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The effects of the metal deposition and activation methods on

metal particle size and distribution were investigated for
carbon nanotube supported Pd catalysts. The Pd precursor

was loaded by incipient wetness impregnation, ion adsorption,
and deposition precipitation and was activated by thermal

treatment under a nitrogen atmosphere or in the liquid phase

by reduction by formaldehyde or sodium borohydride. Regard-
less of the metal precursor loading method, activation under a

N2 atmosphere at 500 8C led to homogeneously distributed
4 nm Pd particles. Liquid-phase reduction by sodium borohy-

dride provided a bimodal distribution with particle sizes of ap-
proximately 1 and >10 nm. A somewhat weaker reducing

agent, formaldehyde, yielded particles approximately 1 nm in

size. The activities of the catalysts for the hydrogenation of cin-
namaldehyde correlated with the particle sizes.

Carbon supported palladium (Pd/C) catalysts are widely used
for hydrogenation in the fine-chemicals industry. Numerous

studies have been performed investigating the influence of

the support material,[1–5] the surface functional groups of the
support,[6, 7] metal precursor,[2, 8] and activation method[2, 9–11] on

the structure and activity of the final Pd/C catalyst. Ideally, the
metal particles should have a narrow size distribution and be

uniformly distributed across the support to arrive at increased
activity and stability. However, particles are often distributed

nonuniformly or the particle-size distributions are broad or

multimodal.[12–14]

Carbon supports that are often used include activated

carbon, carbon black, graphite, and carbon nanomaterials such
as carbon nanofibers and carbon nanotubes (CNTs). In re-

search, CNTs are of particular interest, as they have a well-de-
fined structure with a rather uniform surface, high purity, and

no micropores. The structure and porosity are largely main-

tained even if they are exposed to aggressive media.[15, 16] The
well-defined structure of CNTs makes them suitable for analysis

by transmission electron microscopy, with high contrast be-
tween the supported metal nanoparticles and the support.

Although CNTs are relatively inert, functional groups can be in-

troduced onto the surface by functionalization treatment such
as liquid-phase oxidation (LPO) and gas-phase oxidation (GPO).

Surface chemistry can have a strong influence on metal disper-
sion[6, 17] and interactions between the metal and the sup-

port[7, 18] and, thus, on the performance of Pd/C catalysts.[7, 17, 19]

Various metal deposition methods such as impregnation,[2]

deposition precipitation,[3, 6] deposition reduction,[20] ion ad-

sorption,[21, 22] and colloidal routes[7, 23] have been studied. The
deposited metal precursor is commonly reduced in the gas

phase, and this typically yields well-distributed Pd nanoparti-
cles.[24, 25] However, as Pd/C catalysts are often used in the

liquid phase,[26] performing activation in the liquid phase is
highly desirable.

In this work, we systematically investigated the influence of

the different metal deposition methods and subsequent activa-
tion methods with varying conditions thereof on the structure

of Pd/CNT catalysts. The (NH3)4Pd(NO3)2 precursor was deposit-
ed from aqueous solution onto LPO-treated CNTs by incipient

wetness impregnation (IWI), deposition precipitation (DP), or
ion adsorption (IA) with a nominal Pd loading of 5.0–6.0 wt %.

The deposited Pd precursor was converted into metallic Pd

particles in the gas phase by thermal treatment under a N2 at-
mosphere at 500 8C.[19] Catalyst precursors prepared by ion ad-

sorption were also reduced in the liquid phase by sodium bor-
ohydride or formaldehyde, both known to act as reducing

agents in the preparation of Pd/C catalysts,[9, 10, 24, 27] with vary-
ing conditions such as rate of addition of the reducing agent,

temperature, and atmosphere under which the addition is per-
formed. Details on the deposition and reduction methods can
be found in the Supporting Information.

As expected, ion adsorption followed by gas-phase activa-
tion under a N2 atmosphere yielded uniformly distributed Pd

particles with a unimodal particle-size distribution and an aver-
age size of approximately 5 nm (Figure 1 a). Comparable struc-

tures of Pd/C catalysts were observed if the deposition

method was IWI or DP (Figure S1 in the Supporting Informa-
tion). Ion adsorption was chosen to investigate further and to

compare liquid-phase to gas-phase activation. In contrast to N2

activation, reduction by sodium borohydride led to a bimodal

particle-size distribution with 1 nm Pd particles uniformly dis-
tributed across the CNT support and 50 nm Pd particles proba-
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bly located at the external surface of the CNT skeins (Fig-

ure 1 b).[28] Similarly, reduction by formaldehyde led to 1 nm Pd
particles uniformly distributed over the support, but with only

a negligible amount of the Pd ending up in 10–50 nm particles
(Figure 1 c).

X-ray diffraction (XRD) and H2 chemisorption were used to
determine and compare the average Pd particle size from the
bulk of a sample with that obtained by transmission electron

microscopy (TEM) analysis (Table 1). Details on the characteriza-
tion methods can be found in the Supporting Information. The
ion-adsorption sample activated by N2 treatment shows that
the particle sizes determined by XRD, H2 chemisorption, and
TEM are similar. For the formaldehyde-reduced sample, the ab-
sence of Pd signals in the X-ray diffractograms and very low H2

chemisorption-derived Pd particle sizes further corroborate
that the 10–50 nm sized Pd particles observed by TEM are
rather negligible. For the NaBH4-reduced sample, the heteroge-

neity was quantified by calculating the contributions of the 1

and 50 nm particles to the average size determined by H2

chemisorption. It was calculated that approximately 50 % of

the Pd ended up as 1 nm particles and approximately 50 % of
the Pd ended up as 50 nm particles.

One possible cause for the larger particles in the NaBH4-re-
duced sample might be a higher loading of Pd in the sample.
However, inductively coupled plasma (ICP) analysis confirmed

that in all three ion-adsorption samples, as well as in all other
samples prepared in this study, the achieved Pd loading was
rather similar ranging from 3.7 to 4.4 wt % (see Table 1 and
Table S1). Comparing the nominal loading of 5.0–6.0 wt % with

the achieved loading of 3.7–4.5 wt % in the ion-adsorption
samples, the extent of Pd deposition was approximately 70 %,

which is slightly lower than the amounts of Pd deposited by

IWI (85 %) and DP (95 %).
To investigate further how liquid-phase reduction might

have affected the distribution of the metal nanoparticles over
the support, experiments were performed under different at-

mospheres (air or N2), different temperatures at which the re-
ducing agent was added (RT and 2 and 80 8C), and different ad-

dition rates (fast or slow). Relative to the samples shown in Fig-

ure 1 b, c, none of the listed conditions seemed to impact the
final catalyst structure significantly (Figures S2 and S3). The

amount of NaBH4 used also had no significant influence on the
catalyst structure, as observed by TEM (Figure S2 f, g). Analysis

of the metal loadings and Pd particle sizes determined by XRD,
H2 chemisorption, and TEM for all samples can be found in

Figure 1. Representative high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and particle-size distribution histo-
grams of the Pd/CNT catalysts activated by a) thermal treatment at 500 8C under a N2 atmosphere, b) slow addition of NaBH4 at room temperature in air, c) in-
stant addition of formaldehyde at room temperature under a N2 atmosphere. Only sub-10 nm particles are included in the particle-size distribution of the
NaBH4-reduced sample.

Table 1. Weight loading, average crystallite sizes from XRD, and particle
sizes from H2 chemisorption and TEM.

Activation method Pd loading [wt %] Pd particle/crystallite size [nm]
XRD H2 TEM

N2 treatment 4.0 2.6 3.6 3.2:1.4
NaBH4 4.4 2.9 2.0 1/50[a]

formaldehyde 3.7 – 0.8 1.1:0.3

[a] Bimodal distribution.
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Table S1. These results exclude effects of concentration gradi-
ents as well as Ostwald ripening resulting from oxidation-

reduction cycles.
An important difference between the NaBH4-reduced and

formaldehyde-reduced catalysts lies in the nature of the
reducing agent. The standard reduction potentials (at pH 0) of

Pd2 +/Pd, formic acid/formaldehyde, and boric acid/borohy-
dride are 0.9, @0.25, and @0.5 V, respectively.[29–31] The more
negative boric acid/borohydride potential may explain the ob-

served differences by which the Pd particles grow to even
50 nm. This could be a result of immediate reduction of the
metal precursor from the solution onto the support, whereas
milder formaldehyde may reduce only precursor species ad-
sorbed on the support.

All three catalysts were active in the hydrogenation of cinna-

maldehyde (Table 2 and Figure S4). Normalized to the amount

of Pd, the formaldehyde-reduced catalyst was much more
active than the N2-activated and NaBH4-reduced catalysts. This

difference could be explained by the particle sizes of the spent
catalysts. The average particle sizes, determined by TEM, were

(3.8:1.4), (2.3:1.3), and (2.0:1.0) nm for the spent N2-acti-
vated, NaBH4-reduced (sub-10 nm particles only), and formal-

dehyde-reduced catalysts, respectively (Figure S6). The turn-

over frequencies calculated by using these sizes were similar.

The selectivity to hydrocinnamaldehyde was 75 % for the
formaldehyde-reduced catalyst and 62 % for the NaBH4-re-
duced catalyst ; the remaining amounts were hydrocinnamyl al-
cohol. A low selectivity of 24 % was found for the N2-activated

catalyst. No cinnamyl alcohol was formed, as expected,[32] and
no other products were observed in the GC traces. The differ-
ence in selectivity could be caused by the larger Pd particles in

the NaBH4-reduced sample.[33] Alternatively, the selectivity dif-
ference could be explained by support effects,[34] which could

be introduced by a change in the nature of the functional
groups caused by the activation method.

Preparation of Pd/CNT by using (NH3)4Pd(NO3)2 as a metal

precursor and activation under a N2 atmosphere yielded cata-
lysts with particle sizes of approximately 4–5 nm distributed

uniformly across the support regardless of the metal deposi-
tion method. Pd/CNT preparation by ion adsorption followed

by reduction in the liquid phase by NaBH4 yielded catalysts
with a nonuniform metal-particle distribution and a bimodal

size distribution, whereas reduction by formaldehyde yielded a
catalyst with uniformly distributed metal particles approxi-
mately 1 nm in size. Various liquid-phase reduction conditions
appeared to have no influence on the final catalyst. It was the
nature and probably the strength of the reducing agent that
determined the final structure of the catalyst, with weaker re-

ducing agents promoting narrower particle-size distributions
and a uniform particle distribution across the support.
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