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Abstract: Modern composite materials based on non-metallic continuous fibres are increasingly used
in civil engineering to strengthen building structures. In the strengthening of reinforced concrete (RC)
structures, the utilisation of externally bonded fibre-reinforced polymer (FRP) composites is only up
to 35% because of the pilling-off failure mechanism. This problem can be solved using pre-tensioned
composite laminates. Due to more complex behaviour, the strengthening of structures by means of
prestressing technology needs a careful design approach and a full understanding of the behaviour
of both the materials and elements. The advantages and risks of the presented technology, which
may determine the success of the entire project, will be highlighted in the paper. The possibility of
using a flexible adhesive layer in carbon fibre reinforced polymer (CFRP) strengthening applications
for flexural strengthening of RC elements, as an innovative solution in civil engineering, will also be
presented. Parallel introduction of the flexible adhesive layer (made of polyurethane masses) and
a traditional epoxy adhesive layer in one strengthening system was investigated in the laboratory
tests. This solution was used for the repair and protection of a previously damaged RC beam against
brittle failure.

Keywords: FRP; adhesives; material properties; strengthening; anchorages; galvanic corrosion

1. Introduction

The issue of the sustainability, durability, and safety of a building structure is important
at each stage of its life cycle. It is important to emphasise the role of these aspects during
the planning, design, and execution of repairs and strengthening of existing civil and
engineering structures. Since corrosion is one of the main factors affecting the durability of
concrete building structures, especially those exposed to harmful environmental influences,
for many years there has been a desire to find material and construction solutions that are
resistant to corrosion and at the same time easy to use. When these solutions appear, they
often become more widely used without deeper understanding.

In the 1980s, fibre-reinforced polymers (FRPs) based on non-metallic continuous
fibres were first applied in civil engineering. Already since then, intensive scientific
research began, recognising the advantages and disadvantages of this material—pioneering
experimental research in this field was conducted by U. Meier at Empa—Swiss Federal
Laboratories for Materials Science and Technology [1]. Shortly thereafter, numerous tests
were carried out in many laboratories all over the world [2–8], e.g., at the Technical
University of Lodz in Poland [9].

In general, strengthening with FRP composites significantly contributed to improving
the flexural and shear capacity and increasing the fatigue life of structural members [10].
Practically until now, efforts are being made to avoid premature peeling off products made
of this outstanding but also expensive material [11], e.g., externally bonded reinforcement
on grooves (EBROG) and externally bonded reinforcement in grooves (EBRIG) bonding
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technique [12,13] or mechanical anchorage application [14]—these solutions allowed for
some improvement in the efficiency of externally bonded FRPs.

The use of the FRP composites for prestressing building structures has been started
from the mid-1990s of the 20th century. Initially, only prestressing tendons made of carbon
or aramid fibres were applied for structural strengthening, and after a few years, carbon
fibre reinforced polymer (CFRP) strips have also been used for prestressing. Nowadays,
on the market, there are several, significantly differing, anchoring systems for the pre-
tensioned CFRP laminates which allowed to significantly increase the utilisation of the
material used. This technology of strengthening was first applied in Gomadingen, Germany,
in October 1996 for Lauter Bridge [15], and the first application in Poland of strengthening
of a large-area roof of an existing industrial building by means of prestressing with CFRP
strips appeared in 2006 [16].

The use of a flexible adhesive layer in CFRP applications for flexural strengthening
of RC elements is an innovative solution for the safety improvement of the repaired
structure [17–20]. Parallel use of the flexible adhesive layer (made of very low stiffness
polyurethane masses) and a typical epoxy resin adhesive in one strengthening system
seems to be the desired solution, especially for structures that have to be protected against
the brittle failure arising, e.g., as a result of sudden peeling off of the FRP material.

2. Summary of Characteristics of FRP Materials

Materials based on carbon, aramid, glass, or basalt fibres are innovative construction
composites and they are increasingly used in civil engineering nowadays. The ongoing
effort is to find other cheaper, more easily available, and, at the same time, durable and
sufficiently robust types of fibres that can be used in FRPs used in civil engineering.
Increasingly favourable are organic natural fibres such as bamboo, flax, hemp, jute, sisal,
and coir fibres [21].

The majority of those fibres have a tensile strength noticeably greater than the strength
of reinforcing steel. Since they are non-metallic fibres, they can be considered as high
resistance to corrosion material. Their density is more than a few times smaller compared
to steel. Moreover, glass and carbon fibres are resistant to UV rays, while aramid fibres
have some interaction with this radiation [22]. On the other hand, most types of glass fibres
are not resistant to an alkaline environment which can be a problem when applied directly
to concrete.

Matrix in composites is usually made of epoxy resins, sometimes polyester and vinyl
ester resins. The resistance of resins to the impact of chloride ions is very good, making
that the FRP composites are resistant to de-icing salts. FRP materials are created by
embedding a very large number of non-metallic fibres in a matrix which allows for even
distribution of the tensile force on all the fibres. It has virtually no influence on the tensile
strength of the FRP material, whereas it determines the shear and compression capacity
of the composite. In addition, the matrix protects the fibres from mechanical damage
and unfavourable environmental influences. Comparison of the estimated properties
of most popular composite materials made on glass fibres (GFRP), basalt fibres (BFRP),
aramid fibres (AFRP), or carbon fibres (CFRP), compiled from a variety of manufacturer’s
catalogues and literature sources [22–25], is shown in Table 1.

Table 1. The basic properties of composite materials.

Material Property GFRP BFRP AFRP CFRP

Density [kg/m3] 2100 2600 1300 1650
Tensile Strength [MPa] 1000–1500 850–1550 1500–2500 1200–3700

Tensile Elastic Modulus [GPa] 40–50 30–90 40–120 120–580
Thermal Conductivity [W/m·K] 1 0.02 0.8 1.4

Coefficient of Linear Thermal Expansion [1/K] 10−5 4 × 10−6 5 × 10−6 0.5 × 10−6
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Laminates in the form of long, straight portions of the strips are obtained by pultrusion.
For this purpose, collimated continuous fibres are pulled through the hot fluidised resin
and then after removal of the excess of resin pass through the forming mould. Then, under
appropriate temperature and pressure conditions, the matrix is cured [22].

The time-dependent properties of composite materials have an important influence
on the durability of structural strengthening, particularly in the case of pre-tensioned lami-
nates. The change in the FRP composite behaviour over time is a result of the rheological
properties of each of the constituent materials and the changes occurring in the contact
zone between these materials (adhesive bonding). Table 2 shows the rheological properties
of the most commonly used composite materials given by Borosnyói and Balázs [26]. The
approximate values of the long-term tensile strength, taking into account the rheological
phenomena occurring in a period of 100 years, are also shown.

Table 2. The rheological properties of composite materials [26].

Material Property GFRP AFRP CFRP

Strain due to Creep [‰] 3.0–10.0 1.5–10.0 <0.1
Relaxation [%] 1.8–2.0 5.0–10.0 0.5–1.0

Long-term Tensile Strength (0.4 ÷ 0.7) fLu (0.5 ÷ 0.7) fLu >0.9 fLu

The most common adhesives used for FRP applications are materials based on the
same resins that were used as FRP composite matrices. Epoxy resin adhesives, which are
the most widely used, are relatively stiff. They have high shear and tensile strength (up to
30 MPa), but they are characterised by a low range of ultimate strain (usually under 4%),
and thus are inappropriate in applications in which high deformability exists.

An alternative to the use of epoxy resins is using polymeric flexible adhesives. These
materials made of polyurethane (PU) mass are elastomeric and have a tensile strength
of only a few MPa but a gigantic deformation range. Adhesive bonds made of PU have
a higher ductility and strain energy than epoxy resins, which can be measured by the
area under the stress–strain curve [27]. The basic material properties of epoxy resins and
polyurethane adhesives are shown in Table 3.

Table 3. The basic material properties of epoxy resins and polyurethane adhesives.

Material Type
Tensile

Strength
[MPa]

Deformability
Limit [%]

Tensile
Elastic

Modulus
[MPa]

Density
[kg/m3]

Sikadur-30 Epoxy Resins 20–29 0.3 11,200 1600
Sikadur-330 30 0.9 4500 1330

PT
Polyurethane

Adhesives

20 15 700 1080
PS 2.5 40 18 1450
PM 1.4 110 4 970

PSM 2.2 80 6 860

Another difference is the behaviour of adhesives at elevated temperatures, which is
often important in industrial facilities. Resin-based adhesives show a decrease in a tensile
elastic modulus of about 90% already at 60 ◦C and a decrease of as much as 99% at 100 ◦C.
On the other hand, polymer flexible adhesives at 100 ◦C show a decrease in a tensile elastic
modulus only of about 17% for rigid polymers (PS, PT—see Table 3) and 13% for soft
polymers (PM, PSM—see Table 3). This acknowledges the polyurethane adhesives can
be used even at elevated temperatures. Table 4 and Figure 1 present the tensile elastic
modulus change observed at various temperatures.
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Table 4. The tensile elastic modulus (MPa) of the adhesives in a 20–100 ◦C range [28].

Temperature [◦C] 20 40 60 80 100

Sikadur-30 9410 7410 942 107 85
Sikadur-330 3760 3400 194 62 46

PT 541 519 499 478 454
PS 19.80 19.23 18.62 17.33 16.29
PM 2.97 2.86 2.75 2.65 2.55

PSM 4.43 4.24 4.07 3.91 3.89

Figure 1. The tensile elastic modulus degradation in elevated temperatures (compare—Table 4).

Polymers are viscoelastic materials, therefore their stress–strain curve is contingent
on the speed at which the material is deformed, which is used to reduce dynamic actions
in structures [29]. In tension, an increase in the deformation velocity increases the limit
deformability of the PM polymer and its strength and stiffness. In compression, an increase
in stiffness of the PM polymer is observed as the deformation speed increases.

The durability of building materials during their lifetime is one of the most important
issues [30]. PM polymer was tested in this respect during the tests in the accelerated ageing
chamber. Moreover, its behaviour was observed in conditions of natural exposure to envi-
ronmental and chemical factors at the Balice Airport [31]. This material was also tested for
60 days using an accelerated ageing chamber in accordance with the American Society for
Testing and Materials ASTM G154a standard, which allowed us to simulate the interaction
of environmental factors for 3–5 years [32]. The optical comparison of PM polymer before
and after ageing showed differences in appearance but the material degradation is superficial
and is only significant for thin polymer layers exposed to environmental exposure, while it is
insignificant for the bulk of the polymer. The tensile stress reduction factor after ageing was
found as 0.75. At compression, the effect of ageing was small because the surface degradation
affected a much larger section area.

In the case of high deformation under live loads (e.g., thermal), the flexible joint
polymer significantly reduces the amount of stress under cyclic loads. This is the so-called
Mullin effect, which is characterised by the reduction of stress in the polymer during the
first several load cycles and caused by the reconstruction of the internal structure of the
polymer. As with the relaxation phenomenon, the degree of stress reduction depends on
the level of initial deformation during cyclic loading—the greater the strain, the greater the
degree of stress reduction.
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3. Increase in the Strengthening Effectiveness by Using Pre-Tensioned FRPs

Due to composites’ expedient properties, the high potential in pre-tensioned FRPs
application is clearly visible. Moreover, high corrosion resistance, high strength, and
stiffness-to-weight ratio, high energy absorption, and very good fatigue resistance are also
highly important in structural strengthening. Pre-tensioned FRPs can control structural
deterioration that occurs over time and sustain the impacts of vehicles much better than
prestressing steel. Moreover, seismic upgrading and repurposing of the structure are easily
conducted with these materials [10,33–36].

The application of pre-tensioned composite laminates enables the strengthening execu-
tion almost without the structure dimensions or self-weight change. However, the bearing
capacity of bent or tensile members is significantly improved. Moreover, the serviceability
limit states of the strengthened structure are improved by decreasing the deflection and
cracks width (completely closing the cracks in some cases). Therefore, structure durability
is enhanced. In the case of pre-tensioned laminates, preparation of the concrete surface
is not crucial (in contrast to the passive FRP strengthening) since the prestressing force
is transmitted mainly through the special anchorages. In addition, the unbonded pre-
tensioned strips application is also feasible. Another advantage of this technique is the
fact that FRPs are active reinforcement and can carry loads immediately after their pre-
tensioning (without the necessity of occurrence of the further structure strains). Moreover,
the degree of FRPs utilisation is much higher comparing to passive bonded strips.

Aramid fibre-based composites are very good under both static and dynamic loads.
According to Deng and Xiao [37], AFRP proves to perform very well in strengthening
structures subjected to cyclic loading by prestressing. It also possesses stronger protection
against high temperature, corrosion, and adverse environmental effects compared to
prestressing steel. However, AFRP has some less significant disadvantages—according to
Kurihashi et al. [38] they have poorer behaviour in acidic and alkaline media, which CFRP
materials can more effectively resist.

Glass fibre composites are unfortunately characterised by a relatively low modulus of
elasticity, which makes the utilisation of GFRP material in the strengthening of reinforced
concrete structures very limited. The knowledge about the possibility of strengthening
building structures with initially pre-tensioned GFRP is still quite minimal. Research in
this area was conducted by Lin et al. [39] and it has shown that pre-tensioned GFRP can be
an effective solution for increasing the load-carrying capacity of reinforced concrete beams.

There is a significant decrease in both AFRP and GFRP in their tensile strength when
subjected to prolonged constant loading, while many studies have shown that CFRP is
much less sensitive under the same load conditions.

In general, pre-tensioned CFRPs are appropriate in cases in which strength, stiffness,
lower weight, and fatigue are critical issues [40]. Based on Aslam et al. [41], the key benefits
of post-tensioning with CFRP are its lightweight, extremely high tensile strength, high
corrosion resistance, excellent rheological properties, electromagnetic neutrality, fast and
simple construction, and low operating cost. It should also be mentioned that during
carbon fibre production, there is an ability to modify the elastic modulus in a very wide
range, which can be an advantage in many applications. Moreover, the application of
hybrid FRP (e.g., carbon-glass) is feasible [42].

3.1. Prestressing Systems for CFRP Strips

The crucial aspect of strengthening reinforced structures with externally bonded FRP
is the peeling-off mechanism. The concentration of shear and normal stresses follows at
the ends of the laminate bonded to the concrete surface. As a result, material detachment
occurs. To prevent this type of failure mechanism in the case of pre-tensioned FRP laminate,
several methods of strip anchoring have been developed so far [43,44], which include both
ideas with gradual reduction of prestressing force along the length of the strip and those
using mechanical anchoring.
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The following sub-sections describe several systems which enable structural strength-
ening by CFRP laminates prestressing.

3.1.1. Anchoring System Using Specially Formed Polymer Heads

Schwegler and Breset propose a ‘StressHead’ system to enable anchoring strips pre-
stressed up to the force of 220 kN each (laminate deformation of 9.5‰) [45]. A special
reinforced polymer head is made at the end of the laminate. It has a length of 110 mm and
an elliptical cross section 80 mm × 60 mm in axial dimensions. StressHeads are fixed on
massive steel anchorages fastened to the reinforced concrete structure by Ø100 mm steel
pin. Figure 2a shows a model of a passive (fixed) anchorage, and Figure 2b shows a model
of an active (moveable) anchorage of the strip. Either adhesive bonded or unbonded strips
are applicable in this prestressing system.

Figure 2. (a) StressHead passive anchorage and (b) StressHead active anchorage.

The disadvantage of this technology is the requirement of prefabricated polymeric
heads on both ends of the strip of designed length. Moreover, drilled deep holes with a
large diameter are necessary to fix the anchorage. This may not be possible in the case
of many strengthened structures. It should be noted, however, that the durability and
corrosion resistance provided by this system is the same for the strip and the anchor head.

3.1.2. Anchoring System Using Steel Clamping Jaws

In these systems, prestressed CFRP strips are fixed in the special steel jaw anchors. In
addition, composite laminates are bonded to the strengthened structure over the entire
length. Various types of these systems are available over the world (e.g., LEOBA, Polish
systems SIKA and Research Institute of Roads and Bridges in Poland (IBDiM)).

LEOBA anchorage system, described by Andrä et al. [46], consists of an anchor plate
fixed to the strengthened structure and the pressure jaw to anchor the pre-tensioned strip
with the bolts. During the prestressing of the structure, additional jaws are provided to fix
the strip end on the active anchorage side. The retaining block set directly behind the active
anchorage is tightened to the steel anchor plate which is fixed in the structure. The main
advantage of the LEOBA system is the possibility of using a very small-sized hydraulic
device to pre-tension the strip.

SIKA and IBDiM system, developed by Łagoda [47], is a certain modification of the
LEOBA based on the gradually tensioned and sequentially anchored strip. Four independent
jaws form an anchorage to fix the strip. As a result, the prestressing force is gradually
decreasing at the anchorage length.

A transverse and longitudinal cross-section of the anchorage designed for two CFRP
tendons is shown in Figure 3 [48]. Laminates’ anchorage is realised by their pressing with



Materials 2021, 14, 1387 7 of 17

the blocks ‘C’ through the intermediate plate ‘B’ to anchorage basement ‘A’. Elements ‘C’
are appropriately shaped in order to evoke the uniform pressure distribution along the
whole length of the tape. Pressure is produced by M16 bolts screwing with a dynamometric
key. Each tendon is gradually tensioned and fixed in sequences (in four stages) to the
live anchorage from the active side and to the fixed anchorage from the passive side.
After the implementation of the required value of prestressing force, the tendon is finally
mounted from the active side to the fixed anchorage and tensioning jaws (live anchorage)
are dismounted. Disassembly of tensioning jaws took place in a specified sequence to
reduce gradually the tape pressure. A view of live anchorage during the tensioning process
for the first tendon is presented in Figure 4.

Figure 3. (a) Transverse and (b) longitudinal cross-section of fixed anchor for two tendons.

Figure 4. View of live anchorage.

3.1.3. Anchoring System of Screw Fixing Prefabricated Tendon to the Element

An example of this type of solution is the NEOXE Company (Warsaw, Poland) an-
chorage system, in which the composite laminate is anchored in prefabricated components,
according to Siwowski et al. [49,50]. The composite is glued between steel sheets using
epoxy resin. Moreover, to enhance the adhesive layer, metal mechanical fasteners connect
the laminate to the anchor plates. There are two types of anchorages—N-type with hybrid
bonded/riveted joints and S-type with bonded/bolted joints. In this system, the CFRP strip
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with determined length is delivered on-site as ready-to-install, i.e., with two assembled
steel anchorages (active and passive one) on each strip ends—see Figure 5.

Figure 5. The NEOXE anchoring system: (a) active side and (b) passive side [50].

3.1.4. Non-Mechanical Anchorage Systems

The world’s first system for prestressing CFRP strips without mechanical anchorages
was developed in EMPA Research Laboratory in Zurich, according to Kotynia et al. [51].
The prestressing force is transferred from the strips to the structure only by the adhesive
layer made of epoxy resin. A gradual decrease in the prestressing force over the strip’s
length is provided to reduce the shear stress at the composite ends. The prestressing force
in strengthened regions varies from the maximum value in the half-length of the strip to
zero at the ends of the strip. As a result, delamination of the strip’s end is prevented.

Swedish Tenroc Technologies company developed another technique of the application
of pre-tensioned CFRP strips with non-mechanical anchors. The system is based on a multi-
segment tensioning device to apply gradually increased prestressing force.

To speed up the application of those systems, accelerated curing of the adhesive
layer can be achieved through heating. Electro-conductive properties of the carbon fibres
embedded in the CFRP strip can be utilised as a result of the flow of electrical current in the
strip and the temperature of the composite, and then the epoxy adhesive is significantly
increased. Therefore, the curing time of the epoxy adhesive may be reduced using this
technology from several days to about two hours.

3.2. Benefits and Drawbacks of Using FRP Prestressing Systems

Although the number of tests on structures strengthened with pre-tensioned CFRP
strips (Kałuża and Ajdukiewicz [52], Young-Chan et al. [53], Kotynia et al. [54]) is much
smaller than those performed for passive strengthening (externally bonded non-stressed
FRP composites), it can already be stated that the developed laminate anchoring technolo-
gies give a very satisfactory effect. Numerous tests have shown that 100% utilisation of
the FRP material is possible and that the increase of the obtained ultimate load-bearing
capacity exceeds 150%.

Observing the work of the FRP material, it is important to highlight much bigger
elastic elongation than conventionally used prestressing steel (~0.2% for steel compared to
~1.6% for CFRP). Due to that circumstance, in the tensioned steel tendon exposed to wedges
slippage in the anchorage (or other similar effects), which decreases its initial elongation
for few millimetres, a significant percentage of prestressing force is lost. However, in the
composite tendon loss of prestressing force would be smaller (because the FRPs have a
smaller modulus of elasticity than steel). This is also extremely important in conditions
where it is necessary to consider the accidental loading, e.g., in structures that exist in seis-
mic areas or those subjected to impact loads. When CFRP strips with an initial elongation
of 0.9% (which could be equivalent to force 220 kN; this is the same as in monostrand steel
tendon) are used, the prestressing system acts such as ‘a rubber band’ and each change in
strain is within the elastic range of the material behaviour [55]. Thus, even with large cyclic
strain changes on the composite tendon, the structure can still safely handle the load. On



Materials 2021, 14, 1387 9 of 17

the other hand, in the case of a steel tendon it could already become yielded (resulting in
irreversible deformations), and the strengthened structure can be damaged.

In addition to the great difficulty in the proper implementation of the thrust and
anchoring of FRP tendons (which are very sensitive to even small eccentricities and local
stress concentrations), one of the major disadvantages of this technology may be galvanic
corrosion that occurs when two different materials are in direct electrical contact. The
mechanism of galvanic corrosion of the anode steel, when coupled with the CFRP cathode,
was studied in [56–58] and explained in [55].

Corrosion prevention in composite strips’ anchorages can involve non-conductive,
suitable separation of the FRP laminates from the steel components. The easiest way
would be to use epoxy resin as an adhesive for the CFRP strengthening, but according
to Tavakkolizadeh and Saadatmanesh [56], this material does not provide appropriate
durability because it may not guarantee a needed water-tightness, especially in case of
prolonged exposure to salt solutions. Another problem is that in many anchorage systems,
as a result of the mechanical joining of the CFRP strips (by means of bolts, screws, or rivets),
the resin coating covering the carbon fibres can be locally damaged, thus establishing
physical contact of the carbon fibre to the steel. This danger is particularly apparent
in the solution of the NEOXE anchoring system, in which the mechanical fasteners are
going through the CFRP laminate (see Figure 5). An intermediate layer of GFRP sheet can
also serve as a baffle between the steel and CFRP layer but, according to Hollaway and
Cadei [59], this additional layer is very difficult to use from the practical point of view.

4. Improvement of Structure Safety by Using Flexible Adhesives

Repair and/or strengthening damaged concrete elements using FRP composites while
ensuring simultaneously enough safety margin of the strengthened structure is a difficult
task. When the structure is strengthened by CFRP laminates bonded on stiff adhesive layers
made of epoxy resins, the advantages of CFRP materials are not fully utilised because of the
low tensile and shear surface strength of the concrete element’s surface. Shear and normal
interfacial stress peaks in the stiff bond system (concrete–epoxy) occur at the end of CFRP
laminates or in discontinuous areas such as the crack regions. Local stress concentrations
in the adhesive layer, and subsequently in the FRP laminate, are arising at the locations of
cracks in the concrete element. In the case of rigid, relatively brittle, epoxy adhesives, even
small stress concentrations can cause cracking, while soft polymeric adhesives have the
ability to redistribute these stress concentrations and bridge the crack. The notch effect that
appears after cracking of the RC element in both the adhesive layer and laminate is shown
in Figure 6.

Figure 6. Local damages in a beam strengthened with carbon fibre reinforced polymer (CFRP) laminate
bonded on epoxy resin adhesive generating high-stress concentrations in the strengthening system [17].
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The possibility of using a flexible adhesive layer in CFRP strengthening applications
for flexural strengthening of reinforced concrete elements as an innovative solution in
civil engineering is presented in this section. It is obvious that regardless of the type of
adhesive layer (hard epoxy resins or soft polymers) the failure of the strengthening system
along the concrete surface can be initiated by the surface micro-damages (micro-cracks
and cavities in the concrete structure). Therefore, proper preliminary preparation of the
concrete surface always plays a fundamental role when using this type of strengthening.
The parallel introduction of a flexible adhesive layer (made of polyurethane masses) and
a traditional epoxy adhesive layer in one strengthening system was investigated in the
presented research. This is one of the applications of the flexible joint method, which
is developed at the Cracow University of Technology, uses PU polymers as adhesives
in bonding FRP composites to concrete and masonry substrates and is registered in
the Polish Patent Department as No. P-368173. The flexibility of the adhesive layer
significantly increases the ductility of the structure. This solution was used for the repair
and strengthening of an RC beam, severely damaged by fatigue load. The objective of this
study was to explain the advantages of polymer flexible adhesives as the system fixing
FRP composites to structural elements.

Test of Parallel Use of Stiff and Flexible Adhesives for Increased Safety of Strengthened Structure

The object of the test was a beam damaged as a result of fatigue load and repaired in
order to ensure temporary safety of use (e.g., until a new structure is made).

The tested RC beam (Figure 7) was originally made of the concrete C35/45 grade and
reinforced with two Ø 22 mm bars of the steel class AII (design yield strength fyd = 310 MPa)
at the bottom and two Ø 12 mm of the steel class AIIIN (fyd = 420 MPa) at the top. The
beam was damaged after 696273 cycles of load (2 Hz frequency, σmax = 0.7 fy, stress ratio
R = 0.2). The bottom reinforcing bar ‘bA’ has failed in brittle fatigue form which caused
that the ‘bB’ bar, which was partly cracked in fatigue, yielded, and the compression zone
was crushed. Once the cyclic load has stopped and only a small permanent load has been
left, the ‘bB’ rebar protected the whole failure beam against collapse.

Figure 7. The test setup.

The main breakage (crack pattern) of the beam and the crushed compression zone
were repaired by injection using epoxy resin Sikadur 52 (Figure 8a). Next, the beam was
strengthened by three CFRP S512 laminates at the bottom surface of the beam. Two of
them, outermost, were bonded on the stiff adhesive layer made of epoxy resin Sikadur 30
(compare Table 3). Those laminates are presented as laminates A and B in Figure 8b (and in
further analysis marked as A/S30 and B/S30). The third CFRP laminate (inner) was bonded
on the very flexible adhesive layer made of very soft polymer, named PXBM (laminate C in
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Figure 8b, marked also as C/PXBM). The mechanical properties of the adhesive layer made
of polymer PXBM are tensile elastic modulus E = 0.3 MPa and ultimate strain ε = 1000%.
In order to protect the one end of CFRP laminates against delaminating, the band made of
CFRP sheet was installed on one side of the beam.

Figure 8. The repaired beam in the main breakage region: (a) side view and (b) bottom view.

Before the main damage test, the repaired beam was tested in few levels of static and
cyclic loading. The first group consisted of three monotonic load cycles up to the force of
120 kN. In the fourth primary test, the beam was investigated in 11,000 cycles of load in the
force range 30–110 kN with a frequency of 2 Hz. During this test, no damage was observed.

After these tests, the main static test up to the failure was carried out with the dis-
placement rate of 1 mm/min (displacement of the actuator jack). In the first phase of load,
all CFRP laminates worked up to the maximum external force of 158.1 kN when the first of
the side laminates (marked as A) was detached. Consequently, eccentric distribution of
internal forces occurred and soon afterwards the second side laminate (B) also detached.
The obtained relationship force–displacement is presented in Figure 9.

Figure 9. The force-displacement (F–d2) diagram presenting steps of the beam work.

The main effort (the biggest strain) of laminates was observed in the place of repaired
crack, and the notch effect in this place initiated delamination of the laminate A in the
failure place of the bar ‘bA’ (visible as the force drop to the value of 132.6 kN—Figure 9).
Just after that, rapid detachment of the laminate B appeared in the identical form as the
laminate A (visible as the force drop to the value of 112.9 kN—Figure 9). Detachment
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occurred in the concrete cover (Figure 10). Since that moment, the beam capacity was
provided only by the laminate C, which was bonded on PXBM—an extremely soft polymer.

Figure 10. The bottom of the tested beam after the laminate detachment: side laminates (A and
B)—brittle failure in concrete, middle laminate (C)—ductile failure in the adhesive layer.

The calculated ratio between the deformation energy value (calculated as an area
under the force–displacement graph) obtained after the detachment of the laminates
A and B (5120 J) and the work value up to the failure of the laminate A (823 J) is 6.22.
This high deformation energy reserve in the post-critical state gives a high increase in
structural safety. The laminates A and B were not showing any slip of their ends up to
the laminates’ detachment, whereas the laminate C showed the slip of value 2 mm just
before the failure moment of the laminate A—see Figure 11. The slip increased only
up to the value of 2.8 mm and the slip gradient increase of the laminate C started to
be higher, when the laminate B detached. The laminate C was able to carry the load
up to the force of 142 kN, and next, a very slow process of delamination started in the
polymer adhesive layer, with almost constant force and without damage of concrete—see
Figure 10. The end of the C plot at the value of 7.5 mm (Figure 11) was caused by the
limit of the linear variable displacement transducer LVDT sensor. Even partial crushing
of the compression concrete zone (at displacement equal 22 mm) did not cause any
significant force to drop and significant deflection increase of the beam (Figure 9). It
caused only a temporary pause of the slip increase (Figure 11) and temporary reduction
of strain in the laminate C (Figure 12—the strain history at points gA2, gB2, and gC2),
because of stress redistribution.

Figure 11. The laminate end slips, measured at the points sA, sB, and sC.
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Figure 12. Changes of the laminate strains at the points (a) A/S30; (b) B/S30, and (b) C/PXBM.
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Insensitiveness to the notch effect of the laminate C and ability to the absorption of
deformation energy by the polymer adhesive layer (observed in such advanced stadium of
damage process) stem from the high flexibility of the polymer PXBM [60]. The laminate
C works properly in the initial phase of damage of the polymer layer when the beam
deflection was equal to 37 mm.

5. Discussion and Conclusions

Threats to the durability of structural components made of steel exposed to un-
favourable environmental conditions have resulted in a growing interest in the use of mod-
ern composites based on non-metallic materials. Considering the numerous advantages
of FRPs, including their very low weight and the possibility of manufacturing practically
any length of units, and thus also the ease of installation, many designers are beginning to
consider these materials as a substitute for traditionally used steel reinforcement.

The innovative technology of pre-tensioned FRP laminates allows the entire use of
material properties and is more and more popular, especially in the case of bridges or
industrial structures strengthening. The cost analysis of the project must consider the
price of the material used and the cost of the construction work (equipment, working
time), which in this case may be much lower. It is also important to consider the possible
reduction of a number of social costs resulting from the reduction of the time needed
for the execution of a strengthening—for example, during the rehabilitation of a road
viaduct the time needed to take the traffic route out of use may be significantly reduced if
not completely eliminated. However, it cannot be said nowadays that the technology of
reinforced concrete structures with externally bonded composites is fully developed and,
in each case, it will be the best solution. A number of implementation problems arise from
the fact that FRP composites are materials working practically uniaxially, i.e., they show
negligible strength in the direction perpendicular to the fibres and virtually do not bear
bending moments—this is why even small eccentricities at the stage of strip tensioning
cause premature failure of the laminate. The issue of special fire protection of external
reinforcement is often cited as a major impediment to the widespread use of this technology
(although it should be remembered that a different load combination should be used for
the calculation of the structural capacity under normal conditions and under accidental
fire conditions). However, little attention is paid to the need for adequate protection of
composites against vandalism, which can occur much more frequently and cause more
sudden destruction than fire. The long-term durability of FRP prestressing systems is not
entirely understood yet—further extensive research is needed to investigate both all the
rheological phenomena in the FRPs and possible galvanic corrosion between carbon fibres
and steel anchor hardware. It seems that some of the prestressing systems for FRP strips
currently being offered on the market underestimate the importance of galvanic corrosion
risk. Therefore, research is needed that will lead to an effective modification of anchoring
systems; one that will guarantee the required durability.

The co-operation of stiff and flexible adhesive layers in the strengthening of concrete
structures using FRP composite may eliminate the disadvantage of brittle and rapid failure
of the concrete–FRP composite joint. The presented unique tests indicated that the ductility
of the repaired structure increased significantly, improving safety reserve, even for the
severely damaged beam. Parallel bonding of CFRP laminates on stiff and flexible adhesive
layers increases the work, which must be performed by external forces to damage the
strengthened structure, whereas the additional cost of the proposed flexible protection is
relatively low. The offered strengthening solution, using the parallel application of stiff and
flexible adhesive layers, can be applied in repair and strengthening of severely damaged
structures, when it is necessary to ensure the safety of the structure, for instance, for the
time needed to evacuate users.

Certainly, the present study showed that the use of an FRP strip on a highly flexible
polymer may improve the safety of the structure. The authors are aware that it is difficult
to draw general, generalised conclusions from the test performed on only one element.
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At the current stage, the research shows only a global qualitative effect of the presented
solution and not a quantitative one.

Therefore, further research in this area is highly desirable to confirm or deny whether
polymers of low stiffness and high deformability (PXBM) can be considered as structural
materials equivalent to commonly used adhesive resins. These studies should also take
into account the influence of long-term rheological effects occurring in the adhesive layer.
Another important aspect for further consideration is the possibility of replacing carbon
fibre tape (CFRP) with a composite made from cheaper and more accessible fibres.
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