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Current COVID-19 screening efforts mainly rely on reported symptoms
and the potential exposure to infected individuals. Here, we developed
a machine-learning model for COVID-19 detection that uses four layers
of information: (i) sociodemographic characteristics of the individual,
(ii) spatio-temporal patterns of the disease, (iii) medical condition and
general health consumption of the individual and (iv) information reported
by the individual during the testing episode. We evaluated our model on
140 682 members of Maccabi Health Services who were tested for COVID-
19 at least once between February and October 2020. These individuals
underwent, in total, 264 516 COVID-19 PCR tests, out of which 16 512
were positive. Our multi-layer model obtained an area under the curve
(AUC) of 81.6% when evaluated over all the individuals in the dataset,
and an AUC of 72.8% when only individuals who did not report any symp-
tom were included. Furthermore, considering only information collected
before the testing episode—i.e. before the individual had the chance to
report on any symptom—our model could reach a considerably high AUC
of 79.5%. Our ability to predict early on the outcomes of COVID-19 tests
is pivotal for breaking transmission chains, and can be used for a more
efficient testing policy.
1. Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, which causes
coronavirus disease 2019, or COVID-19) was first identified in Wuhan, China,
in December 2019. It has since developed into a pandemic, affecting 219
countries and territories worldwide, with over 109 million infected individuals
and over 2.4 million lives lost to this deadly virus as of 18 February 2021 [1].

Despite the considerably fast development of an effective vaccine, the
pandemic is expected to continue to disrupt our lives in the near future for
multiple reasons. These include the emergence of highly transmissible
mutant strains [2,3], the non-optimal efficacy of the developed vaccines and
the current disapproval of their administration to certain populations [4], the
limited supply and distribution capacities of the vaccines [5], as well as
the potential risk of vaccine-waning immunity [6]. Thus, in parallel with the
challenge of increasing vaccination coverage and long-term effectiveness, the
implementation of early detection and prompt isolation strategies is still
required in order to break transmission chains and contain local outbreaks.

Current efforts for the early detection of COVID-19 mainly rely on screening
practices, which typically include a combination of reported symptoms and
potential exposure to infected individuals [7]. Among the COVID-19 symptoms
are loss of taste and smell, fatigue and fever, all of which have been found to be
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Figure 1. Layers 1 and 2: sociodemographic information of the tested indi-
vidual and the spatio-temporal dynamics of the disease. (a) Percentage of
positive tests stratified by gender, ethnicity, and socio-economic level. The
percentages of positive tests are linked with gender, ethnicity, and socio-
economic level. Error bars represent the 95% confidence interval. (b) Percen-
tage of positive tests over time for three clinics located in different cities and
for the entire country. The value for each day is calculated as the percentage
of positive tests over the 14 days preceding this day.
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useful for the disease’s detection [7,8]. However, provided
that multiple pathogens may cause symptoms similar to
those of COVID-19, symptom-based detection is of limited
utility. Moreover, it is inherently prone to miss presympto-
matic or asymptomatic cases, which account for 40–45%
of those infected with COVID-19, who can still transmit the
disease [7,9]. Consequently, the USA has recently scaled up
efforts to improve its testing capacity and accuracy in an
unprecedented manner [10].

Several pioneering studies have offered proactive
methods for COVID-19 detection based on smartwatches
and activity trackers [11–13]. For example, a recent study
showed that the integration of self-reported symptoms and
sensor data from smartwatches resulted in an area under
the curve (AUC) as high as 80% [11]. However, these methods
rely on dedicated devices and require that individuals agree
to frequently wear these devices and consent to share the col-
lected information. Such devices are used by less than 20% of
the population in developed countries, and are also limited to
specific age groups and sub-populations. Thus, it is crucial
to improve our ability to detect the disease using data that
are already available regarding the entire population.

As the risk of infection is governed by individuals’ contact
mixing patterns, it is crucial to account for the disease’s
spatio-temporal dynamics as part of the detection task
[14,15]. Furthermore, certain populations are known to be
at greater risk than others of testing positive. Specifically,
beyond age and gender, of great concern are the data show-
ing the disproportionate effect of COVID-19 on ethnic and
racial minorities and impoverished populations [16,17].
These populations often live in denser regions and are charac-
terized by larger households, which puts them at greater risk
of infection [18].

The risk of contracting the disease also depends on an
individual’s protective behaviour, such as level of social
distancing and hygiene practices. The latter correlates with
the actual and perceived risks of an individual [19,20], both
of which can be inferred from an individual’s medical
history. Such evidence was also demonstrated in other
contexts. For example, a previous study suggested that indi-
viduals who in the previous season had not yet been
vaccinated against influenza and who were diagnosed with
a respiratory illness were more likely to become vaccinated
in the upcoming season [21]. Following the same logic, infor-
mation gained from an individual’s medical history that can
be linked to the actual and perceived risks may be used to
predict said individual’s test results.

Here, we developed a multi-layer model for the early
detection of COVID-19 infection. Our approach combines
sociodemographic information about the tested individual,
aggregated information on the spatio-temporal dynamics of
the disease, and general information from the medical history
of the individual, in addition to data collected during the
testing episode. Our approach is pivotal for breaking trans-
mission chains and can be used to substantially improve
testing strategies.
2. Results
Our study included a randomsample of 140 682members of the
Israel healthmaintenance organizationMaccabiHealthcare Ser-
vices (MHS) who were tested for COVID-19 at least once
between February and October 2020. Of these individuals,
53.8% were women. The sampled individuals’ age ranged
from 1 to 105 years, with a median age of 30 years (IQR: 16–
49). These individuals underwent, in total, 264 516 COVID-19
tests, 16 512 (6.2%) of which were found to be positive.

Overall, we identified four layers of information that can
help in predicting the outcome of a COVID-19 test: (i) the
sociodemographic information of the tested individual,
(ii) the spatio-temporal patterns of the disease observed
around the time of the testing episode, (iii) the medical con-
dition and general health consumption of the tested
individual over the past 5 years, and (iv) the information
collected on the tested individual during the testing episode.

In examining the sociodemographic information of the
tested individuals (figure 1a), we found that men were more
likely to test positive than women, with 7:72+ 0:15% positive
tests for men, compared to 5:11+ 0:11% for women. Positive
tests were also linked with ethnicity and socio-economic level.
Jewish Orthodox and Arab individuals, both of whom are
characterized by large households, exhibited higher percen-
tages of positive tests (14:2+ 0:35% and 7:78+ 0:4%,
respectively) than the rest of the population (4:66+ 0:09%).
Individuals with a low socio-economic status had a substan-
tially higher percentage of positive tests (11:15+ 0:31%)
than those with a middle or high socio-economic status
(5:97+ 0:12% and 3:92+ 0:15%, respectively). A predictive
model based on this layer of information alone demonstrated
amoderate classification ability between positive and negative
tests, with an AUC of 67:74+ 0:77% (figure 3a).



Table 1. Layer 3: health consumption, preventative health behaviour and medical conditions. Percentages of positive tests stratified by health criterion and age
group. Increased health consumption, increased preventative health behaviour, and particular medical conditions are associated with lower percentages of
positive tests.

positive tests (%) by age group

category feature value 0–9 10–19 20–29 30–39 40–49 50–59 ≥60

health

consumption

number of hospitalizations in

previous 5 years

≤2 6.34 10.4 8.48 5.66 6.06 5.69 3.43

>2 4.39* 7.06** 6.63** 3.86** 4.23** 3.56** 2.45**

number of visits to primary

care physician in previous

five years

≤5 8.07 12.31 10.49 7.15 7.35 5.99 2.26

>5 5.98** 9.77** 7.91** 5.29** 5.75** 5.44 3.2**

number of drug prescriptions

in previous five years

≤4 7.76 11.12 9.71 6.04 6.1 5.72 4.26

>4 4.98** 9.09** 7.37** 5.23** 5.86 5.42 3.0**

preventative

behaviour

number of diagnoses in

previous 5 years

≤20 8.26 12.87 10.5 7.38 6.79 5.35 2.43

>20 5.68** 9.2** 7.65** 5.15** 5.79** 5.51 3.13*

number of laboratory tests in

previous 5 years

≤3 6.77 10.99 10.31 7.9 8.34 7.7 3.79

>3 5.48** 9.04** 6.96** 4.63** 4.56** 4.45** 2.85**

number of COVID-19 tests ≤1 6.23 9.65 8.97 6.44 7.55 7.64 4.74

>1 6.81 15.05** 6.24** 2.74** 2.15** 1.87** 1.37**

number of vaccinations in

previous 5 years

0 6.62 10.83 8.81 6.2 6.46 5.74 3.15

>0 5.75** 9.05** 7.01** 4.34** 4.9** 5.05** 3.04

medical

condition

abnormal cardiovascular

condition

no 6.32 10.35 8.42 5.55 5.97 5.5 3.31

yes 3.63* 7.64* 6.67 4.53 4.66 5.4 2.63**

abnormal blood pressure no 6.27 10.31 8.41 5.51 6.02 5.52 3.75

yes 0.0 8.33 6.19 6.51 5.09* 5.39 2.71**

cancer no 6.27 10.32 8.42 5.57 5.99 5.61 3.29

yes 4.65 7.25 3.88* 2.54** 4.49* 3.97** 2.35**

diabetes no 6.27 10.32 8.39 5.51 5.94 5.39 3.04

yes 9.09 6.31 8.53 7.54 5.76 6.31* 3.17

chronic kidney disease no 6.27 10.3 8.4 5.51 5.98 5.57 3.76

yes 0.0 37.5** 7.69 7.98* 4.58* 4.71 2.4**

chronic obstructive

pulmonary disease

no 6.27 10.31 8.39 5.54 5.94 5.5 3.1

yes NA 0.0 0.0 5.88 3.85 4.79 2.76

Significant differences are marked with asterisks, where **denotes p < 0.01 and *denotes p < 0.05.
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The percentage of positive tests also varied considerably
with time and across regions (figure 1b). Tel Aviv had lower
percentages of positive tests compared to Jerusalem during
most of the study period. Moreover, accounting for changes
in time and region, we could identify regional outbreaks that
were pivotal to our prediction task. For example, in specific
zones in Nazareth, we observed lower-than-average infection
rates in April but higher rates in October. Considering a
predictive model based on this layer of information alone
improved the ability to classify between COVID-19-positive
and COVID-19-negative tests, with an AUC of 72:3+ 0:44%
(figure 3a). In this analysis, we assumed that on each given
day (for which we wanted to calculate the percentage of
positive tests), all the relevant COVID-19 laboratory tests per-
formed in the preceding 14 days are available (i.e. assuming a
reporting lag of a single day). Examining the effect of longer
lags on the model’s performance, we found that the decrease
in AUC was relatively marginal. For example, for lags
of 3 and 7 days, the AUC decreased by 0.75% and 2.1%,
respectively (electronic supplementary material, figure S1).

Our analysis of individuals’ electronic medical records
(EMRs) found that increased health consumption, increased
preventative health behaviours, and certain medical condi-
tions known to be associated with severe COVID-19 illness
[22] were correlated with a lower percentage of positive
tests (table 1).

For example, individuals who were more likely to become
vaccinated against influenza had a lower probability of testing
positive across all age groups. For individuals aged 30–39,
those who were vaccinated at least once in the previous 5
years received a positive result in 4:34+ 0:35% of the tests,
whereas those who were not vaccinated at all in the previous
5 years were found to be positive in 6:2+ 0:31% of the tests.
Likewise, individuals who were diagnosed with cancer in the
past had a lower probability of testing positive, across all age
groups. A predictive model based on this layer of information
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alone sufficed to classify between positive and negative tests,
yielding an AUC of 71+ 0:53% (figure 3a).

We also analysed the information collected right before the
COVID-19 test was taken, during the referral and the testing
episode itself. Specifically, we assessed the association between
the reported symptoms and test outcome (figure 2a). We found
that loss of taste or smellwas themost indicative symptom, ran-
ging from 10:52+ 0:05% of positive tests in individuals aged
0–9 to 33:16+ 0:03% in individuals aged 20–29. We also
found that exposure to laboratory-confirmed COVID-19 indi-
viduals could serve as a predictor of test outcome.
Specifically, individuals exposed to COVID-19 cases in the
same household were associated with an 18:48+ 0:64%
chance of being found positive, while individuals exposed
only outside of the household were associated with an
11:45+ 0:39% chance of being found positive. By contrast,
individuals who did not explicitly report being exposed to a
known COVID-19 case had a 4:88+ 0:09% chance of being
foundpositive (figure 2b).Moreover, we found that individuals
who were tested at home had an elevated risk of being found
positive (figure 2b). This is likely because testing at home was
performed for individuals whowere in quarantine or who suf-
fered froma severemedical condition. Considering a predictive
model based on this layer of information alone demonstrated
the ability to classify between positive and negative tests,
with an AUC of 70:6+ 0:59% (figure 3a).

A predictive model that combines all four layers of infor-
mation together allowed a considerably better classification
between COVID-19-positive and COVID-19-negative tests,
with an AUC of 81:6+ 0:46% (figure 3a). The features
derived from layers 1–3 can be collected passively prior to
the testing episode. By contrast, layer 4 requires tested indi-
viduals to actively report their clinical condition. We found
that a model that excludes layer 4 and uses only layers 1–3
is not only highly efficient from an operational perspective
but also has a classification ability only slightly lower than
that of the full model, yielding an AUC of 79:5+ 0:6%
(figure 3a). This marginal difference in performance between
these two models can also be observed in figure 3b, which
presents their full receiver operating characteristic curves.

With the exception of the location of the testing, all the con-
sidered features can be collected and assessed remotely via
phone calls or digital questionnaires. Thus, we also considered
amodel that excludes the feature indicating the testing location.
We found this model to be highly informative, with its AUC
score reaching 81:45+ 0:49%. Lastly, limiting our predictions
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only to individuals who did not report any symptom, our full
model yielded an AUC of 72:8+ 0:85%. This finding demon-
strates a moderate, yet considerable, ability to identify
presymptomatic or asymptomatic individuals.
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3. Discussion
We found that when using multiple layers of information, the
risk of testing positive for COVID-19 is highly predictable,
with the AUC reaching 81.6%. Specifically, we identified four
layers of information that can predict positive COVID-19 test
outcomes: (i) the sociodemographic characteristics of the
tested individual, (ii) the spatio-temporal patterns of the dis-
ease observed around the time of the testing episode, (iii) the
medical condition and general health consumption of the
tested individual over the past 5 years, and (iv) the information
reported by the tested individual during the testing episode.

We found that by relying on information from the testing
episode alone (e.g. symptom-related questions), we could
achieve an AUC of 70.6%. This result is consistent (albeit
lower) with recent studies that showed AUCs of 72% [11] and
76% [7]. When we considered only the information collected
before the testing episode—that is, before the individual had
the chance to report on any symptoms—our model could
reach a considerably higherAUC, 79.5%. This finding is pivotal
for earlier detection. The marginal difference in AUC scores
between the full model and the model without the testing epi-
sode information suggests that most of the information gained
from the testing episode can be inferred from the individual’s
medical history, as well as other aggregated information with
regard to the disease dynamics. Moreover, while symptom-
based predictions are likely to be sensitive to COVID-19
variants and the emergence of other respiratory infections,
our approach is likely to be more robust, as it explicitly
considers the spatio-temporal dynamics of COVID-19.

We found that individuals with underlying medical con-
ditions and individuals who maintain a more preventative
lifestyle are at lower risk of testing positive for COVID-19.
This finding implies that those populations tend to better pro-
tect themselves against the disease or are more likely to be
tested. While we cannot separate between the two causes,
health behaviour models, including the Health Belief Model
[23], and social cognitive theory [24,25] suggest that the com-
bination of these causes is likely. Despite the inherent
differences in the perception of risk between cultures world-
wide, we believe that the behavioural patterns and the
predictive models we have developed can be reproduced
with minor adaptations in most developed countries.

For privacy purposes, we considered only general infor-
mation from EMRs to infer an individual’s health condition
and preventative behaviour. For example, in our model, we
included information about the total number of yearly visits
to one’s primary care physician and the number ofmedications
prescribed to a patient rather than more invasive information,
such as the type of prescribed medication. Clearly, more
detailed information about individuals may provide an
improved understanding of their behaviour and lead to
improved predictive models. However, this comes at the price
of invading privacy, an issue that is no less important [26].

In this study, we analysed a random sample of 140 682
individuals who were tested for COVID-19. While our
approach may aid decision-makers in a postmortem fashion,
namely, after a decision to take a test has been made, findings
should not be extrapolated to the general population. Specifi-
cally, by accounting for the predicted probability of a test to
be found positive, our work can help prioritize the order of
test samples, optimize pool testing, or even recommend quar-
antine for specific individuals until their test results arrive.
By contrast, for policy-related questions concerning the gen-
eral population, including targeted screening or identifying
asymptomatic individuals in the community, a proper control
trial is essential.

Our study identifies and relies on correlations and associ-
ations in both pattern analysis and predictive modelling and
does not attempt to assume or imply causality. In addition,
this study does not explicitly account for attempted interven-
tions by MHS during the study period, including efforts to
test individuals at higher risk. Moreover, the sensitivity and
specificity of RT-PCR testing vary considerably among differ-
ent age groups and among individuals with different levels
of infection severity or at different stages of disease pro-
gression [27]. Specifically, the sensitivity in mild cases could
be as low as 62.5% [7,28], and the sensitivity a day prior to
symptom onset falls below 33%.

Our methodological approach which considers these four
different layers of information is likely applicable to other
infectious diseases besides COVID-19. Specifically, in settings
of airborne infections such as measles or pertussis, both the
basic reproductive number and the vaccination coverage in
the general population are relatively high. Thus, we typically
observe pockets of outbreaks in regions where vaccine refusal
is higher [29] and in subpopulations with high fertility, in
which a large proportion of infants is yet to be vaccinated
[30,31]. Additionally, several airborne diseases, as opposed
to others, are characterized by periodicity [32,33]. Accord-
ingly, we expect that spatio-temporal information (layer 1)
and socio-economic information (layer 2) will be valuable
for detection. When it comes to sexually transmitted diseases,
multiple factors, including sexual orientation, unprotected
intercourse exposures and the number of sex partners, may
remain relatively invariable over time [34]. Therefore, indi-
viduals tested, diagnosed or treated in the past are at
higher risk of being found positive [34], making behavioural
information (layer 3) valuable for detection.

In conclusion, COVID-19 test results are highly predictable
and can be achieved even in the absence of detailed information
on the signs and symptoms of the individual during the testing
episode. The ability to predict the outcomes of COVID-19 tests in
real time can be used to formulate amore efficient testing policy.
In the post-vaccine era, such a policy may become even more
efficient due to lower transmission rates, enabling easier
differentiation between positive and negative COVID-19 tests.
4. Methods
4.1. Ethical considerations
The study was approved by MHS’ Helsinki institutional review
board, protocol number 0093-20-MHS, signed on 21 October
2020. Informed consent was waived as identifying details were
removed before the analysis.

4.2. Study population and case definition
We analysed the anonymized EMRs of 140 682 randomly
sampled individuals tested at least once with PCR for COVID-
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19 during February–October 2020. The individuals were
members of MHS. MHS is the second largest health maintenance
organization in Israel, serving more than 25% of the Israeli
population (approx. 2.5 million members). MHS members
are representative of the Israeli population and reflect all
demographic, ethnic and socio-economic groups and levels [35].

For the 140 682 individuals considered in this study, 279 140
COVID-19 tests were performed during the examined time
period. According to previous guidelines in Israel, individuals
who tested positive were motivated to conduct additional tests
to terminate self-quarantine. Since our goal was to predict the
presence of COVID-19, for each individual, we included in our
analysis only tests until his/her first positive test (if such existed),
which corresponded to 264 517 tests in total.

For each individual, we extracted data from their EMRs
between 2015 and 2020. Specifically, we compiled four layers
of information to predict COVID-19 test outcomes: (i) the socio-
demographic information of the tested individual, (ii) the
spatio-temporal patterns of the disease, (iii) the medical con-
dition and general health consumption behaviour of the tested
individual and (iv) the information collected from the tested
individual during the test procedure. Information on features
considered for each of the layers is detailed in electronic
supplementary material, table S4.
84
4.3. Statistical analysis
To examine the statistical significance between the proportions of
positive tests for two different groups (e.g. diabetic individuals
versus non-diabetic individuals, table 1), we used the two pro-
portions Z-test. In settings for which the conditions to perform
a Z-test were not satisfied, we compared the proportions assum-
ing a beta distribution for each proportion, with parameters α
and β representing the number of positive cases + 1 and the
number of negative cases + 1, respectively. To compare statistical
differences between more than two groups, we used χ2 test of
independence. The problem of determining the outcome of a
COVID-19 test (i.e. positive or negative) was treated as a machine
learning, binary classification task. Specifically, we generated six
different prediction models, based on single layers of information
(sociodemographic, spatio-temporal, health-related and test-
related), as well as on combination of layers (before the test,
and before and during the test).
For our models, we considered the following classification
algorithms: (i) XGBoost [36], (ii) Naïve Bayes, (iii) logistic
regression and (iv) artificial neural network. In the main text,
we report the results of the XGBoost classifier as it yielded
the best classification performance. Figure S2 in the electronic
supplementary material reports our experimentation with
the three other classification algorithms. In all cases, we used
default parameters, after confirming that applying hyper-
parameters tuning over the training set using grid search
afforded comparable results.

We evaluated the model using a 10-fold cross-validation pro-
cess, where each time, the model was trained using 90% of the
data and then tested over the remaining 10%. We chose k = 10
since our dataset is relatively large, and the observation that
this value has been shown empirically to yield test error rate esti-
mates that suffer neither from excessively high bias nor from very
high variance in general [37], and since it was previously used in
settings similar to ours [38]. The reported results are the mean of
these 10 executions. The area under the receiver operating charac-
teristic curve (AUC) was used as the main metric to assess the
overall performance of the trained models.

Ethics. The study was approved by MHS’ Helsinki institutional review
board, protocol number 0093-20-MHS, signed on 21 October 2020.
Informed consent was waived as identifying details were removed
before the analysis.
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