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The regression discontinuity design (RDD), first proposed in the educational psychology literature and popularized in
econometrics in the 1960s, has only recently been applied to epidemiologic research. A critical aim of infectious disease
epidemiologists and global health researchers is to evaluate disease prevention and control strategies, including the
impact of vaccines and vaccination programs. RDDs have very rarely been used in this context. This quasi-experimental
approach using observational data is designed to quantify the effect of an intervention when eligibility for the intervention
is based on a defined cutoff such as age or grade in school, making it ideally suited to estimating vaccine effects given
that many vaccination programs and mass-vaccination campaigns define eligibility in this way. Here, we describe key
features of RDDs in general, then specific scenarios, with examples, to illustrate that RDDs are an important tool for
advancing our understanding of vaccine effects. We argue that epidemiologic researchers should consider RDDs
when evaluating interventions designed to prevent and control diseases. This approach can address a wide range of
research questions, especially those for which randomized clinical trials would present major challenges or be infea-
sible. Finally, we propose specific ways in which RDDs could advance future vaccine research.

causal inference; effectiveness; efficacy; quasi-experimental methods; regression discontinuity; vaccines

Abbreviations: HPV, human papillomavirus; MenB, meningococcal B; RDD, regression discontinuity design.

A critical aim of infectious disease epidemiologists and global
health researchers is to evaluate disease prevention and control
strategies and quantify reductions in risks following implementa-
tion. In particular, vaccines and vaccination programs have been
one of themost successful public health interventions ever devel-
oped, yet challenges remain for assessing the effectiveness of
new vaccines and the use of existing vaccines in novel settings
or among new target groups. Epidemiologic studies evaluating
vaccines are essential to quantify vaccine efficacy and effective-
ness against disease-specific endpoints and to identify optimal
strategies for preventing infectious diseases. Individually ran-
domized clinical trials are typically required for the licensure of
vaccines and provide important evidence needed to evalu-
ate vaccine efficacy and safety. However, challenges often arise
in extrapolating efficacy results from randomized clinical trials to
different epidemiologic contexts. Vaccine efficacy and effective-
ness in diverse epidemiologic contexts might differ according to
myriad factors including, among others, demographic character-
istics of the at-risk population, the transmission intensity of the

pathogen, and the existing distribution of immunity among the
target population. For example, vaccine-induced immunity can
interact with preexisting natural immunity in populations; the
same vaccine can have different effectiveness in populations
with different levels immunity (1, 2). Thus, evaluating vaccines
introduced into new contexts is crucial.

The regression discontinuity design (RDD) provides an
opportunity for causal inference using observational data to
evaluate vaccines and to produce robust estimates of vaccine ef-
fects (3, 4). Vaccine policies often assign individuals to treatment
or to the status quo based on an arbitrary cutoff of a continuous
variable such as age. The RDD is a quasi-experimental design
first proposed in 1960 (5) to evaluate interventions where eligi-
bility is based on an arbitrary cutoff. It assumes that, in a small
neighborhood around the cutoff, treatment assignment is ignor-
able, so that locally the potential outcome is independent of assign-
ment as in a randomized study (3, 6, 7). Therefore, the RDD can
be used to estimate the local treatment effect (around a small
neighborhood) at the cutoff that defines eligibility for the treatment.
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Recent advances in econometrics and statistics have shed light
on the conditions under which RDDs produce good estimates
(8). One identifying assumption of the RDD is that the assign-
ment covariate, such as age, is continuous around the cutoff.
Another is that the relationship between the assignment covar-
iate, such as age, and the potential outcomes under the two
possible assignments is continuous at the cutoff (3). Although
developed for continuous outcomes, it has been shown that
RDDs can be extended to dichotomous and time-to-event out-
comes (3), as might be used in vaccine studies. If the assump-
tions inherent to an RDD are satisfied, the design has strong
internal validity andminimizes concern about selection bias.

Here, we argue that RDDs have potential to add to the existing
repertoire of methods for evaluating vaccines, especially newly
introduced vaccines. A 2018 review of quasi-experimental de-
signs for evaluating vaccinesmentioned the RDD just briefly (9).
A 2015 review of primary research found that only one of more
than 30 publications applying RDDs to research questions in
medicine, epidemiology, and public health evaluated the impact
of a vaccine (10). Since then, only a few other examples relevant
to vaccine evaluation, described below, have been published,
highlighting the need to consider this approachmore broadly.

The RDD approach is particularly well-suited to evaluating
vaccines when a vaccination program is designed to target a spe-
cific group defined by a continuous variable with a clear cutoff
(for example, as noted, a group defined by age) that establishes
eligibility for the vaccine, and this condition must be met. This is
often the case when a vaccine is introduced as part of routine
administration or a mass-vaccination campaign. Human papillo-
mavirus (HPV) vaccine introduction is a recent example of
a licensed vaccine with distinct cutoffs that determine vaccina-
tion eligibility. HPV vaccine is recommended routinely for
adolescents aged 11–12 years in the United States and those
aged 9–13 years or in grades 4–8 in Canada. Smith et al. used
administrative health data to demonstrate the impact of HPV
vaccine introduction on cervical dysplasia and anogenital warts
(11) and on indicators of sexual behavior (12) in the 2 years
after vaccine introduction among girls in grade 8 (and eligible
for the vaccine) compared with those in grade 8 during the
2 years prior to vaccine introduction. They used birthdate, a
continuous variable available in their database, as a proxy for
grade.Many vaccines withinmany national and subnational vac-
cination programs worldwide have been introduced or re-
commended based on age cutoffs, so there are many potential
opportunities for using anRDD to evaluate vaccines. An advan-
tage of the RDD is that it allows evaluation based on con-
current, or nearly concurrent, outcomes in the comparison
groups, so temporal trends would be similar in both vaccinated
and unvaccinated groups.

Another context in which RDDs present an opportunity to
evaluate vaccines is when the incidence of disease is quite low or
when there is a long time lag until the development of the out-
come.When incidence is low, it is infeasible to conduct large-
scale clinical trials sufficiently powered to evaluate the impact
of a new vaccine on disease endpoints. If a newly introduced
vaccine is recommended for a specific age group, then those
just above the cutoff and those below the cutoff could be fol-
lowed forward in time, similar to the HPV vaccine example.
However, the follow-up might be much longer than 2 years.
Temporal trends affecting those on either side of the cutoff

would likely be similar for both groups even in long-term
follow-up.

Sample size is often an issuewithRDDs, but such an approach
is feasible even for rare diseases, if the outcome of interest can be
assessed using routinely collected surveillance data. For instance,
new meningococcal vaccines are typically evaluated based on
immunogenicity alone given the low incidence of meningo-
coccal disease caused by any single serogroup. In 2015, the
United Kingdom became the first country to routinely recom-
mend meningococcal B (MenB) vaccination as part of their
infant vaccination program, and eligibility for the vaccine is based
on birthdate. The change in incidence of MenB disease has been
evaluated using a cohort study design (13). Many questions
remain about MenB vaccines, including whether they might
also protect against other serogroups causing disease. So far,
investigating this question has been limited to immunologic
studies based on surrogate endpoints (14). Similarly, a retro-
spective case-control study in New Zealand (15) and an ecologi-
cal analysis in Norway (16) suggest that MenB vaccines,
designed to protect against Neisseria meningitidis, might also
contribute to declines in Neisseria gonorrhoeae; however, evi-
dence is mixed. An RDD could be designed in a setting
where MenB vaccines are recommended for teenagers (as in
the United States) and at a time when uptake is sufficiently
high to robustly evaluate the potential cross-protection
offered by meningococcal vaccines, and build upon early evi-
dence, demonstrating a novel application of RDD in vaccine
research.

In the historic 1954 Salk polio vaccine trial, involving more
than 1.8 million children (17, 18), the initial design called for
students in grade 2 to be offered vaccine and compared with
students in grades 1 and 3 who remained unvaccinated, thus
resembling anRDD.However, the lack of blinding and the poten-
tial for bias resulted in the design being changed more than mid-
way through recruitment to a design individually randomizing
students in all 3 grades to vaccine or placebo (19). The change
to a randomized trial was possible because the vaccine was not
yet licensed and not yet recommended for use. An RDD design
would be a feasible alternative to a randomized clinical trial in
similar situations when randomization is not possible or where
it is unethical, as is often the case once a vaccine is licensed.

One issue in using RDDs for evaluating vaccines is the poten-
tial for indirect effects, also called spillover effects, whereby those
in the control group might benefit from the reduction in risk re-
sulting from vaccinating the treatment group (20, 21). Gener-
ally, the RDD would estimate the effect of vaccination in those
eligible compared with those who are ineligible for vaccination.
The analogy to an individually randomized trial would yield an
estimate of the direct effect, the reduction in risk of the outcome
among the treatment group compared with the control group.
(The definition of these terms differs from that in mediation
analysis (1, 22).) Estimates of direct effects based on the differ-
ence estimators could be affected by indirect effects because
incidence among those who are ineligible for the vaccine might
be affected by the vaccinated individuals. When evaluating
newly introduced vaccines in new settings, the indirect effects
might be expected to be low. Sävje et al. (23) showed that if one
erroneously assumes there are no indirect effects in a setting with
limited or even moderate indirect effects, standard estimators are
likely close to the direct effect if the sample is sufficiently large.
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Aronow et al. (24) showed that under a local randomization
assumption, the difference in means estimator of an RDD as
applied to subjects near the cutoff is unbiased for a regime-
specific effect. This is equivalent to the average direct effect
(25) for the subpopulation of subjects within the window near
the threshold. Thus, if the indirect effects are low for a newly
introduced vaccine, the RDD should give a reliable estimate.
A collection of RDDs might eventually be used to estimate
how the local treatment effect varies with level of vaccine cov-
erage in different populations, but this would require more
methodological research.

While RDDs estimate direct effects of vaccines, if overall
effects are of interest, interrupted time-series designs are often
used, especially when new policies are implemented very rap-
idly. An example is the introduction of rotavirus vaccination
in Ghana in April 2012 (26). Moscoe et al. (10) pointed out that
the interrupted time series can be interpreted as a subtype of
the RDD, where calendar time is the assignment variable, and
the cutoff occurs when the new policy is implemented.

As long as a cutoff defines eligibility, and individuals are essen-
tially distributed at random around that cutoff, RDDs can be used
to evaluate a vaccination policy on any outcome of interest. For
example, Helleringer et al. (27) examined the effects of a mass-
vaccination campaign on utilization of routine vaccination using
RDD by comparing infants born just before the mass-vaccination
campaign with infants born just after the campaign, who were,
by definition, not exposed to the campaign.

RD cannot guarantee unbiasedness. Efforts need to be under-
taken to systematically evaluate outcomes in the groups on both
sides of the cutoff and assess whether assumptions are met (28).
The two identifiability assumptions mentioned above can be
checked by testing whether the density of the data is continuous
around the threshold and whether the baseline covariates are
balanced at the threshold, as one checks in a randomized trial.
Smith et al. (29) suggested further to check whether a disconti-
nuity in the probability of exposure at the cutoff exists and that
the value of the variable determining the cutoff was not manipu-
lated. Despite its limitations, the RDD can assess the “local
causal treatment effect ‘at the threshold’” (3, p. 731; 4, p. 740)
for a vaccination program in real time under real-world condi-
tions without a randomized experiment, without withholding
vaccination from any eligible group, and by taking advantage
of the natural experiment created by implementation of the vac-
cination program. It should be usedmore frequently.
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