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Abstract: Human gut microbiota has been increasingly recognized as a pivotal determinant of
non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the composition of gut
microbiota, the components and metabolites derived from intestinal microbiota have emerged as
key factors in modulating the pathological process of NAFLD. Compelling evidences have revealed
that gut microbiota generates a variety of bioactive substances that interact with the host liver cells
through the portal vein. These substances include the components derived from bacteria such as
lipopolysaccharides, peptidoglycan, DNA, and extracellular vesicles, as well as the metabolites
ranging from short-chain fatty acids, indole and its derivatives, trimethylamine, secondary bile acids,
to carotenoids and phenolic compounds. The mechanisms underlying the hepatic responses to
the bioactive substances from gut bacteria have been associated with the regulation of glycolipid
metabolism, immune signaling response, and redox homeostasis. Illuminating the interplay between
the unique factors produced from gut microbiome and the liver will provide a novel therapeutical
target for NAFLD. The current review highlights the recent advances on the mechanisms by which
the key ingredients and metabolites from gut microbiota modulate the development and progression
of NAFLD.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD), a spectrum of liver disease, includes simple steatosis
(NAFL), non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. NAFLD has become the leading
liver disease, with a prevalence of 22–29% in adults worldwide [1]. NAFLD is associated with
metabolic syndrome which is characterized by centripetal obesity, insulin resistance, hypertension,
hyperlipidemia, and dyslipidemia [2]. As of today, the intricate pathogenesis of NAFLD remains
largely unknown. The “multiple hit” hypothesis has been proposed to supersede the outdated “two-hit”
hypothesis as the major cause of the initiation and progression of NAFLD [3]. The “multiple hit”
hypothesis highlights the importance of gut microbiome, insulin resistance, and adipokines secreted
from the adipose tissues, which consequently leads to lipotoxicity, oxidative stress, mitochondrial
dysfunction, and inflammation in hepatic tissue [3].

It has been estimated that 10 times more microorganisms (above 1014) are present inside the
gut than the number of human cells [4]. These microorganisms are associated with the regulation of
host metabolism, immunity, and diseases. Gut microbiome has drawn extensive attention as it plays
a critical role in the development and progression of NAFLD via the gut-liver axis [5]. Long term
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intake of unhealthy diet (e.g., rich in saturated fat or fructose) initiates dysbiosis of gut microbiota
which in turn leads to disruption in barrier function and immune homeostasis. Gut microbiota or the
components and metabolites derived from bacteria are carried to the liver through the portal vein [6].
A variety of immune cells (e.g., Kupffer cells and hepatic stellate cells) resided in the liver copes with
the gut-derived pro-inflammatory factors such as lipopolysaccharide, peptidoglycan, and lipoteichoic
acid (LTA). The over-activated immune cells induced by the products generated from bacteria may
result in more severe liver damage, inflammation, and fibrosis, thus accelerating the development of
NAFLD. On the other hand, metabolites such as short-chain fatty acids (SCFAs), bile acids, tryptophan
metabolites, carotenoids, and phenolic compounds from gut bacteria may ameliorate the inflammatory
responses, oxidative damage, and lipogenesis in the liver tissue. Therefore, intestinal microbes are
considered as the key element regulating the pathological process of NAFLD. Exploring the signaling
pathways of the gut bacteria-derived factors on the liver tissue will provide novel therapeutic targets
and strategy for NAFLD. The current article will summarize the functional mechanisms by which the
gut microbial components and metabolites alter the progression of NAFLD.

2. Lipopolysaccharides

Lipopolysaccharides (LPS, also known as endotoxins), the major outer membrane component
of gram-negative bacteria, has been well known to be implicated in the activation of the host innate
immune system. The chronic low grade inflammation triggered by LPS is known as a pivotal factor
for the progression of NAFLD. Previous study has demonstrated that treatment with antibiotics
(e.g., polymyxin B) targeting gram-negative bacteria efficiently reduced tumor necrosis factor (TNF)
production and plasma LPS levels, leading to the reversal of hepatic steatosis [7]. Elevation of LPS
levels in serum has been reported in both NAFLD patients and animals [8,9]. Toll-like receptor 4 (TLR4),
a pattern recognition receptor for LPS and multiple free fatty acids, is widely expressed in liver cell
types including hepatocytes, Kupffer cells, and stellate cells [10]. Activation of TLR4 induced by LPS
results in the secretion of inflammatory cytokines (e.g., IL-6, IL-1β, and TNF-α) and chemokines from
Kupffer cells, leading to hepatic damage and NASH [11,12]. By contrast, mice carrying a TLR4 mutation
exhibit resistance to LPS and high-fat diet-induced liver steatosis [13]. In addition to TLR4, LPS binding
protein (LBP) and cluster of differentiation 14 (CD14) are also involved in the recognition of LPS. LBP
is a polypeptide of 50 kDa primarily synthesized by liver and exists in blood as a form of glycosylated
protein [14]. A clinical study has found an increase of LBP, a carrier of LPS, among patients with NAFL
or NASH [15]. Besides, LBP is correlated with insulin resistance and dyslipidaemia [16]. Since free fatty
acids are coupled with chronic low grade inflammation and steatohepatitis, loss of LBP may attenuate
the progression of NAFLD. Indeed, it has been observed in HFD-induced NAFLD animal models that
LBP knockout mice display improved lipid metabolism and alleviation of multiple pathologic features
of NAFLD [17]. This observation suggests that LBP is an indispensable factor for the development
of NAFLD. In contrast, it has been noted that a high level of LBP appears to limit the inflammatory
responses triggered by LPS, likely through delivering LPS to lipoproteins or promoting silent uptake of
LPS [18–20]. CD14 is a myeloid membrane glycoprotein that functions as a pattern recognition receptor
for the complexes of LPS and LBP. CD14 exists in two forms: membrane CD14 (mCD14) and soluble
CD14 (sCD14, also known as presepsin). LPS induces a cleavage of mCD14, leading to the subsequent
release of presepsin into the circulation [21]. Depletion of CD14 reduces lipid and macrophage
content in liver tissues and attenuates liver steatosis in diet-induced obese mice [22]. The clinical trial
indicates that serum presepsin levels can be regarded as a biomarker for predicting the severity of
NASH [23]. The mechanism by which LPS produced by gut microbiota contributes to the occurrence
and development of NAFLD involves the intestinal barrier dysfunction. Several lines of evidence have
shown that increments of circulating LPS impairs intestinal barrier function and causes subsequent
increases in intestinal permeability. This occurs through the TLR-4-dependent up-regulation of CD14
and MLCK (Myosin light chain kinase), and activation of IRAK-4 (IL-1R-associated kinase 4) [24–26].
More importantly, LPS that enters into the liver through the portal vein blood activates Kupffer cells
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and stellate cells via TLR4, which promote hepatic inflammation and fibrosis respectively. In addition,
activation of NLRP3 inflammasome induced by LPS has recently been shown to be linked with the
progression of NASH. The detail review can be found in the article by Wan et al. [27].

3. Peptidoglycan

Peptidoglycan (PGN) is an inflexible envelope encompassing the cytoplasmic layer of most
bacterial species [28]. It is a unique and necessary bacterial component that provides the bacterial cell
wall with stiffness and structure. Compared to the single thin layer surrounded by an outer membrane
in Gram-negative bacteria, PGN is presented as a thick exposed layer in Gram-positive bacteria,
in combination with lipoteichoic acid (LTA) [29]. It has long been known that PGN from bacteria
promotes an inflammatory response. In mice with a high fat diet, the abundance of Firmicutes (the major
gram-positive bacteria) increases. This alteration is associated with the increment of Toll-like receptor 2
(TLR2) ligands including PGN, lipoprotein, and LTA [30,31]. The role of TLR2 in the pathophysiology
of NASH has been controversial depending on the model of NASH. In high fat diet-induced obese
mice, TLR2 deficiency has been shown to be resistant to insulin resistance, hepatic steatosis, and tissue
inflammation [32,33]. Conversely, in mice fed with a diet deficient in methionine and choline (MCDD),
TLR2 knockout exacerbates MCDD-induced nonalcoholic steatohepatitis. In a human consuming
a high fat diet, impaired TLR2 response observed is partly responsible for the increased risk of
obesity [34]. The sub-structures of PGN, such as meso-diaminopimelic acid PGN (meso-DAP PGN)
and muramyl dipeptide PGN (MDP PGN), can mediate the generation of pro-inflammatory cytokines
through nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) dependent activation of
NOD1 (Nucleotide Binding Oligomerization Domain Containing 1) and NOD2 (Nucleotide Binding
Oligomerization Domain Containing 2) [35–37]. It has been proposed that NOD1 senses excess
nutrients by altering the intestinal microbiota and enhancing peptidoglycan translocation, since NOD1
can identify peptidoglycan from the intestinal microbiota [38]. Supporting the function of the NOD1/2
signaling in the development of NAFLD, mice with a dual knockout of NOD1 and NOD2 are resistant to
lipid accumulation and inflammation in the liver caused by a high fat diet [39]. In short, PGN-mediated
inflammatory lesions in the hepatic tissue are primarily associated with the signaling pathways of
TLR2, NOD1, and NOD2. It should be noted that TLR2 is also known as a key ligand for other
bacterial components such as LTA and lipoproteins. In rodents, gram-positive bacteria component
LTA actuates hyperlipidemia which occurs as a consequence of increased lipolysis of excessive hepatic
triglyceride [40].

4. Bacterial DNA

Bacterial DNAs play a vital role in the progression of NASH by the direct activation of immune
cells including macrophages, NK cells, B cells, and dendritic cells. Bacterial DNA is trafficked into
endolysosomal endosomes through endocytosis, in which it activates Toll-like receptor 9 (TLR9)
to elicit inflammatory signaling in immune cells [41]. The sensing of bacterial DNA by TLR9 in
immune cells initiates the activation of NF-κB / MAPK, followed by the secretion of IL-12 and
TNF-α [42]. Alternatively, TLR9 results in the activation of IκB kinase α (IKKα) which interacts with
microtubule-associated protein 1A/1B-light chain 3 (LC3) and the phosphorylation of IFN regulatory
factor 7 (IRF7), leading to the release of type I interferon (IFN) [43,44]. TLR9 responses through
species-specific CpG motif recognition to bacterial DNA [45]. Recent evidence has shown that
TLR9 is augmented in human and mouse NASH. This receptor is essential for the chemotaxis of
M1-macrophages and neutrophils [46]. Removal of TLR9 mitigates liver inflammation in experimental
NASH mice [46]. Consistently, a TLR9 antagonist treatment protects mice fed a high fat diet from
NASH [47]. Furthermore, it has been observed in choline-deficient amino acid-defined (CDAA)
diet-triggered NASH model that the production of IL-1β in Kupffer cells induced by TLR9-MyD88
cascades accelerates the progress of NASH [48].
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5. Extracellular Vesicles

A large variety of bacterial molecules, including nucleic acids, proteins, phospholipids, glycolipids,
and polysaccharide, are present in microbiota-derived extracellular vesicles (EVs) [49]. EVs play
important biological roles not only in the survival of bacteria through transferring virulence factors and
the despoilment of nutrients, but also in the interaction between the host and the bacterial components
or metabolites that regulate numerous signaling pathways in the host cells [50]. Bacterial EVs that enter
systemic circulation, as nanosize membrane particles, can trigger multiple metabolic cascades and
immunological responses in various organs. For example, recent progress reported by Tulkens et al. [51]
has shown that patients with intestinal barrier dysfunction demonstrate increased systemic levels of
LPS-positive bacterial extracellular vesicles. This observation suggests that the endotoxin is able to
alter the biological function of the host via its presence on EVs. Emerging evidences have shown that
host cells carry LPS from EVs into the cytosol by the signaling of TLR4-TRIF (TIR domain-containing
adaptor-inducing interferon-β)-GBPs (guanylate-binding proteins) [52]. Other receptors mediating
EVs-induced immune responses in host cells include TLR2, NOD1, and NOD2 [53,54]. As innate
immune is a key mechanism mediating the inflammation and other pathological progress in NAFLD,
EVs may regulate NAFLD through transferring the contents into Kupffer cells, stellate cells, and
hepatocytes. Although the precise protein inside the EVs are largely unknown, the proteomics approach
has revealed novel interaction pathways between bacterial effector protein and hepatic cells underlying
the physiological and pathological functions of EVs [55,56]. Short RNA (sRNA) in EVs can be released
to alter biological functions of the host [57]. Hence, EVs may have the potential to regulate NAFLD
through sRNA-mediated epigenetic mechanism.

6. Short-Chain Fatty Acids

Short-chain fatty acids (SCFAs) are volatile fatty acids (acetate, propionate, and butyrate) mainly
generated through the fermentation of soluble dietary fibers and nondigestible carbohydrates by gut
microbes in the large bowel [58]. The producers of acetic acid and propionate for the most part are the
Bacteroidetes, whereas butyrate is principally delivered by the Firmicutes [59]. Gut microbiota has
been observed to be engaged with the modulation of NAFLD by means of their metabolites SCFAs.
SCFAs regulate the metabolism and immune functions of liver tissue mainly through the inhibition
of histone deacetylases or the activation of G-protein coupling receptors including GPR41, GPR43,
GPR109a, and OLFR78. GPR41 is known to be expressed in adipose, intestinal, spleen, pancreas,
peripheral blood, and nervous tissues, while GPR43 is present in the immune, liver, intestinal, and
adipose tissues [60–62]. All three SCFAs, especially acetate, can be recognized by GPR43. Mice
exhibit increased GPR43 mRNA abundance in liver specific manner in response to a high fat diet
feeding [63], suggesting a unique role of GPR43 in obesity-related liver diseases. Besides, propionate is
a selective agonist for GPR41, while butyrate acts as an activator for GPR41 and GPR109a. Particularly,
acetate and propionate serve as ligands for OLFR78 which is abundantly expressed in the colon and
kidney [64,65]. Depending on SCFA, both GPR41 and GPR43 participate in the regulation of energy
homeostasis. A lack of GPR41 increases the body fat mass of mice, suggesting that SCFAs promote
energy expenditure and prevent obesity via activation of GPR41 [66]. Deficiency of GPR43 renders
mice resistant to the increase in liver weight and triglycerides content induced by HFD to at least in
part through an increase in energy consumption [67]. Inconsistently, results from Kimura et al. [68]
have found that mice lacking the GPR43 gene develop obesity even on a regular diet. The activation of
GPR43 results in the suppression of insulin signaling and thus prevents the uptake and utilization of
energy. A recent study by Rau et al. [69] has found a higher level of SCFAs produced from gut bacteria
in NAFLD patients. The increase of acetate and propionate maintains low degree inflammation through
their impact on the circulating immune cellular system. However, the anti-inflammatory properties
and the suppression role in hepatic lipogenesis and lipid accumulation of acetate and propionate
have been observed in numerous previous studies [70–72]. Importantly, compelling data from animal
models has shown that butyrate attenuates steatohepatitis through the modulation of gut microbiota,
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intestinal barrier function, the up-regulation of glucagon-like peptide-1 receptor (GLP-1R) expression
and down-regulation of inflammatory signaling as well as oxidative damage in the liver [73–76].
It should be noted that histone acetylation regulates gene expression through the alteration in the
structure of the nucleosomes or furnishing protein binding signaling [77]. The addition of acetylate
groups is catalyzed by histone acetyltransferases (HATs) while the elimination of acetylate groups
is by histone deacetylases (HDACs). SCFAs from gut microbiota has been widely known as HDAC
inhibitors to regulate immune homeostasis and hepatic lipid metabolism, suggesting an epigenetic
mechanism by which SCFAs regulate host metabolism.

7. Indole and Its Derivatives

Tryptophan can be converted into several molecules, including indole and its derivatives, by both
intestinal gram-positive and gram-negative bacteria present in the gut. Indole, which is produced
through the catalysis of tryptophan by bacterial tryptophanase, has attracted much attention because of
its beneficial effects on intestinal function of the host. Numerous bacterial species including the genera
of Prevotella, Bacteroides, Fusobacterium, and Escherichia possess the capacity to degrade tryptophan
into indole by tryptophanase [78–81]. Indole functions to enhance tight junction of epithelial cells
and mitigates inflammatory responses and injury in the gut [82,83]. Additionally, indole modulates
glucagon-like peptide-1 (GLP-1) secretion in colonic L cells via increasing calcium influx and reducing
the decomposition rate of GLP-1 [84]. Recently, Beaumont et al. [85] have demonstrated that mice
receiving indole display resistance to liver inflammation and metabolic alternations of cholesterol
induced by LPS. This observation suggests that indole may improve inflammatory disorder in the liver.
Other indole derivatives that have received widespread attentions include indole-3-aldehyde (IAld),
indole-3-acetic acid (IAA), and indole-3-propionic acid (IPA). These molecules exert vital biological
functions through the action on the nuclear receptors in host cells. IAld is mainly synthesized from
indole pyruvate under the catalysis of aromatic amino acid aminotransferase (ArAT). As a ligand of
aryl hydrocarbon receptor (AhR), IAld induces the production of IL-22, thereby providing a protection
against candidiasis and mucosal damage [86]. Moreover, recent evidence from the human colon cell line
has demonstrated that IAld induces the expression of IL-10R1, indicating an IL-10 signaling-dependent
anti-inflammatory mechanism of IAld [87]. Emerging researches have revealed a reduction in the level
of IAA in individuals with metabolic syndrome. For instance, results from Natividad et al. [88] have
found that fecal samples of obese people demonstrate lower levels of IAA than those of non-obese
people. Also, a reduction in the concentration of IAA in the colon content has been observed in mice
fed with a high fat diet, which exhibits glucose intolerance and hepatic steatosis. Another study has
reported a substantial deprivation of IAA in the liver and cecum (3 and 10-fold, respectively) of mice
exposed to a high fat diet compared with those fed a normal diet [89]. This study also demonstrates
that IAA dose dependently reduces the induction of pro-inflammatory cytokines including TNF-α,
MCP-1, and IL-1β by LPS, leading to a reduction in the synthesis of FFAs and palmitate in macrophage
cell line. Besides, IAA alleviates the lipogenesis mediated by cytokine and free fatty acids via its direct
action on hepatocytes in an AhR-dependent manner. The evidences above suggest a protective role of
IAA against NAFLD through acting on both macrophages and hepatocytes. IPA, which serves as a
ligand for pregnane X receptor (PXR), has also been shown to suppress intestinal pro-inflammatory
cytokines and strengthen the barrier function [90]. As a free radical scavenger, IPA is known to protect
against oxidative stress-induced damage in brain, neuron, and hepatic microsomal membranes [91–93].
Intriguingly, recent study uncovers that IPA improves glucose metabolism by reducing the levels
of blood glucose and plasma insulin [94]. Therefore, IPA may possess the therapeutic potential for
metabolize dysfunction related to insulin resistance.

8. Bile Acids

Bile acids, which are synthesized from cholesterol in the liver and stored in the bile bladder, regulate
multiple physiological and pathological processes. Bile acids not only facilitate the absorption of lipids
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in the intestine, but also function to modulate glucose and lipid metabolism [95]. The therapeutic
value of bile acids has been known in various diseases, including neurological disorders, fatty
liver, liver inflammation, gallstones, primary biliary cirrhosis, pancreatitis, and inflammatory
bowel disease [96–101]. Gut microbiota converts the primary bile acids including cholic acid (CA)
and chenodeoxycholic acid (CDCA) in the distal small intestine and colon of human beings into
secondary bile acids such as deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic
acid (UDCA) [102]. Compared with primary bile acids, secondary bile acids are more conducive
to the selection of intestinal bacteria. In addition to their direct antimicrobial properties, bile acids
indirectly involve in farnesoid X receptor (FXR)-mediated antimicrobial defense [103,104]. FXR is
a member of the nuclear hormonal receptor family that widely exists in ileum and the liver, and
regulates gene expression in diverse metabolic pathways. Modulation of FXR signaling has emerged
as a potential strategy for prevention and treatment of the fatty liver and relevant disturbance of
metabolism [105]. FXR has been reported to reduce fatty acid and triglyceride synthesis in the liver
through down-regulating the expression of LXR and SREBP-1C [106]. FXR-deficient mice exhibit a
reduction in the tolerance for glucose and decrease in the sensitivity to insulin [107]. In contrast, FXR
activation by cholic acid (CA) reduces glucose levels by inhibiting expression of multiple genes related
to gluconeogenesis in the liver [107]. Reduction of phosphoenolpyruvate carboxykinase (PEPCK)
expression induced by small heterodimer partner (SHP) further suggests the crucial role of FXR in
the regulation of glucose metabolism [108]. Aside from FXR, Takeda-G-protein-receptor-5 (TGR5) is
another classic receptor for bile acids. In hepatic tissue, TGR5 is expressed in Kupffer and endothelial
cells and functions to modulate liver inflammation and glucose metabolism, and to improve insulin
sensitivity. TGR5 mitigates inflammatory response through the inhibition of NF-κB signaling and
cytokines generation in macrophages [109]. In addition, TGR5 possesses a pivotal role in controlling
the intestinal GLP-1 release from L cells and thus in maintaining the homeostasis of glucose [110].
Interestingly, supplementation of bile acids to mice facilitates energy expenditure in brown adipose
tissue in TGR5-dependent manner [111]. These evidences suggest that TGR5 is functionally active in
the regulation of inflammation, glucose metabolism and energy balance.

9. Trimethylamine

Trimethylamine (TMA) produced from the intestinal microbiota through the catabolism of dietary
choline, phosphatidylcholine, betaine, and carnitine, enters into the liver via the portal vein [112].
Trimethylamine-N-oxide (TMAO), an oxidative product of TMA catalyzed by flavin-containing
monooxygenases (FMO) in the liver, has been considered as a novel biomarker for early metabolic
syndrome [113]. TMAO affects the development of NAFLD through multiple pathways. Firstly,
the elevation of blood TMAO predicts an increase in TMA production, indirectly reflecting the changes
in the metabolism of choline and phosphatidylcholine. In particular, deficiency of choline may hinder
the synthesis and secretion of very low-density lipoprotein, thus leading to hepatic accumulation of
triglycerides and fatty degeneration [114]. Secondly, the expression of hepatic cytochrome P450 family
7 subfamily A member 1 (CYP7A1) gene, which encodes an endoplasmic reticulum membrane protein
that catalyzes the conversion of cholesterol to bile acids, is positively associated with the serum level of
TMAO in NAFLD patients [115]. However, mice supplemented with TMAO in normal physiological
conditions show a reduction in bile acid. This is attributed to the decrease in the expression of bile acid
synthetic enzymes and transporters in the liver [116]. Thus, TMAO may modulate NAFLD via the
regulation of bile acid metabolism and transport. Finally, gut microbiota-mediated TMA/FMO3/TMAO
pathway modulates insulin resistance, glycolipid metabolism, cholesterol homeostasis, and hepatic
inflammation [117–119], thereby affecting hepatic triglyceride accumulation and liver steatosis.

10. Carotenoids and Phenolic Compounds

The importance of dietary phytonutrients including carotenoids and polyphenols in amelioration
of NAFLD has been highlighted by numerous human and animal studies [120–125]. Both carotenoids
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and polyphenols are discovered as secondary plant metabolites that possess potential anti-oxidant
and anti-inflammatory properties. Carotenoids are a family of fat-soluble tetraterpenoids compounds
that present as pigments in vegetables and fruits [126], while polyphenols are known as molecules
that contain more than one hydroxyl group linked to benzene rings [127]. Although the sources of
carotenoids and polyphenols are mostly from plants, gut microbiota-derived contributions are of
great concern. The bioaccessibility and bioavailability of dietary carotenoids and polyphenols, which
have known to be improved by gut microbiota, may determine the extent of their benefits on human
health [128,129]. A growing appreciation has emerged for the role of gut microflora in facilitating
the generation of carotenoids and phenols, through the degradation of intestinal content into simple
molecules by microbial enzymes. Interestingly, comparative genomics have revealed four major
phylogenetic lineages of microbiota with the capacity of carotenoid biosynthesis [130]. In addition,
an in vitro gut fermentation experiment uncovered the formation of phenolic metabolites of microbe in
response to water-extractable dietary fiber [131]. Hence, the microbiota present in the human gut brings
about an increase in the concentrations of carotenoids and phenolic compounds in the circulatory
system and thus the target tissues. The precise mechanisms of the protective roles of carotenoids
and phenolic compounds in NAFLD are not fully elucidated, however, apart from the direct roles as
free radical scavengers and anti-inflammatory molecules, carotenoids and phenolic compounds have
been shown to function as agonists for AHR and PXR, thereby maintaining gut homeostasis, normal
glucose metabolism, and resistance to inflammatory disorders [132–136]. Further research is required
to provide the mechanism underlying the defensive effects of carotenoids and phenolic compounds on
NAFLD in specific receptor-dependent manner.

11. Conclusions

The gut microbiota is closely related to NAFLD and functions through delivering their own
ingredients or metabolites. Bacterial endotoxin, peptidoglycan, DNA, and extracellular vesicles-induced
inflammation may accelerate the development of NAFLD and the onset of NASH. Patients suffering
from NAFLD appear intestinal dysbiosis and impaired intestinal barrier function, which in turn
aggravates the uptake of bacterial component into the hepatic tissue and thus the immune responses.
The key metabolites generated from gut microbiota, including short-chain fatty acids, secondary bile
acids, indole and its derivatives, trimethylamine, carotenoids, and phenolic compounds, serve as
regulators in host metabolism, immune cell systems, and redox homeostasis, thereby fundamentally
altering the progression of NAFLD. Despite considerable progress being reported on the interaction
between gut microbes and the liver diseases, the underlying mechanisms have not yet been fully
elucidated. The mechanisms that clarify the association of the ingredients and metabolites derived
from gut microbiome with NAFLD has been shown in Figure 1, according to the existing reports.
The targeted application of microbial-derived factors requires a comprehensive description of their
cellular receptors and potential signaling pathways on the host, which needs more extensive clinical
and experimental research. Exploring the mechanisms whereby the components and metabolites
generated from gut microbiota regulate host cells is in favor of the manipulation of susceptibility
to liver diseases. Targeting gut microbiota-derived factors and the relevant host cell signaling will
provide novel strategies for the intervention of NAFLD.
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vesicles) from the gut into the portal vein that provides blood to different liver cell types (Kupffer 
cells, hepatic stellate cells, and hepatocytes). These bacterial components result in activation of the 
corresponding toll-like receptors (TLR2, TLR4, TLR9) or NOD-like receptors (NOD1, NOD2) and the 
subsequent signaling pathway. The short RNA (sRNA) inside the extracellular vesicles serve as 
epigenetic regulators in gene expressions. The intestinal microbiome can be subjected to soluble 
dietary fibers and nondigestible carbohydrates fermentation which produce SCFAs (acetate, 
propionate, and butyrate). Short-chain fatty acids work through binding to their receptors (GPCRs) 
or by inhibiting the activity of histone deacetylases (HDACs). Dietary tryptophan is metabolized to 
indole and its derivatives (indole-3-aldehyde, indole-3-acetic acid, and indole-3-pyruvic acid) by the 
tryptophanase generated from specific species of gut microbiome, followed with the activation of 
AHR and PXR signaling in the liver tissue via the portal vein. Primary bile acids (cholic acid (CA) and 
chenodeoxycholic acid (CDCA)) can be metabolized to secondary bile acids (deoxycholic acid (DCA), 
lithocholic acid (LCA), and ursodeoxycholic acid (UDCA)) which regulates FXR and TGR5 signaling 
in the liver. The bacteria that resides in the gut also metabolizes choline into trimethylamine which is 
oxidized to trimethylamine-N-oxide (TMAO) by hepatic flavin-containing monooxygenases 3 
(FMO3). Dietary components (e.g., fiber and phytonutrients) provide substrates for microbiota-
derived carotenoids and phenols which act on hepatic tissue directly or via AHR and PXR activation. 
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Figure 1. The mechanisms that connect gut microbiome-derived ingredients and metabolites with
non-alcoholic fatty liver disease (NAFLD). Impaired intestinal mucosal barrier function leads to leakage
of bacterial components (lipopolysaccharides, peptidoglycan, DNA, and extracellular vesicles) from
the gut into the portal vein that provides blood to different liver cell types (Kupffer cells, hepatic
stellate cells, and hepatocytes). These bacterial components result in activation of the corresponding
toll-like receptors (TLR2, TLR4, TLR9) or NOD-like receptors (NOD1, NOD2) and the subsequent
signaling pathway. The short RNA (sRNA) inside the extracellular vesicles serve as epigenetic
regulators in gene expressions. The intestinal microbiome can be subjected to soluble dietary fibers and
nondigestible carbohydrates fermentation which produce SCFAs (acetate, propionate, and butyrate).
Short-chain fatty acids work through binding to their receptors (GPCRs) or by inhibiting the activity
of histone deacetylases (HDACs). Dietary tryptophan is metabolized to indole and its derivatives
(indole-3-aldehyde, indole-3-acetic acid, and indole-3-pyruvic acid) by the tryptophanase generated
from specific species of gut microbiome, followed with the activation of AHR and PXR signaling
in the liver tissue via the portal vein. Primary bile acids (cholic acid (CA) and chenodeoxycholic
acid (CDCA)) can be metabolized to secondary bile acids (deoxycholic acid (DCA), lithocholic acid
(LCA), and ursodeoxycholic acid (UDCA)) which regulates FXR and TGR5 signaling in the liver. The
bacteria that resides in the gut also metabolizes choline into trimethylamine which is oxidized to
trimethylamine-N-oxide (TMAO) by hepatic flavin-containing monooxygenases 3 (FMO3). Dietary
components (e.g., fiber and phytonutrients) provide substrates for microbiota-derived carotenoids and
phenols which act on hepatic tissue directly or via AHR and PXR activation.
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Abbreviations

AhR Aryl hydrocarbon receptor
EV Extracellular vesicle
FXR Farnesoid X receptor
GPCR G-protein coupling receptor
HDAC Histone deacetylase
HFD high fat diet
IAA Indole-3-acetic acid
IAld Indole-3-aldehyde
IPA Indole-3-propionic acid
LBP LPS binding protein
LPS Lipopolysaccharide
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
NOD1 Nucleotide Binding Oligomerization Domain Containing 1
PGN Peptidoglycan
PXR Pregnane X receptor
SCFA Short-chain fatty acid
TGR5 Takeda-G-protein-receptor-5
TLR Toll-like receptor
TMA Trimethylamine
TMAO Trimethylamine-N-oxide
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