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Abstract

13C-metabolic flux analysis (13C-MFA) allows metabolic fluxes to be quantified in living

organisms and is a major tool in biotechnology and systems biology. Current 13C-MFA

approaches model label propagation starting from the extracellular 13C-labeled nutrient(s),

which limits their applicability to the analysis of pathways close to this metabolic entry point.

Here, we propose a new approach to quantify fluxes through any metabolic subnetwork of

interest by modeling label propagation directly from the metabolic precursor(s) of this sub-

network. The flux calculations are thus purely based on information from within the subnet-

work of interest, and no additional knowledge about the surrounding network (such as atom

transitions in upstream reactions or the labeling of the extracellular nutrient) is required. This

approach, termed ScalaFlux for SCALAble metabolic FLUX analysis, can be scaled up from

individual reactions to pathways to sets of pathways. ScalaFlux has several benefits com-

pared with current 13C-MFA approaches: greater network coverage, lower data require-

ments, independence from cell physiology, robustness to gaps in data and network

information, better computational efficiency, applicability to rich media, and enhanced flux

identifiability. We validated ScalaFlux using a theoretical network and simulated data. We

also used the approach to quantify fluxes through the prenyl pyrophosphate pathway of Sac-

charomyces cerevisiae mutants engineered to produce phytoene, using a dataset for which

fluxes could not be calculated using existing approaches. A broad range of metabolic sys-

tems can be targeted with minimal cost and effort, making ScalaFlux a valuable tool for the

analysis of metabolic fluxes.

Author summary

Metabolism is a fundamental biochemical process that enables all organisms to operate

and grow by converting nutrients into energy and ‘building blocks’. Metabolic flux analy-

sis allows the quantification of metabolic fluxes in vivo, i.e. the actual rates of biochemical

conversions in biological systems, and is increasingly used to probe metabolic activity in

biology, biotechnology and medicine. Isotope labeling experiments coupled with
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mathematical models of large metabolic networks are the most commonly used

approaches to quantify fluxes within cells. However, many biological questions only

require flux information from a subset of reactions, not the full network. Here, we propose

a new approach with three main advantages over existing methods: better scalability

(fluxes can be measured through a single reaction, a metabolic pathway or a set of path-

ways of interest), better robustness to missing data and information gaps, and lower

requirements in terms of measurements and computational resources. We validate our

method both theoretically and experimentally. ScalaFlux can be used for high-throughput

flux measurements in virtually any metabolic system and paves the way to the analysis of

dynamic fluxome rearrangements.

This is a PLOS Computational Biology Methods paper.

Introduction

Metabolic flux analysis (MFA) with stable isotope tracers, typically a 13C-labeled carbon

source, allows intracellular fluxes to be quantified in a wide range of organisms and is now a

major tool in the fields of biotechnology [1–3], systems biology [4–6] and medicine [7,8]. Cur-

rent approaches rely on isotopic models to simulate tracer propagation through metabolic net-

works in (pseudo) steady-state condition [1,9–14]. Fluxes are then estimated by fitting

experimental concentrations and isotopic profiles of metabolites. Current simulation frame-

works require known and constant label input(s). The only constant label input(s) is (are) the

isotopically-labeled nutrient(s) in the extracellular medium, which must therefore be included

in the flux model. In practice, this means that all metabolic models must explicitly include the

labeled nutrient(s) initially provided to the biological system and all the pathways that distrib-

ute the isotopic tracer up to the pathway of interest. To ensure fluxes are identifiable, the extra-

cellular fluxes and the labeling of upstream metabolites must also be measured (as well as the

intracellular metabolite concentrations for instationary 13C-MFA approaches). This is a major

limitation for investigating i) pathways far downstream of the labeled nutrient(s), ii) networks

with reaction gaps (e.g. an uncertain network topology), iii) incomplete datasets, iv) experi-

ments performed in rich media, or v) situations where the isotopic transitions remain uncer-

tain or complex (e.g. 2H tracer) [1,15]. This also makes the entire experimental and

computational workflow very time consuming, costly and error prone. Overall, the modeling

requirement that the tracer has to be propagated right from the extracellular nutrient limits

the application of flux measurements to pathways closely related to the label input. The vast

majority of existing 13C-flux studies focus indeed on central carbon metabolism, and most
15N-flux studies focus on the nitrogen assimilation network [1,4,6,16,17]. Alternative
13C-MFA frameworks such as metabolic flux ratio analysis [18,19] and kinetic flux profiling

[16] were developed, but they are far to be generic since they are limited to the analysis of a

few topological motifs based exclusively on mass spectrometry (MS) data. There is therefore a

need for more robust and scalable approaches to quantify metabolic fluxes in biochemical

systems.

Here, we propose a new isotope-based-MFA approach, named ScalaFlux, to measure fluxes

at the level of any metabolic subnetwork of interest, in which label propagation is modeled

directly from the metabolic precursor(s) of this subnetwork. ScalaFlux uses a limited amount

of input data and increases the number of pathways that can be accessed, while significantly

PLOS COMPUTATIONAL BIOLOGY ScalaFlux: Scalable isotope-based metabolic flux analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007799 April 14, 2020 2 / 18

Enzinvivo (ANR-16-CE11-0022). J-CP benefited

from a temporary full-time researcher position

funded by INSERM. PK, US, and JAV were funded

by ETH Zurich. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007799


reducing experimental and computational requirements. We demonstrate the value of Scala-

Flux with in silico simulations and its practical applicability by quantifying in vivo fluxes in the

yeast prenyl pyrophosphate pathway.

Results

Basic principle: Reconsidering label inputs

Understanding the basic principle of the proposed approach requires some concepts and ter-

minology that are introduced and illustrated using the example network shown in Fig 1. This

network of 18 metabolites and 20 reactions includes three topological motifs classically found

in metabolism: a linear pathway, a branching node and a cycle. We refer to the initial source(s)

of label–i.e. the extracellular nutrient(s), here Xout−as the global label input(s) for the metabolic

network. After Xout is switched from natural abundance to isotopically labeled, the isotopic

tracer propagates through the metabolic network and the intracellular metabolites (Xin, A, . . .,

O), which are progressively labeled as a function of metabolite concentrations and fluxes.

Fluxes can then be estimated using a model-based approach by minimizing the difference

between experimental labeling data and the labeling profiles simulated by the model.

Current non-stationary 13C-flux calculation frameworks require constant label input(s) so

the global label input(s) must be included in the flux models. To specifically measure the flux

through reaction r16 in the example network, the flux model (red boundaries in Fig 1A) must

contain Xout and all the reactions that contribute to isotope propagation up to the product of

r16. This flux model includes a total of 17 reactions, 1 (global) label input and 14 metabolic

intermediates (Fig 1B). Measurements of metabolite concentrations and labeling at several

Fig 1. Principle of ScalaFlux. Panel A shows an example network in the Systems Biology Graphical Notation format (SBGN, www.sbgn.org) [20] to illustrate the basic

principle of ScalaFlux. The flux models (and associated datasets) required to quantify the flux through reaction r16 using classical non-stationary 13C-MFA and ScalaFlux

are compared in panel B. The ScalaFlux model, the set of measurements required for the flux calculation, and the flux calculation workflow are shown in panel C.

https://doi.org/10.1371/journal.pcbi.1007799.g001
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nodes of the network as well as of extracellular fluxes and biomass composition are required to

calculate the flux.

We propose a more scalable 13C-flux approach, named ScalaFlux for SCALAble metabolic

FLUX analysis, to quantify fluxes through a subnetwork of interest using internal information

from this network only. ScalaFlux does not require data on the extracellular labeled nutrient,

upstream metabolites, or any other knowledge about the surrounding network. The flux

model encodes a metabolic subsystem (i.e. a subset of the cellular metabolic network) and spe-

cifically contains the reaction(s) of interest, as illustrated in Fig 1 and described in detail

below. All the metabolic substrates in this subsystem are considered local label inputs, and

label propagation is simulated directly from these local label inputs. If the reaction of interest

is r16, the labeling dynamics of M is defined as the local label input of the corresponding sub-

system to simulate the labeling dynamics of N. In contrast to global label inputs, which are

constant, known and controlled, the labeling of local label inputs changes with time, is not

known a priori and cannot be controlled. Label incorporation can nevertheless be determined

experimentally and be used for the downstream reactions. Using these discrete measurements

as direct label inputs for simulations would result in sharp changes in label input at each mea-

surement time and thereby yield stiff equations and simulation artifacts. The first step of the

ScalaFlux workflow (Fig 1C) therefore consists in transforming the discrete measurements

into a continuous (time-dependent) representation by fitting analytical functions, ensuring

smooth variations as a function of time. A system of ordinary differential equations (ODEs)

can then be constructed using conventional frameworks to simulate label propagation from

the local label input(s). By combining this simulation approach with optimization routines,

fluxes can be estimated by fitting experimental data. This workflow has been implemented in a

major update of IsoSim [21] (see Methods for details).

Importantly, the studied subsystem can include larger parts of the network, as detailed in

the following sections. This means that any given (set of) flux(es) can be quantified indepen-

dently of the rest of the metabolic network, with no additional measurements (extracellular

fluxes, growth rates, biomass composition, concentrations and labeling of upstream metabo-

lites), and independently of the (often incomplete) knowledge of the metabolic network out-

side the boundaries of the subsystem under study.

ScalaFlux exploits many concepts from non-stationary 13C-MFA and thus benefits directly

from recent advances in the field, such as efficient mathematical frameworks for experimental

design [13,14,22–24], simulation [14,25–27], optimization [10,28] and sensitivity analysis

[14,29]. Because it is based on detailed modeling of isotope propagation, ScalaFlux is generic

with respect to the network topology (flux models can include branching nodes, cycles, or any

other of the topological motifs that compose metabolic networks), the isotopic tracer (2H, 13C,
15N, etc), and the type of isotopic measurement (MS, MS/MS, NMR, etc). The flux analyses

presented in the rest of the article are based on mean molecular enrichment data collected by

mass spectrometry in 13C-labeling experiments.

Construction of flux models

Flux models must precisely describe the topology of the subnetwork of interest while ensuring

independence from the surrounding network. A generic procedure is presented in this section

to streamline the construction of self-consistent flux models of any part of a metabolic

network.

We define a minimal subsystem SY as the minimal set of reactions required to simulate the

labeling dynamics of a given metabolite Y. A metabolic network containing n metabolic inter-

mediates can thus be decomposed into n minimal subsystems. The minimal subsystem SY
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must include all the reactions that produce Y (since they may all affect its labeling dynamics),

with their substrates corresponding to local label inputs. For practical modeling reasons, a sink

reaction consuming Y has to be included to avoid its accumulation, in keeping with the meta-

bolic steady-state assumption (i.e. metabolite concentrations are constant). Each minimal sub-

system is self-consistent and can be incorporated into a flux model to estimate fluxes through

the included reactions. This modular representation is the essence of the scalability of Scala-

Flux. We used this procedure to decompose the example network shown in Fig 1A into 17

minimal subsystems, as shown in Fig 2A. Note that reaction r6, which is reversible, is present

in two subsystems (SB and SC) to account for its forward and reverse fluxes [21].

To analyze larger subnetworks that include several reactions of interests, the individual

minimal subsystems that compose this subnetwork should be combined (Fig 2). Two subsys-

tems can be combined when they share a common metabolite, e.g. the two minimal subsys-

tems SY and SZ can be merged if Y is a local label input of Z. The local label inputs of the

resulting subsystem SYZ are all the local label inputs except Y, which is now an intermediate of

SYZ. This ensures that all the reactions (and local label inputs) that contribute to the labeling

dynamics of Y and Z are included. For instance, to quantify fluxes through the set of reactions

{r4, r9, r16, r17, r18} in the example network, SO can first be united with SN (since the meta-

bolic intermediate N is a local label input of SO) (Fig 2B), and the resulting subsystem SNO can

then be merged with SF (Fig 2C). The final subsystem SFNO contains all the reactions of interest

and has three local label inputs (A, E and M) and three intermediates (F, N and O).

Flux calculation in minimal metabolic subsystems

The minimal set of measurements required to estimate fluxes in a minimal subsystem SY con-

sists of i) the labeling dynamics of its local label input(s) (used to simulate tracer propagation)

and ii) the labeling dynamics of Y (used for flux estimation). These transient label dynamics

are thus sufficient to estimate the turnover rate of Y, i.e. the ratio between its pool and its bio-

synthetic flux. In a branched pathway, this information is also sufficient to determine the

contribution of each converging reaction to the biosynthesis of Y. Absolute fluxes can be

Fig 2. Network decomposition to construct flux models. The metabolic network shown in Fig 1A can be decomposed into 17 minimal subsystems (panel A) which are

sufficient to simulate the labeling dynamics of metabolic intermediates (green circles) from the local label input(s) (red circles). Each minimal subsystem is self-

consistent and can be used for independent flux calculations. These minimal subsystems can also be combined to analyze larger subsystems, as shown in panels B and C.

https://doi.org/10.1371/journal.pcbi.1007799.g002
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estimated when the absolute concentration of Y is available. The absolute in vivo flux through

a given reaction in any linear pathway can thus be estimated from reactant data alone.

To ensure flux identifiability, the isotopic information collected on a given (sub)set of car-

bon atom(s) of the label input(s) must match the isotopic information collected on the corre-

sponding (sub)set of carbon atom(s) of the product(s). For the simplest minimal subsystem

containing a single unimolecular reaction (e.g. SA), carbon atoms of the label input (Xin)

directly matches carbon atoms of the product (A). The flux (r2) can thus be calculated from

global information collected on each metabolite (isotopologue distributions or mean molecu-

lar enrichments measured by MS) as well as from positional information on matching atoms

(specific enrichments or positional isotopomers measured by NMR). For minimal subsystems

involving condensation reactions (e.g. SH), the flux (r11) can be estimated from global mea-

surements of the labeling dynamics of the two label inputs (G and K) and of the product (H).

The labeling dynamics of only one of the two label inputs is sufficient for flux calculation when

the labeling of the corresponding subset of carbon atoms of the product is available (e.g. when

a fragment containing these atoms can be measured by MS/MS, or when positional informa-

tion on matching atoms are accessible). Finally, for minimal subsystems where the product is

formed by a cleavage reaction (e.g. SI), global isotopic information may be collected on the

product (I), and the corresponding information must be measured on a matching fragment of

the local label input (H). If no matching fragment is available, fluxes may still be calculated

using positional information collected by NMR. As an alternative strategy, identifiability may

also be enhanced by combining minimal subsystems (see section “From individual reactions to
metabolic pathways: combining minimal subsystems enhances flux identifiability and
precision”).

ScalaFlux was tested on the metabolic network shown in Fig 1A. Metabolite concentrations

and fluxes were initialized at the values listed in the Supporting information (S1 Table), and

label propagation through this network was simulated to create a theoretical dataset (S1 Fig).

We estimated fluxes in all minimal subsystems (Fig 3A) from these theoretical labeling dynam-

ics. The transient 13C-enrichments of all local label inputs were accurately described by fitting

a double logistic function (S2 Fig), and these analytical functions were used as label inputs for

flux calculation.

The labeling dynamics of metabolic intermediates are accurately fitted by the flux models

for all minimal subsystems (S3 Fig). The estimated fluxes are in good agreement with the true

values used to run the simulations (R2 = 0.98, Fig 3B), with an average relative error of 7%. For

the reversible reaction r6, both the forward and reverse reaction rates were determined.

We tested how the shape of the functions that represent local label inputs affect the fluxes

by degrading artificially the quality of the fit of label inputs. We varied parameters of the ana-

lytical functions (parameters were sampled randomly within ± 5% of their optimal values),

and we analyzed the distribution of errors on the estimated fluxes as function of the error

introduced on the representation of label inputs (S4 Fig). We carried out this analysis on two

minimal subsystems composed of a single reaction (SN) or of two converging reactions (SF).

For the minimal subsystem SN, the error on the estimated flux r16 was minimal for parameters

corresponding to the best fit of label inputs, and the error increased when the fit was degraded

(S4 Fig). The same phenomenon was observed in SF, both for individual fluxes (r4 and r9) and

for the relative contribution of each reaction to the biosynthesis of F (S4 Fig). The flux sensitiv-

ity depends on the subsystem, on the reaction (e.g. the flux r16 in SN is more sensitive against

parameter variation than the flux r4 or r9 in SF), and on the inferred information (e.g. for SF,

the flux ratio seems to be less sensitive against parameter variation than the flux r9). These

results stress the need of providing accurate representations of label inputs for flux calculation.

If a given analytical function cannot fit accurately the experimental labeling dynamics of some
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label inputs, one should therefore find another function that better represents label inputs, and

test how the shape of this function impacts their own flux calculations.

The robustness of ScalaFlux to measurement noise was assessed by a Monte Carlo sensitiv-

ity analysis [29]. Fluxes were estimated from 200 datasets in which Gaussian noise was added

to the theoretical data, assuming a typical relative standard deviation 2% for 13C-enrichments

and of 10% for concentrations [30,31]. The distribution of fluxes estimated from these datasets

indicates that the precision of the method is good, with an average relative standard deviation

of 13% (Fig 3C). All flux confidence intervals include the true flux values used for simulations.

ScalaFlux is thus robust to measurement uncertainty.

Overall, the proposed approach provides accurate estimates of absolute fluxes, with no mea-

surement of extracellular uptake or production fluxes having been provided as input. This

proof of concept example validates the proposed approach.

From individual reactions to metabolic pathways: Combining minimal

subsystems enhances flux identifiability and precision

As well as quantifying fluxes in minimal subsystems, ScalaFlux can be used to analyze larger

subsystems. Just like in minimal subsystems, the set of measurements required to estimate

fluxes in larger subsystems consists of i) the labeling dynamics of local label input(s) and ii) the

labeling dynamics of (at least one) metabolic intermediate(s).

To illustrate the value of this scalability, we explored different options to estimate the flux

through the pathway composed of the seven reactions {r10, . . ., r16} (Fig 4A). We identified a

total of 29 subsystems (and associated datasets, Fig 4B) that potentially enable flux evaluation

through this pathway. Of course, this flux can be estimated through each reaction individually,

as demonstrated above, corresponding to subsystems SG, SH, SIJ, SK, SL, SM, and SN in Fig 4B.

Several reactions in this pathway can also be combined into a single flux model (following the

Fig 3. Fluxes through each reaction of the example network (Fig 1A) estimated by analyzing all minimal subsystems. Fluxes were estimated independently in all the

minimal subsystems shown in panel A. The estimated fluxes are in good agreement with the true values (R2 = 0.98, p-value = 1.10−14, panel B). The distribution of fluxes

estimated from 200 noisy datasets are shown in panel C, with the true value used for simulation shown as a red dot and the median of the estimated fluxes shown as a

white dot.

https://doi.org/10.1371/journal.pcbi.1007799.g003
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Fig 4. Demonstration of the scalability of ScalaFlux. The absolute flux through the pathway r10-r16 (orange reactions in panel A) can be quantified in 29

different subsystems (columns in panel B), each of which i) include different reactions (in blue) and ii) exploit different sets of measurements (labeling of local

PLOS COMPUTATIONAL BIOLOGY ScalaFlux: Scalable isotope-based metabolic flux analysis
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rules defined in section Construction of flux models), e.g. by merging two connected subsys-

tems as done for subsystems SGH, SHK, SLM and SMN.

The fluxes calculated for each subsystem are shown in Fig 4C and are all close to the true

value (1.0 μmol/gDW/h). Increasing the size of the subsystem used for flux calculation improves

both the accuracy and precision of the estimated fluxes. For instance, the flux was estimated at

0.96±0.10 μmol/gDW/h for the minimal subsystem SG and at 0.99±0.04 μmol/gDW/h for the

largest subsystem SGHIJKLM. This is because the reconciliation of larger datasets during flux cal-

culation increases the robustness of the approach. Experimental and analytical efforts can thus

be optimized depending on the required flux precision.

Another advantage of this scalability is that it increases flux identifiability. For instance,

estimating the flux through r16 is possible via the flux model of SN, provided the labeling

dynamics of M is available (Fig 4B). If M cannot be measured, label propagation cannot be

simulated and no flux can be estimated. However, if the labeling dynamics of L is available, the

flux through r16 can still be estimated using the flux model of SMN for which the labeling

dynamics of the local label input L is known. The most appropriate flux model can thus be

selected based on the available data, without making the additional assumptions or oversimpli-

fications required by current approaches (e.g. using hypothetical tracer atom transitions from

upstream pathways, defining reversible reactions as irreversible, or lumping reactions). Since

each subsystem can be investigated independently of the rest of the cellular network, poorly

identified parts of the network (e.g. due to missing measurements or an uncertain topology)

do not affect the reaction(s) of interest.

Biosynthesis of prenyl pyrophosphates in yeast

ScalaFlux provides the opportunity to reconsider published datasets from which fluxes could

not be calculated because of the lack of an appropriate modeling framework. As an example

application, we analyzed a published dataset on the metabolism of prenyl pyrophosphates, the

precursors of isoprenoids, in the yeast Saccharomyces cerevisiae [32]. Isoprenoid biosynthesis

starts with isopentenyl pyrophosphate (IPP), which is isomerized into dimethylallyl pyrophos-

phate (DMAPP) (Fig 5A). DMAPP is then condensed with another IPP to generate geranyl

pyrophosphate (GPP). Longer prenyl pyrophosphates are built by successive condensation of

IPP onto each intermediate, giving farnesyl pyrophosphate (FPP) from GPP and geranylgera-

nyl pyrophosphate (GGPP) from FPP.

The published dataset contains i) steady-state concentrations of three prenyl pyrophosphate

intermediates (GPP, FPP and GGPP) measured during exponential growth on glucose and ii)

44 transient 13C-enrichments following a switch from unlabeled to U-13C-glucose (11 time

points for GPP, FPP, GGPP, and combined pools of IPP and DMAPP). These data were col-

lected in three different strains designed to enhance phytoene production. The GGPP pool of

the wild-type (WT) metabolic chassis was first increased by constructing the strain S037,

which overexpresses GPP and FPP synthase (ERG20) and GGPP synthase (CrtE). A heterolo-

gous phytoene synthase (CrtB from Pantoea ananatis) was then expressed to convert GGPP

into phytoene in strain S023. The pools of all intermediates were higher in strains S037 and

S023 compared to wild type, suggesting higher fluxes, but this could not be verified because

fluxes could not be inferred solely from these data. We therefore used ScalaFlux to estimate the

in vivo flux through the prenyl pyrophosphate pathway in the three strains.

label inputs in red, and concentrations and labeling of metabolic intermediates in green). The fluxes estimated for each subsystem are shown in panel C and are

compared to the true value (1.0 μmol/gDW/h, horizontal line).

https://doi.org/10.1371/journal.pcbi.1007799.g004
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The flux model is centered on the specific pathway of interest and thus only includes the

five reactions shown in Fig 5A. We used a double logistic function to fit the transient labeling

dynamics of IPP (i.e. mean molecular 13C-enrichment), from which accurate analytical

Fig 5. 13C-metabolic flux analysis of prenyl pyrophosphate biosynthesis in Saccharomyces cerevisiae (wild type, S037 and S023 strains). The yeast prenyl

pyrophosphate pathway contains five reactions for the successive condensation of IPP (in grey) onto each intermediate (DMAPP, FPP, GPP and GGPP) (A). The

labeling dynamics of IPP were fitted with a double logistic function, which was used as the local label input. Fluxes were estimated by fitting the metabolite

concentrations and transient 13C-enrichments of GPP, FPP and GGPP. Experimental and fitted data are shown for each strain in panel B for the labeling dynamics

(dots: experimental values; lines: best fit) and in panel C for the metabolite concentrations. The fluxes estimated in each strain are given with their standard deviations

in panel D. The GGPP demand calculated from phytoene accumulation in strain S023 is shown in grey for comparison. The GGPP turnover rate estimated in each

strain is shown in panel E.

https://doi.org/10.1371/journal.pcbi.1007799.g005
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representations were obtained (Fig 5B). This function was used as label input to estimate fluxes

by fitting the concentrations and dynamic 13C-enrichments of three other intermediates (GPP,

FPP and GGPP). The good agreement between simulations and measurements (Fig 5B and

5C, R2 > 0.98) indicates that the concentrations and isotopic data are consistent with the

topology defined in the model. In wild-type Saccharomyces cerevisiae, the GGPP biosynthetic

flux was estimated at 0.15±0.01 nmol/gDW/min during exponential growth on glucose (Fig

5D). It increased to 0.94±0.08 nmol/gDW/min in strain S037, hence confirming the relevance

of the strain design strategy in improving the availability of GGPP, the precursor of phytoene

biosynthesis. The flux was similar in the phytoene producing strain S023 (0.93±0.04 nmol/

gDW/min). This indicates that the increased demand for GGPP does not propagate upstream

and does not affect its production, in agreement with the low reversibility of the prenyl trans-

ferase reactions. Importantly, we verified that the flux estimated by ScalaFlux in S023 was con-

sistent with the GGPP demand for phytoene synthesis estimated from phytoene accumulation

(1.33±0.16 nmol/gDW/min, Fig 5D). The good agreement between these two independent

methods demonstrates that ScalaFlux provides accurate flux measurements from datasets col-

lected on just a few metabolic intermediates.

Finally, while qualitative interpretations suggested that the turnover rate of GGPP was sta-

ble in the different strains [32], this could not be verified because the fluxes could not be esti-

mated. We therefore evaluated this hypothesis by calculating the GGPP turnover from the

estimated fluxes and metabolite concentrations. Results indicate that GGPP turnover (Fig 5E)

is indeed very similar in the three strains (WT: 12.7±0.1, S037: 14.0±1.3, S023: 11.9±0.5 min-1),

and thus confirm quantitatively that the GGPP pool increases roughly proportionally to its

biosynthetic flux.

Discussion

In current 13C-MFA approaches, label propagation has to be modeled starting from the extra-

cellular nutrient(s), which limits their applicability to flux analysis of pathways close to this

nutrient. Here, we present a novel MFA framework to investigate any reaction or set of reac-

tions in a subnetwork of interest based on just a few targeted measurements in this

subnetwork.

The scalability of ScalaFlux stems from the modular decomposition of metabolic networks

into minimal subsystems, which can be analyzed independently or merged together to analyze

larger subnetworks, as demonstrated using a theoretical network and simulated data. The

guidelines provided to decompose a network into minimal subsystems enable intuitive reason-

ing and facilitate experimental design (e.g. in terms of the measurements to perform), which

can be supported further by in silico simulations. It is important to note that flux identifiability

depends on the experimental setup used (e.g. type of isotopic data, accessible measurements,

sampling frequency) and on biological constraints (e.g. network topology, fluxes). We refer to

previous work [12–14,22,24,33] for extensive discussion on these topics.

We validated the practical applicability of ScalaFlux by reanalyzing a published dataset on

the metabolism of prenyl pyrophosphates, from which fluxes could not be calculated using

current MFA approaches. Indeed, GGPP is continuously used by different processes (such as

protein geranylgeranylation and membrane biosynthesis) and does not accumulate in cells. Its

biosynthetic flux cannot therefore be measured in vivo without using isotopic tracers. More-

over, measuring this flux using stationary 13C-MFA approaches would have been impossible

because of the topology of the prenyl pyrophosphate pathway. Non-stationary 13C-MFA

approaches could have been used, but at much higher analytical and computational costs. The

underlying model would have had to include many additional reactions involved in 13C label
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propagation from glucose up to IPP, i.e. at least some of the central metabolic pathways that

contribute to the labeling of acetylCoA (glycolysis, the pentose phosphate pathway, and possi-

bly anaplerotic reactions and the TCA cycle), and the entire mevalonate pathway that produces

IPP from acetylCoA. This model would thus have contained several dozen reactions, for which

the associated fluxes would have had to be estimated. Our approach significantly reduces the

size of the model and the number of free parameters, and thereby the computational cost of

the flux calculation. Moreover, the absolute pathway flux was estimated using the metabolite

concentrations and 13C-enrichments collected for just a few metabolites using a single

LC-HRMS platform [32]. Using traditional approaches, the full model would have been unde-

termined—and no flux could have been estimated—without additional experimental data on

key points in the upstream pathways (e.g. the glucose uptake flux, and the pools and transient
13C-enrichments of upper intermediates), collected with different sampling times, and ana-

lyzed with different analytical platforms. Our approach thus also reduces experimental costs

and processing efforts.

ScalaFlux is fundamentally scalable, providing several different ways to quantify a given (set

of) flux(es). The most appropriate flux model should be selected based on the biological ques-

tion to be addressed (e.g. in terms of the fluxes to be measured or the required flux precision)

and practical constraints (e.g. network knowledge or available data). For instance, fluxes

through individual reactions in a linear pathway can be estimated independently using differ-

ent datasets. ScalaFlux can thus potentially verify (or disprove) assumptions that are usually

made in 13C-MFA (e.g. that all the reactions in a given linear pathway carry the same flux) and

to identify gaps in the current knowledge (e.g. that an intermediate of an apparently linear

pathway is actually consumed by another unknown reaction, or that the assumed network

topology is not sufficient to explain the labeling dynamics of some of the intermediates).

ScalaFlux is also highly versatile in terms of the pathways that can be monitored. It can be

used to measure fluxes through virtually any metabolic subsystem of interest: a single reaction,

a pathway, or larger networks. Because it exploits concepts from non-stationary 13C-MFA,

ScalaFlux can be used to investigate C1-metabolism (e.g. CO2 fixation, methylotrophy, folate

metabolism). It also allows the quantification of metabolic fluxes that are currently difficult to

measure, e.g. in secondary metabolism (such as prenyl pyrophosphate biosynthesis, as demon-

strated here), or the biosynthesis of co-factors (e.g. ATP or NADPH) or other global regulators

(e.g. ppGpp). Its scalability offers new possibilities for high-throughput flux profiling of a

broad range of metabolic (sub)systems, at minimal cost and effort. ScalaFlux can easily be

adapted to measure fluxes through other biological processes, such as protein turnover.

Overall, in addition to broadening the range of metabolic systems that can be investigated,

ScalaFlux enhances the following aspects of 13C-MFA: minimal data and analytical require-

ments (fluxes can be estimated robustly from just a few measurements from the metabolic sub-

system of interest, which can typically be collected using a single platform since closely related

metabolites often have similar physico-chemical properties); independence from physiology

(no need to measure nutrient uptake fluxes, growth rates, or biomass compositions); computa-

tional efficiency and stability (smaller equation systems with fewer free parameters); short

labeling times (no tracer incorporation required to reach steady state), which allows dynami-

cally changing fluxes to be probed; applicability to rich media (where measuring the many

extracellular fluxes and labeling patterns of all the nutrients is difficult and may create compu-

tational bottlenecks); and better flux identifiability (because of its intrinsic scalability and

robustness to missing measurements and network gaps).

ScalaFlux can be applied alone or in combination with other methods to address a broad

range of biological questions. Combined with untargeted MS(/MS) approaches [34–36], Scala-

Flux paves the way to 13C-flux studies at the cellular level. The network coverage of untargeted
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MS(/MS) approaches is in general low and sparse, which results in poor flux identifiability

when the complete dataset is integrated into metabolic reconstructions. In ScalaFlux, incom-

plete datasets can still be exploited to estimate fluxes through subsystems, and these flux mea-

surements can be used to constrain genome scale metabolic models. Our approach should also

be helpful to study poorly characterized organisms, for which simulations from carbon entry

up to the pathway of interest may not be possible.

From a computational point of view, the proposed approach shares many elements with

traditional approaches, and is compatible with all current simulation frameworks–elementary

metabolite units (EMUs), cumomers, fluxomers, etc—[1,14,25]. The approach introduced

here can be implemented in existing 13C-flux calculation software [10,26,28,37] with minimal

effort. Indeed, the key features required to implement ScalaFlux in existing software focus on

the definition of label input(s). These features, which are necessary and sufficient to allow the

conceptual change brought by ScalaFlux, consist in fitting analytical functions to experimental

labeling dynamics of the (local) label inputs, and in using time-dependent functions as label

input to model isotope propagation. As proof of concept, we have implemented ScalaFlux in

IsoSim, a versatile modeling software designed to integrate proteomics, metabolomics and iso-

topic data with stoichiometric, kinetic, regulatory and thermodynamic constraints to enhance

functional analyses of metabolic systems. We present ScalaFlux to measure fluxes in metabolic

(pseudo) steady-state condition. Future development will be geared towards coupling Scala-

Flux with kinetic modeling, and thereby offer the possibility of analyzing dynamic fluxome

rearrangements.

Methods

Implementation of the ScalaFlux workflow

We implemented the ScalaFlux workflow (Fig 1C) in a major update of IsoSim, an R software

previously developed to couple kinetic and isotopic models of metabolism [21]. The source

code of IsoSim v2 is freely distributed under open-source license at https://github.com/

MetaSys-LISBP/IsoSim/. Briefly, IsoSim includes functions to i) construct flux models, ii)

design isotope labeling experiments, iii) simulate label propagation, and iv) fit experimental

data in order to estimate fluxes. To implement the ScalaFlux approach in IsoSim, we developed

novel functions to i) fit the experimental labeling dynamics of the (local) label inputs with ana-

lytical functions and ii) use time-dependent functions as label input to model isotope propaga-

tion. Each of these steps is explained in detail in the following sections.

All the scripts we used to construct the models, to perform the simulations and to generate

the figures are provided at https://github.com/MetaSys-LISBP/IsoSim/ to ensure reproducibil-

ity and reusability.

Construction of flux models

IsoSim requires the following information to construct a flux model: i) the set of reactions of

interest, ii) the tracer atom transitions of each reaction, and iii) the accessible isotopic data.

IsoSim then automatically constructs the minimal system of ordinary differential equations

(ODEs) required to simulate the accessible isotopic measurements. The detailed procedures

and algorithms we used to construct the models can be found in the initial article on IsoSim

[21], which has been enhanced with the EMU framework [27] to reduce the size of the equa-

tion system.

Note that each flux can be defined either as constant or calculated using a kinetic equation

which may depend on metabolite concentrations. IsoSim can thereby perform both stoichio-

metric and kinetic modelling.
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Design of isotope labeling experiments

The present framework provides i) direct identification of the minimal set of label input(s)

that need to be measured for a given flux model, and ii) simulations for different configura-

tions (e.g. different pools, flux distributions or local label input dynamics). These two features

are crucial to support experimental design and ensure flux identifiability before performing

the experiments [22].

Fitting local label input(s)

The labeling dynamics of all the EMUs identified as local label input(s) must be measured or

estimated. IsoSim implements methods to convert these discrete measurements into continu-

ous analytical functions. It is important to note that neither the analytical function nor the esti-

mated parameters have any biological meaning. The aim of this step is just to define a

sufficiently accurate representation of the isotopic profiles of the local label input(s).

Experimental 13C-enrichment dynamics of local label input(s) can be fitted by a logistic

function (Eq 1):

y p; tð Þ ¼
p1

1þ e� p2 �ðt� p3Þ
ð1Þ

where p is the vector of parameters to estimate (here p1, p2 and p3), and t is time. We also

implemented a double-logistic function (Eq 2) to fit more complex labeling dynamics, as pro-

posed by Elmore et al. [38]:

y p; tð Þ ¼ p4 þ p5 � p6 � tð Þ �
1

1þ eðp7� tÞ=p8
�

1

1þ eðp9 � tÞ=p10

� �

ð2Þ

Parameter estimation is formulated as a constrained non-linear optimization problem

(Eq 3):

minimize f ðpÞ

subject to gðpÞ > c ð3Þ

where p is the parameter vector, f is the objective function that evaluates the deviation between

the simulated and measured data, g(p) is the constraint function, and c is the constraint vector.

The objective function f (Eq 4) is defined as the sum of squared weighted errors:

f pð Þ ¼
P

i
xi � yiðp; tiÞ

si

� �2

ð4Þ

where xi is the experimental value of data point i collected at time ti, with an experimental stan-

dard deviation σi, and yi(p,ti) is the corresponding simulated value. Constraints are defined for

all parameters to be estimated (0< p1< 1, -100< p2< 100, -1000 < p3< 1000 for the logistic

function and -1 < p4< 1, -1 < p5< 1, -10< p6< 10, -1000< p7< 1000, -100 < p8< 100,

-1000< p9< 1000, -100< p10< 100 for the double logistic function) to improve convergence

by reducing the solution space. The optimization problem is first solved using particle swarm

optimization (R 3.2.4, pso package v1.0.3), followed by an L-BFGS-B [39] search (with an

upper limit of 1000 iterations) to improve convergence. A plot of measured versus fitted data

is generated to allow visual inspection of the quality of fit, and the analytical functions describ-

ing local label inputs are provided as output.
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Simulation of label propagation

IsoSim solves the ODE system to simulate label propagation through the metabolic subnet-

work of interest, using as input i) the constructed model, ii) the analytical functions describing

local label input(s), iii) the metabolite concentrations, and iv) the fluxes. The simulation engine

is based on the fluxomer framework [25], as detailed in [21], and has been enhanced using the

EMU framework [27]. This facilitates the identifiability analysis while significantly reducing

the size of the equation system to be solved.

13C-flux calculation and sensitivity analysis

Fluxes are estimated by fitting experimental data (the concentrations and labeling dynamics of

metabolic intermediates). The objective function h (Eq 5) is defined as the sum of squared

weighted errors [40]:

h v;mð Þ ¼
P

i
xi � yiðv;mÞ

si

� �2

þ
P

j

nj � mj

sj

 !2

ð5Þ

where v is the vector of fluxes, m is the vector of metabolite concentrations mj, xi is the experi-

mental value of the labeling at data point i, with experimental standard deviation σi, yi(v,m) is

the corresponding simulated value, nj is the experimental concentration of metabolite mj with

standard deviation σj. Equality and inequality constraints can be defined for the fluxes (default

constraints: -103 < v< 103) and metabolite concentrations (default constraints: 10−6 <

m< 103). The objective function h is minimized using the nlsic optimization algorithm [10]

(with 50 iterations). The goodness-of-fit is evaluated using a chi-square test. Finally, we applied

a Monte-Carlo sensitivity analysis [29] to estimate the flux precision. This non-linear method

of sensitivity analysis consists in i) generating noisy datasets (according to the experimental

standard deviations of the measured concentrations and labeling of metabolites), ii) calculating

fluxes for each of these synthetic datasets, and iii) quantifying the flux uncertainty (i.e. mean,

median, standard deviation and 95% confidence intervals) from the spread of the estimated

fluxes.

Supporting information

S1 Table. Initial values of fluxes and metabolite concentrations. Values of fluxes and metab-

olite concentrations used to simulate label propagation through the example network shown

in Fig 1A.

(XLSX)

S1 Fig. Simulation results. Simulated labeling dynamics of all metabolites of the example net-

work (Fig 1A) in response to a switch from unlabeled Xout to fully labeled Xout, for fluxes and

metabolite concentrations given in S1 Table.

(PDF)

S2 Fig. Fit of local label inputs. The labeling dynamics of the local label inputs of all the sub-

systems shown in Fig 3 were fitted with analytical functions (as detailed in the Methods sec-

tion), based on the simulation results given in S1 Fig. The dots represent the fitted data and the

lines represent the best fits.

(PDF)

S3 Fig. Flux calculation results. For all minimal subsystems of the example network (Fig 3),

fluxes were estimated by fitting the labeling dynamics of the metabolic intermediate(s), using
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as (local) label input(s) the analytical functions obtained from the fits given in S2 Fig. For each

subsystem, the dots represent the fitted data and the lines represent the best fits. The flux values

and confidence intervals estimated from these fits are shown in Fig 3.

(PDF)

S4 Fig. Impact of the quality of the fit of label inputs on the estimated fluxes. For two mini-

mal subsystems (SN and SF in panels A and B, respectively), we degraded artificially the quality

of the fit of label inputs by varying parameters of the analytical functions (100 sets of parame-

ters were randomly sampled within ± 5% of their optimal values), and we calculated how the

fluxes estimated from the degraded analytical functions deviate from the true values. Plots

show the error on the estimated fluxes (and on the relative contribution of the two converging

reactions for SF) as function of the error on the representation of label inputs (sum of squared

residuals for the degraded analytical functions of label inputs). The red dots represent results

for the best fits (i.e. with parameters of the analytical functions set to their optimal values).

(PDF)
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