the GenBank IDs.
Finally, these sequences were concatenated with the NC
created to assess the taxonomic classification. In what follows,
this dataset will be mentioned as Dataset 2 (D2).

2.2.6 Public Dataset Selected
We selected a public human gut metagenome shotgun data from
a patient with Crohn’s disease (run SRR579292 from the
BioProject PRJNA175224). In what follows, this dataset will be
mentioned as Dataset 3 (D3).

2.3 Benchmarks
As the preprocessing involves different tasks, such as quality
control and host sequences removal, two benchmarks were
designed to evaluate tools for these purposes.

2.3.1 Trimming Tools Benchmark
The quality control check is performed to identify and remove
low-quality reads, and the following tools able to accomplish this
task were selected for comparison: AfterQC (Chen et al., 2017),
BBDuk (BBTools, 2021) (http://jgi.doe.gov/data-and-tools/bb-
tools/), Cutadapt (Martin, 2011), Fastp (Chen et al., 2018a),
SOAPnuke (Chen et al., 2018b), and Trimmomatic (Bolger
et al., 2014). We applied these tools to the dataset created to
assess the trimming performance, processing the PE files, and also
only the forward reads, to simulate a single-end (SE) input. The
inputs were processed using one and four computing cores to
assess the reduction in the elapsed time, an expected consequence
of the parallelism. The speed of each tool was measured using the
“time” Unix command and averaging three runs. As a reference
for the elapsed time, we also ran the FastQC software (Babraham,
2021) (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). FastQC is a tool used to create visual reports detailing
the quality of the reads before and after the preprocessing. As the
parallelism supported by FastQC only allows the use of multiple
inputs, not reducing the time required for processing one input, it
was benchmarked with one computing core.

2.3.2 Decontamination Tools Benchmark
The strategy used for host sequences removal is to use a tool to
align the reads against a reference genome, such as the Ensembl
Homo sapiens GRCh38 for reads sequenced from humans, and
then filter out the aligned sequences. To align reads against a
reference genome we selected: BBMap (BBTools, 2021) (http://
jgi.doe.gov/data-and-tools/bb-tools/), Bowtie2 (Langmead and

Salzberg, 2012), BWA (Li and Durbin, 2009), and HISAT2
(Pertea et al., 2016). We measured the speed of the tools and,
as the source used to generate each read from the
decontamination dataset is known, the quality of the results
using the MCC. The MCC ranges from -1, only false negatives
(FN) and false positives (FP) classifications, to 1, a perfect
classification with only true negatives (TN) and true
positives (TP).

2.3.3 Assembly Tools Benchmark
The assembly step produces contigs, longer DNA sequences
resulting from the overlap of reads. Modern assemblers, such
as MEGAHIT (Li et al., 2016) and MetaSPAdes (Nurk et al.,
2017), use de Bruijn graphs. These assemblers were extensively
benchmarked by the CAMI. Thus, researchers might use
assemblers and submit the results to CAMI, or assess the
results using MetaQUAST (Mikheenko et al., 2016) and the
GSA. To benchmark MEGAHIT and MetaSPAdes, we used
the low, medium, and high complexity datasets from the first
CAMI challenge.

2.3.4 Taxonomic Tools Benchmark
It is possible to assign a taxonomy identifier to a read using
different approaches, such as the use of k-mers or alignments.
BASTA (Kahlke and Ralph, 2019) and Krona (Ondov et al., 2011)
transfer annotations to alignment results. While Kaiju (Menzel
et al., 2016) and Kraken 2 (Wood et al., 2019) perform
classifications using reads as inputs. We applied BASTA and
Krona to the DIAMOND output resulting from the alignment of
this dataset against the NCBI-nr database. DIAMOND, Kraken 2,
and Kaiju indices were built using the NCBI-nr as reference
database. Krona is mainly used for taxonomic results
visualization, but it is possible to use ktClassifyBLAST to
assign taxonomy identifiers to BLAST/DIAMOND results. As
the annotation transfer performed by Krona is simpler than the
performed by BASTA, we used Krona’s MCC as a lower bound
reference for taxonomic classifications based on annotation
transfer.

2.4 Aligner Choice
For the alignment, we selected DIAMOND due to its speed,
accuracy, and adoption in several tools and pipelines. As the
Bowtie2 output is used as the DIAMOND input, we use
SAMtools (Li et al., 2009) to extract the unaligned reads from
the Bowtie2 output. As a protein aligner, the DIAMOND output
might be used for both taxonomic and functional analyses.
Amino acid sequences are more conserved than DNA
sequences when taking into account evolutionary distances
among sequences. Furthermore, homology searches using a
six-frame translation of DNA sequences against protein
databases improve taxonomic and functional results. The
DIAMOND software performs this task by building a double-
index, over the translated reads and the protein database, sorted
lexicographically and traversed linearly to determine matching
seeds. Seeds are amino acid fragments, varying according to the
DIAMOND sensitivity mode used, with more sensitive modes
using more seeds on the matchings. The DIAMOND is used in
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our pipeline to align the sequences after the preprocessing, with
the NCBI-nr as the reference protein database. Then, the protein
identifiers reported in DIAMOND results are used to get a
functional identifier of interest in the functional annotation step.

2.5 Annotation Transfer for Functional
Results
The DIAMOND output contains functional information,
appearing in the results as RefSeq and GenBank IDs due to
the use of NCBI-nr as the protein database. To allow the reuse
of an alignment output to obtain different functional IDs, we
implemented a tool in Python to transfer annotations to
BLAST/DIAMOND alignment results. This tool, named
annotate, creates fast disk storage repositories from custom
plain text dictionaries, filter hits according to user-defined
thresholds, and assigns functional IDs to the best hit possible
from each read. Alignments not meeting thresholds for
e-value, bit-score, percent identity, or alignment length,
are ignored. If a read contains no alignment passing the
thresholds, or none could be mapped, it is assigned to
“Unknown”. Furthermore, it is also possible to omit
unknown mappings from the output or to map all the
alignments. Annotate processes the alignment output
linearly, requiring less time and memory than to create a
new database and perform a new alignment.

2.6 Automating the Analysis and Comparing
With MEGAN 6 CE
The pipeline designed after the benchmarks is composed of the
tools most suited for each step. The pipeline’s execution rules
were detailed using Snakemake, a workflow management system
for scalable and reproducible data analyses. To ease software
acquisition and setup, we created an environment containing all
the pipeline’s tools and dependencies at the Anaconda cloud.
Finally, we used three datasets, D1, D2, and D3, to assess the
pipeline’s results compared to those obtained by MEGAN v6.18.3
CE. The D1 was the dataset created to benchmark the taxonomic
tools. The D2 was created using 10 bacterial sequences as source,
with curated functional information. D1 metadata allows
assessing the taxonomic results, and D2 assesses the functional
results.

We used a phred score threshold of 20 to trim all datasets, the
Ensembl Homo sapiens GRCh38 DNA primary assembly to
identify host sequences, and the NCBI-nr as the reference
database. We preprocessed and aligned the three datasets with
the designed pipeline, submitting the outputs to the taxonomic
and functional analyses using MEGAN 6 CE and MEDUSA. For
MEGAN, the only argument changed was the identity threshold,
set to 80%. As the default minimum percent identity threshold
used by MEGAN is 0%, we changed it to conduct a fair
comparison between both methodologies with more accurate
hits. A percent identity threshold above 70% is frequently used
for this purpose. We choose 80% to achieve higher accuracies in
the results, and we set this value as the default percent identity
threshold used by annotate. We created a dictionary for the

functional analysis performed by our pipeline, mapping GenBank
and RefSeq IDs to GO IDs. It was done using the UniProt ID
mapping file and the R programming language (version 4.0.5).

3 RESULTS

3.1 Trimming Tools Results
The trimming tools benchmark results are depicted in Figure 2.
SOAPnuke was removed from the results for presenting outputs
with a different number of reads when the only parameter change
was the number of cores. AfterQC presented execution times
much slower than the other tools, and as Fastp was developed as a
faster alternative to it, we discarded AfterQC from the benchmark
results. FastQC was benchmarked with only one computing core
as its implementation of parallelism does not reduce the
processing time for a single file. As expected, FastQC was
faster than other tools using one core due to the reduced
number of tasks performed. Fastp is the second-fastest tool
when only one computing core is used and is fast enough
when four computing cores are used. Only Fastp and FastQC
produce visual reports, both containing information from before
and after the processing. The benefits from producing the report
may overcome the low increase in the elapsed time on scenarios
with a larger number of reads. As an all-in-one FASTQ
preprocessor, Fastp has useful features as PE reads merging
and performs more tasks.

3.2 Decontamination Tools Results
Figure 3 shows the elapsed time and MCC from the host
sequences removal tools in the decontamination benchmark.
The datasets used in this benchmark were labeled according to
their composition, with the label b1h3 meaning 25% of bacterial
reads and 75% of human reads. BBMap was the slowest tool on all
scenarios, andHISAT2 was the fastest. As all tools achieved a high
MCC, above 0.99, we inspect the FN and FP counts to distinguish
the performances. Figure 4 shows the FN and FP for SE and PE
reads. Overall, the BWA-MEM algorithm had more FP, and
HISAT2 had more FN. BBMap and Bowtie2 achieved a higher
MCC on the scenarios with fewer human reads, being more
sensitive than BWA and HISAT2 to detect contaminants on these
scenarios.

3.3 Assembly Tools Results
In the assembly benchmark, all tests performed withMetaSPAdes
failed due to memory-related issues. MetaSPAdes 3.15.2 was
unable to allocate the required memory on all runs, and
version 3.13 fails due to a segmentation fault right after
starting the job. MEGAHIT finished all runs successfully and
was chosen to compose the pipeline due to the results fromCAMI
benchmarks (Meyer et al., 2021).

3.4 Taxonomic Tools Results
The taxonomic tools benchmark results are shown in Figure 5.
Kraken 2 ran fast and without errors, but classified only 2129
reads from 507429 (0.42%). We built again the Kraken 2 index
and noticed that only a few identifiers from NCBI-nr were
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mapped. We then used the fix_unmapped script from Kraken
tools, but although the new index correctly mapped almost
all identifiers, no reads were classified (0%). For the tools
that require alignment results, such as Krona and BASTA, we
need to consider the time spent to align the reads. BASTA
requires less space on the disk to store the databases needed
for the analyses, but the runs took more than 20 days and were
aborted. Comparing the classifications performed by Krona and
Kaiju, Kaiju achieved better performance at species and genus
level and runs faster as processes the reads, accepting SE and PE
inputs.

3.5 Comparison Results
General information about the alignment and the analyses
outputs are shown in Supplementary Tables S1–S9. The
metrics resulting from the analyses of both simulated datasets
are shown in Supplementary Tables S10, S11. To compute the
MCC, allowing the functional result comparison, a true positive
was defined as at least one expected GO ID assigned to a read.
MEDUSA outperformed MEGAN in these functional results,
with MEGAN obtaining a negative MCC (-0.22 MEGAN against

0.59 MEDUSA–Supplementary Table S11). Our pipeline
assigned slightly more reads than MEGAN in the taxonomic
analysis (Supplementary Table S2), and was much more efficient
to identify the different species (51% MEGAN against 95%
MEDUSA–Supplementary Table S12) and genus (78%
MEGAN against 99% MEDUSA–Supplementary Table S12)
present in D1 (Figure 6).

4 DISCUSSION

Inspecting the results obtained by the tools benchmarks, and the
comparison between MEGAN and MEDUSA, we outline the
following findings. Fastp, an ultra-fast all-in-one FASTQ
preprocessor, aggregates several useful features, being an
excellent tool for preprocessing. As the DIAMOND aligner
currently supports only SE reads, fastp is used after the host
sequences removal to merge the PE reads. This contributes to
minimizing the number of tools required to run the pipeline,
avoiding a tool for the specific purpose of merging reads, such as
PEAR (Zhang et al., 2014). Besides the implementation in C++,

FIGURE2 | Trimming tools benchmark. Single-end (SE) and paired-end (PE) inputs, containing 1, 5, 10, and 40million reads, were processed by the selected tools.
A phred score threshold of 20 was used for all tools. The “time” Unix command was used to measure the elapsed time, and the times depicted in the panels are the
average of three runs. Panels (A,C), respectively, depict the time for SE and PE inputs using only one thread. Panels (B,D), respectively, depict the time for SE and PE
inputs using four threads.
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FIGURE 3 | Decontamination tools benchmark for time and Matthews Correlation Coefficient. Single-end (SE) and paired-end (PE) inputs, composed by 25%
(b3h1), 50% (b2h2), and 75% (b1h3) of human reads, were processed by the selected tools. The Ensembl Homo sapiens GRCh38 DNA primary assembly version 102
was used as a reference to build the indices. The “time” Unix command was used to measure the elapsed time, and the time depicted in panels (A,C) is the average of
three runs. Panels (B,D), respectively, depict the Matthews Correlation Coefficient (MCC) for SE and PE inputs.
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FIGURE 4 |Decontamination tools misclassification benchmark. Panels (A,C), respectively, depict the false negative (FN) counts for the single-end (SE) and paired-
end (PE) inputs. Panels (B,D), respectively, depict the false positive (FP) counts for the SE and PE inputs.
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fastp runs faster by reading the FASTQ input only once. The
report, saved in HTML and JSON, contains information about
the reads before and after the processing. Bowtie2 obtained a low
misclassification rate in our decontamination benchmark, and a
recent study also chose Bowtie2 as the most suited tool to identify
contaminants (Czajkowski et al., 2019). Kraken 2 might perform
better using a different database, but we used the NCBI-nr as the
reference protein database for all tools to conduct a fair
comparison.

In D1 taxonomic results, the MEDUSA output was more
standardized than the MEGAN output. Kaiju produces an
output containing predetermined taxonomic ranks, defined by
the user, being the following ranks used in our pipeline:
superkingdom, phylum, class, order, family, genus, and
species. The output from MEGAN contains descriptions like
“NCBI” and “cellular organisms”, this counts as a valid
classification but does not help to extract meaningful
information from the results. The output from MEDUSA was
more suited to estimate the correct taxonomic composition at
species and genus levels. Furthermore, the less abundant species
and genus were detected only by MEDUSA.

As the sequences used to create D2 are associated with 281
different GO terms, the criteria to count an annotation as a TP in
the functional result is reasonably achievable. Yet, MEGAN
obtained a negative MCC. In D2 functional results
(Supplementary Tables S13–S18), MEDUSA assigned 303
distinct terms, while MEGAN assigned only 48. Besides,
MEGAN assignments frequently include terms too broad, as
the ontology roots shown in D3 functional results
(Supplementary Tables S19–S23). This excessive presence of
ontology roots hinders the extraction of biological insights. As D3
is a real dataset, we cannot measure the metrics without the
ground truth, but both methodologies agree on the most
abundant descriptions for the taxonomic results
(Supplementary Tables S24–S26).

MEDUSA is a pipeline for shotgun metagenomic data
deployed by the Conda package manager and managed by
Snakemake. The Snakemake rules produce results for the
reads with and without performing the assembly, but users
can easily change this behavior by editing the rules. The
intermediate files stored, that might be further inspected,
are used by Snakemake to skip steps previously done when the

FIGURE 5 | Taxonomic tools benchmark. Krona and BASTA require an alignment output to classify the reads, while Kaiju and Kraken accept Single-end (SE) or
paired-end (PE) inputs. DIAMONDwas used to align the D1 reads, and the NCBI-nr was used as reference to build the indices and databases. The “time”Unix command
was used to measure the elapsed time, and the time depicted in panel (A) is the average of three runs, not taking into account the time needed to build the indices and
databases. Panel (C) depicts the database size in GB, being smaller for transfer annotation tools (Krona and BASTA). Panels (B,D), respectively, depict the
Matthews Correlation Coefficient (MCC) at the species and genus level. BASTA is not depicted in panel (D) as the classification took more than 20 days.
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pipeline is restarted. We also introduce annotate, an
annotation transfer tool for user-built functional
dictionaries. MEDUSA is easy to acquire, set up, and run,
simplifying comprehensive metagenomic analyses.
Advantages over MEGAN 6 CE involve more customizable
thresholds to filter out alignment outputs for functional
analysis, use of fast disk storage dictionaries created from
plain text files and the flexibility to transfer any functional
identifier, a more sensitive taxonomic classification, and fully

automated steps to prepare the inputs for taxonomic and
functional analyses.

As MEDUSA is obtained via the Conda package manager,
additional software can be easily obtained using the Bioconda
channel (Dale et al., 2018) to extend the pipeline. Similarly,
one of the tools used by the pipeline can be replaced by one
installed via Conda that produces a compatible output. To
change the rules used during the pipeline execution, the user
must edit the Snakefile, changing the commands called to run

FIGURE 6 | Reads correctly classified in the taxonomic analyses. True positives compared to the expected at species (A) and genus (C) levels. The proportion
between these values at species (B) and genus levels (D).
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the software. New rules may be created in the Snakefile,
written as Shell Script, and targets may be removed or
included under the rule “all”. By default, our Snakefile has
four targets that are related to taxonomic and functional
outputs, half of them for analysis done with an assembly
of contigs. If the user has no interest in an analysis performed
with assembly, the two lines for the targets related to the
contigs may be commented or deleted. This way, Snakemake
will not perform any rule to create these files, as they are no
more present in the targets.
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