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Kawasaki disease (KD) is an acute febrile childhood vasculitis, associated with the development of coronary
artery abnormalities in 25–30% of untreated patients. The aetiopathogenesis is not well known but it is
accepted that an undefined infectious trigger in genetically predisposed individuals results in the disease. KD
is characterized by an endothelial cell injury, which could be due to abnormal cytokine production and to
generation of cytotoxic antibodies against the endothelial cells. Intravenous immunoglobulin IVIG is an
effective treatment in preventing the occurrence of coronary artery abnormalities in KD. Several mechanisms
may explain the anti-inflammatory effects of IVIG in this disease. They include modification of the cytokine
balance, and alteration on both the differentiation and the function of monocytes/macrophages, neutrophils
and lymphocytes.
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1. Introduction

Kawasaki Disease (KD) is an acute childhood vasculitis that was
first described by Tomasaku Kawasaki in 1967 [1]. KD is characterized
by high fever, rashes, cervical lymphadenopathy, conjunctivitis, oral
enanthema, and erythematous induration of the hands and feet. These
symptoms resolve spontaneously within 1–3 weeks, or soon after
early treatment with intravenous immunoglobulin (IVIG) and aspirin.
Inflammation of medium-sized arteries throughout the body, partic-
ularly of the coronary arteries, can occur during the acute illness and
can result in coronary artery aneurysms in 25–30% of untreated
patients [2,3]. KD is the most common acquired heart disease in
children in developed countries. Although treatment with IVIG is an
effective therapy for KD, not all children respond to it, and its
mechanisms of action remain not fully established [4]. Identification
of the etiology of KD would greatly enhance efforts to develop a
diagnostic test, to improve therapy and to prevent KD. The recent
years have witnessed the emergence of interesting findings in both
etiopathogenesis and therapy of KD. This review will focus on the
immunologic aspects of the KD: aetiopathogenesis and immunomod-
ulatory effects of IVIG.

2. Clinical and biological features of KD

2.1. Clinical features

KD is the most common vasculitis of infancy and the major
complications of this acute febrile vasculitis are the long term cardiac
consequences. While no diagnostic test is available for KD, diagnostic
criteria have been established by the Japanese Ministry of Health
research committee and have been adopted by the American Heart
Association and the American Academy of Pediatrics [5] (Table 1).

Patients with fever at least for 5 days and who present less than 4
of the principal criteria can be diagnosed with KD when coronary
artery abnormalities are detected by 2-dimensional echocardiography
or angiography.

In the presence of ≥4 principal criteria, diagnosis of KD can be
made on day 4 of illness [5]. Coronary artery aneurysms may progress
in the sub-acute phase. In severe cases, KD leads to heart attacks,
coronary artery-aneurysm rupture and/or sudden death [6,7]. 15–20%
of children with KD who are febrile but have less than 4 main features
may still develop coronary artery dilatation and aneurysms. They are
classified as having incomplete KD, a particularly challenging
diagnosis that is more common in infants under 6 months [8,9].
Serial echocardiography, performed at a center experienced in
Table 1
Clinical features of Kawasaki disease.

Fever of at least five days duration
Polymorphous exanthema
Bilateral non-exudative conjunctival injection
Changes in the oral cavity, including strawberry tongue erythematous, fissured lips
and injected pharynx

Changes in the peripheral extremities, including erythema or indurative oedema
and later desquamation

Cervical lymphadenopathy, often unilateral and large (≥1.5 cm)
examining the coronary arteries of children, is needed for patients
with acute KD. For children with an uncomplicated course, echocar-
diography should be repeated at two weeks and six to eight weeks
after diagnosis [5].

2.2. Biological features

Laboratory findings, not specific for KD and shared by other acute
inflammatory febrile diseases, are: leukocytosis with neutrophils and
immature cells, elevated erythrocyte sedimentation rate (ESR),
elevated C-reactive protein (CRP), anemia, abnormal plasma lipids,
hypoalbuminemia, hyponatremia, thrombocytosis after week 1,
sterile pyuria, elevated serum transaminases, elevated serum
gamma glutamyl transpeptidase, pleocytosis of cerebrospinal fluid
and leukocytosis in synovial fluid.

Predictive factors of aneurysms have been identified: male sex, age
b12 months or N8 years, C-reactive protein N200 mg/dl, albumin
b35 g/L, platelet count≤35×1010/L, delay of initiation of IVIG or
lower dose of IVIG, recurrence of KD [10].

3. Aetiopathogenesis

3.1. Etiology

The cause of KD remains unknown. It is generally accepted that an
undefined infectious trigger in a genetically predisposed individual
results in the disease [11–14]. A genetic predisposition is suspected
based on clinical and epidemiologic features. Although KD has been
reported all over the world, the disease is over-expressed among
Asian populations, especially Japanese [15]. The Japanese incidence
(135–200/100,000, 5 years of age) is 10–15 times greater than among
the Caucasians (9–17/100,000, 5 years of age) [16].

In light of an absence of association between KD and specific HLA
types [17,18], Shulman et al. investigated the relationship of the
distribution of immunoglobulin allotypic markers for susceptibility to
KD in Japanese, Japanese-American, and white American populations.
Immunoglobulin allotypes represent another systemof humangenetic
markers. They found that in all populations studied, differences were
observed between patients with KD and race-matched control
subjects. White patients with KD have allotypic markers more closely
resembling those of the Japanese population which has a substantially
higher incidence of KD [11]. Polymorphisms in several immune genes
such as IL-4, chemokine receptor 5, chemokine (C–C motif) ligand 3-
like 1 and inositol phosphate kinase C, have been implicated and are
compatible with an etiology that is probably infectious [19–21].

Clinical features of KD that support an infectious cause include an
abrupt onset of symptoms, a resolution of the illness in 1–3 weeks,
even without treatment and usually without recurrence, the young
age of the group that is affected (most cases present during the first or
second year of life, when susceptibility to most ubiquitous agents is
highest), the winter–spring predominance of cases in non-tropical
climates and the existence of epidemics and clusters of case [22].

Many possible aetiological features of agents have been suggested
that include mercury, Rickettsia-like agent, Propriobacterium acnes,
Rug shampoo, Leptospira spp., Streptococcus sanguis, Retrovirus,



Table 2
Immunologic features of peripheral blood during acute KD.

T lymphocytopenia
Deficiency of suppressor T cells
Increased numbers of activated helper T cells
Decreased numbers of CD4+CD25+ regulatory T cells
Polyclonal B-cell activation
Circulating antibodies against activated endothelial cell antigens
Increased cytokine (IL-1, IL-6, TNF-α) production
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Epstein-Barr virus or cytomegalovirus, toxic shock syndrome toxin 1
and other bacterial toxins, Coronavirus NL-63, Human bocavirus, and
previously unrecognized persistent RNA virus. However, none of the
above aetiological features has been confirmed by subsequent studies
[14,23–34].

The hypothesis that a bacterial toxin causes KD is favored by some
investigators. This theory is based on clinical similarities between KD
and staphylococcal or streptococcal toxin-mediated illnesses, such as
peeling of hands and feet, and strawberry tongue. In addition, in acute
KD, many cytokines are up regulated in the serum of patients and
there is over-representation of particular T-lymphocyte-receptor Vβ
families in the peripheral blood [35,36].

Intracytoplasmic inclusion bodies have been identified in the
ciliated bronchial epithelium of children with acute KD [37]. The
presence of inclusion bodies in inflamed tissues during an acute
illness such as KD is suggestive of an infection that is due to
intracellular pathogens, such as virus [23]. An autoimmune mecha-
nism of KD pathogenesis has also been proposed but the spontaneous
resolution of KD and its generally non-recurring nature make this
theory less plausible [38].

3.2. Immunologic aspects

KD causes a vasculitis, which is the most severe in the medium-
sized arteries but pathological examination reveals that small
arterioles, larger arteries, capillaries and veins are also affected to a
lesser extent. The endothelial cells undergo histological changes
consistent with both endothelial cell activation and endothelial cell
damage. These morphologic features include enlarged endothelial
cells with increased synthetic organelles, increased replication of
endothelial cells, and a marked increase in the adhesion of leukocytes
to the endothelial wall, endothelial cell necrosis and extracellular
fibrin deposition.

Levels of a variety of inflammatory cytokines such as TNF-α, IL-1
and IL-6 are increased in serum during acute KD [39–41]. Peripheral
blood mononuclear cells from patients spontaneously secrete high
levels of TNF-α and IL-1 [42]. The percentage of TNF-positive cases in
KD patients with coronary involvement was higher than that of
patients without coronary involvement. [40]. All these findings
suggest that activation of monocytes/macrophages and TNF-α activity
play important roles in the pathogenesis of KD.

Furthermore, the presence of circulating cytotoxic anti-endothelial
cell antibodies reactive with cytokine-induced activation antigens on
vascular endothelium, has been reported [38,43,44]. Leung et al., have
found that IgG and IgM antibodies in acute KD sera, cause lysis of
endothelial cells stimulated with IL-1 or TNF [45,46]. Thus, there are
circulating cytotoxic anti-endothelial cell antibodies reactive with
cytokine-induced activation antigens on vascular endothelium.

Thanks to these observations, it has been postulated that there are
at least two requirements for endothelial injury in KD: increased
cytokine production, triggered by an unknown etiological agent or
toxin, inducing new endothelial antigens; and the generation of
cytotoxic antibodies directed to these induced endothelial antigens,
possibly related to the polyclonal B-cell activation in this disease.

Infiltrating macrophages, T lymphocytes and cellular components
of the arterial wall, such as myofibroblasts, are important in disease
pathogenesis. They secrete a number of inflammatory mediators,
enzymes and other molecules, such as vascular endothelial growth
factor (VEGF), which contributes to vascular leakage and edema.

Pathological studies have demonstrated transient infiltration of
neutrophils in the very early stage of acute KD before infiltration by
mononuclear cells. Recent observations suggested that nitric oxide
(NO) produced by neutrophils has a role in triggering the early
endothelial dysfunction in KD [47]. Neutrophils in acute KD generate
both NO and reactive oxygen species (ROS) considerably, while NO
production is exclusive in the early stage of KD [48].
Kobayashi et al., have demonstrated that in the acute phase of KD,
the expression of an adhesion molecule CD11b was significantly
increased on polymorphonuclear leucocytes (PMN). In general CD11b
promotes firm attachment of the PMN to the endothelium, which
allows transendothelial migration into inflamed tissues. In addition,
PMN generate large amounts of ROS. Therefore, enhanced expression
of CD11b induced by circulating inflammatory cytokines is likely to
promote adhesion and transendothelial migration of leucocytes in KD
[49]. Several clinical studies have reported that activation of PMNmay
contribute to the severity of KD [50]. In addition, oligoclonal IgA
plasma-cell infiltration has also been demonstrated in the arterial
wall, the upper respiratory tract and the pancreas of patients with
acute KD [51]. The presence of IgA-producing cells within the vascular
wall may indicate an antigen-driven immune response to an etiologic
agent with a respiratory or gastrointestinal portal of entry.

Thymically derived natural CD4+CD25+ Foxp3+ regulatory
T cells (Tregs) suppress a wide variety of effector immune cells
[52,53]. Several diseases have been documented to be secondary to
the loss of the Treg population in mice and human [52,54,55]. Furuno
et al. characterized the involvement of Tregs in KD [56]. Patients with
acute phase KD exhibit a significantly lower frequency of Tregs in their
peripheral blood mononuclear cells (PBMC) as compared to healthy
controls. The immunologic features in peripheral blood during acute
KD are summarized in the Table 2 [57]. Thus, KD is characterized by
marked immune activation associated with cytotoxic anti-endothelial
cell antibodies and increased cytokine production. This could
contribute to the endothelial cell damage that is observed in this
disease.

4. Treatment

4.1. Initial treatment

4.1.1. IVIG
Randomized controlled trials have shown that a single infusion of

2 g/kg of IVIG given 5–10 days after the onset of fever, eliminated
fever in 85–90% of children within 36 h and significantly reduced the
risk of coronary artery aneurysms [58,59]. Two meta-analyses have
demonstrated a dose–response effect, with higher doses given a single
infusion having the greatest efficacy [60]. This therapy should be
instituted within the first 10 days and, if possible, within 7 days of
illness. Clinical studies comparing the efficacy of IVIG products failed
to find a significant difference between commercial preparations of
IVIG. Even when treated with high-dose IVIG within the first 10 days
of illness, 5% of children with KD develop at least transient coronary
artery dilatation and 1% develops giant aneurysms.

4.1.2. Aspirin
Aspirin remains one of themainstays of therapy because of its anti-

inflammatory and anti-thrombotic actions [61]. During the acute
phase of illness, aspirin is administered at anti-inflammatory doses
(60 to 80 mg/kg per day in 4 doses) with IVIG. High-dose aspirin and
IVIG appear to possess an additive anti-inflammatory effect. Practices
regarding the duration of high-dose aspirin administration vary
across institutions. When high-dose aspirin is discontinued, clinicians
begin low-dose aspirin (3–5 mg/kg per day, given as a single dose).
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Low-dose aspirin has an anti-platelet effect and should be continued
until six to eight weeks after disease onset if there are no coronary
artery abnormalities or indefinitely if abnormalities are present.

4.2. Treatment of refractory KD

Approximately ≥10% of patients with KD fails to defervesce with
initial IVIG therapy. Failure to respond usually is defined as persistent
or recrudescent fever ≥36 h after completion of the initial IVIG
infusion.

Abe et al. reported that polycythemia rubra vera 1, a granulocyte
colony-stimulating factor levels may be good biomarker for predicting
response to IVIG in patients with KD [62]. Egami et al. generated a
prediction score of resistance to IVIG [63]. They assigned 1 point for
infants younger than 6 months, before 4 days of illness, platelet
count≤30×1010/L, and CRP≥8 mg/dl. 2 points were assigned for
alanine aminotransferase≥80 IU/L. Using a cut-off point of 3 and
more with this prediction score, they could identify the IVIG-resistant
group with 78% sensitivity and 76% specificity.

Ogata et al. investigated the transcript abundance in the
leukocytes of IVIG-responsive patients (group A) and IVIG-resistant
patients (group B) using a microarray analysis before treatment [64].
The IVIG-responsive (group A) and IVIG-resistant patients (group B)
were predicted before starting the initial treatment using the Egami
scoring system and randomly allocated as a single-IVIG treatment
group (group B1) or as a IVIG-plus-methylprednisolone (IVMP)
combined therapy group (group B2). The transcripts related to IVIG
resistance and to the development of coronary artery lesions, such as
IL1R, IL18R, oncostatin M, suppressor of cytokine signaling-3,
S100A12 protein, carcinoembryonic antigen-related cell adhesion
molecule-1, matrixmetallopeptidase-9, and polycythemia rubra vera-
1, were more abundant in group B patients in comparison with group
A patients.

The risk for coronary artery aneurysms is increased in refractory
KD patients and no controlled clinical trials have established their
optimal management.

Because controlled data are lacking, the relative roles of repeated
doses of IVIG, corticosteroids, TNF-α antagonists [59,65], abciximab,
cytotoxic agents such as methotrexate, cyclophosphamide and
cyclosporine A, and plasma exchange for patients with refractory
KD remain uncertain.

4.2.1. IVIG
The American Heart Association guidelines recommend a further

dose of IVIG, 2 g/kg, in children who remain febrile 36 h after the first
dose of immunoglobulin [5].

4.2.2. Corticosteroids
Studies have shown that corticosteroids reduce fever [66,67]. The

effects of steroids on coronary artery abnormalities are still uncertain.
It is recommended that steroid treatment should be restricted to
children in whom ≥2 infusions of IVIG have not been effective in
alleviating fever and acute inflammation. But recently, Furukawa et al.
suggested that corticosteroids may be used with comparable efficacy
to a second dose of IVIG for children who fail to respond to the first
dose [68]. The most commonly used steroid regimen is intravenous
pulse methyl prednisolone, 30 mg/kg for 2 to 3 h, administered once
daily for 1 to 3 days.

4.2.3. Infliximab (Remicade®)
In one retrospective study of 17 children with IVIG-resistant KD,

infliximab, a humanized monoclonal antibody against TNF-α, was
used successfully at the dose of 5–10 mg/kgwith abrupt defervescence
in 13/16 febrile patients, with no infusion reactions. Twelve patients
had coronary abnormalities before infliximab therapy; four had
transient dilatation that resolved post-infliximab infusion, three had
aneurysms, and five had ectasia [69]. A phase 2 clinical trial including
16 subjects receiving infliximab has demonstrated that this treatment
was safe and well tolerated in patients resistant to IVIG [70].

4.2.4. Abciximab (Reopro®)
Abciximab, a monoclonal platelet glycoprotein IIb/IIIa receptor

inhibitor, has been used to treat patients in the acute or sub-acute
phase of KD who have large coronary aneurysms [71]. Patients who
received abciximab plus standard therapy as comparedwith historical
controls treated with standard therapy alone showed a greater
regression in maximum aneurysm diameter, suggesting that treat-
ment with abciximab might promote vascular remodeling. Prospec-
tive controlled trials are needed.

4.2.5. Cytotoxic agents

4.2.5.1. Methotrexate. Seventeen patients with KD who had persistent
fever or recrudescent fever after treatment with IVIG were given
methotrexate. Low-dose oral methotrexate treatment resulted in
quick resolution of fever and rapid improvment of inflammation
markers without causing any adverse effects [72].

4.2.5.2. Cyclophosphamide. Wallace et al. treated 2 patients resistant to
2 doses of IVIG with intravenous cyclophosphamide and there was no
progression of coronary aneurysms and no death [73].

4.2.5.3. Cyclosporin A. Kuijpers et al. reported in a case report that
cyclosporin A was ineffective in halting the progression of obliterative
panarteritis of a boy with a fatal KD [74].

4.2.6. Plasma exchange
Plasma exchange has been reported in an uncontrolled clinical trial

to be an effective therapy in patients who are refractory to IVIG and to
lower the incidence of coronary artery aneurysms [75]. Because of its
risks, plasma exchange is not generally recommended.

These therapies have been used in small numbers of patients, and
data are too limited for official recommendations.

4.3. Treatment of coronary abnormalities

The acute management of patients with coronary artery abnormal-
ities depends on the extent and severity of the lesions. Although low-
dose aspirin is adequate for patientswithmild disease (dilatation, small,
stable aneurysm), additional therapy such as anti-platelet agents and
heparin may be required for patients withmore severe disease because
of the increased risk of thrombosis from the abnormal blood flow
through coronary aneurysms.Most patientswith largeor giant coronary
artery aneurysms (internal diameter greater than 8 mm) are main-
tained on aspirin (or clopidogrel) and warfarin to prevent thrombosis
within the aneurysm and myocardial infarction [5].

5. Mechanisms of action of IVIG

IVIG is a polyspecific immunoglobulin IgG preparation purified
from plasma pools of several thousand healthy donors [76–78]. IVIG is
a safe preparation with no long term side effects [76,79]. IVIG was
initially used as substitutive treatment for patients with immunode-
ficiencies and subsequently used for treatment of a wide range of
autoimmune and systemic inflammatory diseases [59,80–84].

In KD, IVIG was first reported by Furusho et al. in 1984 to
effectively reduce the incidence of coronary artery lesions [85].
Although treatment with IVIG is an effective therapy for KD, their
precise mechanisms of action are not fully understood. Clinically IVIG
reduces the prevalence of coronary artery abnormalities by reducing
the tissue inflammation and the immune activation. Some potential



Fig. 1. A schematic representation of the proposed mechanisms of action of IVIG in Kawasaki disease.
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mechanisms of action of IVIG are summarized in Fig. 1 and Table 3
[76–78,86–89].

5.1. Modulation of endothelial cell function

We have shown that IVIG inhibits endothelial cell proliferation in a
dose- and time-dependant manner. IVIG has also down-regulated
TNF-α or IL-1β-induced expression ofmRNAencodingmajor adhesion
molecules (ICAM-1 and VCAM-1), chemokines (MCP-1, M-CSF, GM-
CSF), and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), which
are significantly implicated in the leukocyte recruitment observed in
KD [90]. As the endothelium plays a central role in the immunopa-
thology of KD, it is likely that IVIG exerts its beneficial effect through
the modulation of endothelial cell functions.

5.2. Inhibition of cell adhesion

Integrins are a major group of adhesion molecules that serve both
adherence and signaling functions. Integrins play a critical role in the
cell differentiation and embryogenic development, inflammation and
immune responses. Many of the integrins share affinity towards the
RGD recognition sequence (the Arg-Gly-Asp motif) in their extracel-
Table 3
Proposed mechanisms of action of IVIG in Kawasaki disease.

Modulation of endothelial cell functions
Inhibition of cell adhesion
Anti-idiotypic inhibition of anti-endothelial antibodies
Anti-NGF effect
Reduction of inflammatory cytokine production
Inhibition of cytokine-induced endothelial cell activation
Fc receptor blockade
Suppression of antibody synthesis
Reduction of production of NO by neutrophils
Augmentation of T-cell suppressor activity
Neutralization of bacterial superantigens or other etiologic agents
lular matrix ligand and are able to discriminate between different
RGD-containing proteins. We have shown that IVIG contains
antibodies that bind to human RGD-containing integrin ligands [91].
The biological relevance of anti-RGD antibodies in IVIG was
demonstrated by their ability to inhibit B-lymphocyte adhesion to
fibronectin. The presence of natural IgG antibodies to the RGD motif
may contribute to the immunomodulatory and anti-inflammatory
effects of IVIG in KD.
5.3. Anti-idiotypic inhibition of endothelial antibodies

IVIG contains anti-idiotypic antibodies that can directly inhibit the
binding of several disease-associated autoantibodies to their targets.
For instance, IVIG has been shown to contain anti-idiotypic antibodies
that neutralize anti-factor VIII antibodies in patients with hemophilia,
ANCA in vasculitis, anti-acetylcholine receptor autoantibodies in
patients with myastheneia gravis [76]. Nevertheless, in 1989, Leung
et al. demonstrated that IVIG does not reduce cytotoxic antibody
against endothelial cells in six patients tested [42]. Furthermore,
studies of blood and skin biopsies obtained from acute KS patients,
prior to and after treatment with IVIG indicate that IVIG treatment
does not reduce serum cytotoxic anti-endothelial cell antibody
activity [42].
5.4. Effect of anti-NGF antibodies

Nerve growth factor (NGF), a neurotrophin, is a regulator of
development, survival and function of neuronal and non-neuronal
cells. It may play a role in many inflammatory diseases due to its
ability to stimulate the release of inflammatory neuropeptides. During
the acute phase of KD, serum levels of NGF are elevated [92]. The
studies of Warrington et al. showed that anti-NGF antibodies are
present in IVIG and the authors have suggested that the therapeutic
effect of IVIG may lie in the anti-NGF component of the IVIG [93].
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5.5. Reduction of inflammatory cytokine production

IVIG can modulate the production of cytokines to exert anti-
inflammatory effects [76]. In responsive patients, the serum levels of
pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) are decreased
after IVIG therapy [42,94]. These findings indicate that the effects of
IVIG in KD are mediated mainly by robust suppression of activated
immune cells in the peripheral circulation. IL-6 may play a role in the
acute systemic inflammatory response of KD and the majority of
symptoms of this disease are attenuated by the decrease in IL-6 with
IVIG therapy [94]. Using a murinemodel of KD, Lau et al. have recently
shown that IVIG can inhibit lymphocyte activation and production of
TNF-α [95]. But they have also shown that IVIG has no effect on TNF-
α-mediated matrix metalloproteinase 9 (MMP-9) activity. In this
murine model of KD, TNF-α-mediated MMP-9 activity has a critical
role in the development of coronary artery elastin breakdown.

5.6. Modulation of monocytes and macrophages

Ichiyama et al. demonstrated that IVIG inhibits TNF-α-induced NF-
κB activation inmonocytes/macrophages [96]. NF-κB is a transcription
factor for genes that encode pro-inflammatory cytokines, chemokines
and adhesion molecules that mediate inflammation.

By examining gene expression profiles of PBMC and purified
monocytes from patients with acute KD, before and after IVIG therapy,
Abe et al. inferred that IVIG suppresses an array of immune activation
genes in monocytes, including activating FcγRs and the S100A8/A9
heterocomplex (this complex has been shown to enhance monocyte
adhesion to endothelial cells and to cause neutrophil chemotaxis).
The expression of FcγRI and FcγRIII on monocytes were reduced
following IVIG therapy [96,97]. Interestingly, it has been demonstrat-
ed that IVIG therapy in patients with KD did not increase the
expression of the inhibitory Fc receptor FcγRIIB in peripheral blood
CD14+ monocytes/macrophages during the acute stage [98].

5.7. Reduction of production of NO by neutrophils

Takatsuki et al. evaluated the oxidative stress during acute phase
of KD by measuring urinary 8-iso-prostaglandin F2α (8-iso-PG).
Indeed, measurement of the urinary excretion of 8-iso-PG has been
shown to reflect enhanced oxidative stress. They have demonstrated
that IVIG reduces vascular oxidative stress in patients with KD [99].
The amount of NO produced by neutrophils decreased after IVIG
treatment, while there was no significant change in ROS production
[48]. This is important because NO has a role in triggering the early
endothelial dysfunction in KD [47].

5.8. Regulation of T and B cells

Leung et al. shown that IVIG treatment in KD causes a significant
reduction in the number of antibody-producing B cells [100]. The
authors have further reported that IVIG leads to a significant increase
in circulating suppressor T cells and a significant reduction of
activated helper T cells [100].

6. Conclusion

KD is an important cause of fever in young children and is a
common cause of acquired heart disease. It is characterized by
immune activation and increased cytokine production. Recent
observations have allowed a better understanding of the pathogenic
events: KD could be an infectious disease in genetically predisposed
individuals. By determining the causative agent, we could improve
diagnosis, therapy and prevention of KD. IVIG reduces the prevalence
of coronary artery abnormalities by reducing the immune activation.
Further clarification of the mechanisms of action of IVIG in KD should
provide insights into the pathogenesis and/or the etiology and help
conceiving more targeted therapeutic strategies of this disorder.

Take-home messages

• Kawasaki disease is a pediatric vasculitis associated with the
development of coronary artery abnormalities in 25–30% of untreated
patients.

• Epidemiological and immunological features suggest the role in the
pathogenesis of KD of an intracellular pathogen such a virus in a
genetically susceptible host.

• The endothelial injury in KD is due to increased cytokine production
and the generation of cytotoxic antibodies against the endothelial
cells.

• IVIG is the mainstay of treatment of KD, and has markedly reduced
the incidence of coronary artery abnormalities.

• Ten percent of patients with KD fail to defervesce with initial IVIG
therapy.

• The mode of action of IVIG in KD is not fully understood although
several mutually non-exclusive mechanisms have been proposed:
they involve effect on endothelial cells, macrophages and monocytes,
neutrophils and T and B cells, expression of adhesion molecules and
cytokine production.
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