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ABSTRACT

Motivation: A major limitation in modeling protein interactions is the
difficulty of assessing the over-fitting of the training set. Recently,
an experimentally based approach that integrates crystallographic
information of C2H2 zinc finger–DNA complexes with binding data
from 11 mutants, 7 from EGR finger I, was used to define an improved
interaction code (no optimization). Here, we present a novel mixed
integer programming (MIP)-based method that transforms this type
of data into an optimized code, demonstrating both the advantages
of the mathematical formulation to minimize over- and under-fitting
and the robustness of the underlying physical parameters mapped
by the code.
Results: Based on the structural models of feasible interaction
networks for 35 mutants of EGR–DNA complexes, the MIP method
minimizes the cumulative binding energy over all complexes for
a general set of fundamental protein–DNA interactions. To guard
against over-fitting, we use the scalability of the method to probe
against the elimination of related interactions. From an initial set
of 12 parameters (six hydrogen bonds, five desolvation penalties
and a water factor), we proceed to eliminate five of them with
only a marginal reduction of the correlation coefficient to 0.9983.
Further reduction of parameters negatively impacts the performance
of the code (under-fitting). Besides accurately predicting the change
in binding affinity of validation sets, the code identifies possible
context-dependent effects in the definition of the interaction
networks. Yet, the approach of constraining predictions to within a
pre-selected set of interactions limits the impact of these potential
errors to related low-affinity complexes.
Contact: ccamacho@pitt.edu; droleg@pitt.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Zinc finger (ZF) transcription factors are the largest family of nucleic
acid binding factors in eukaryotes (Laity et al., 2001). Due to the
relatively promiscuous interactions of these factors (Wolfe et al.,
2000), the majority of their cognate DNAbinding sites are still poorly
resolved. Indeed, a major limitation on the analysis of ZF–DNA
interactions and other factors is the lack of reliable experimental
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techniques to map their specificity to other targets (Camenisch
et al., 2008). Given this vacuum, the development of computational
methods to assist in the identification of protein–DNA physical
interactions can play an important role in revealing the molecular
basis of how genes are activated/repressed, leading to normal cell
function or to the acquisition of specific pathogenic traits.

The regularity of the structure of C2H2 ZF genes (Pavletich and
Pabo, 1991; Pavletich and Pabo, 1993; Segal et al., 2006) and
the dominant binding mode (Elrod-Erickson et al., 1996; Elrod-
Erickson et al., 1998) make this family an ideal system to be studied
both theoretically and experimentally. The classical Early Growth
Factor (EGR) gene, zif268 (Fig. 1) shows the main recognition motif,
a helix binding to the major groove of the DNA. Three ZFs of EGR
wrap around the major groove of DNA (Fig. 1A). This gene was
found to have the consensus DNA sequence GCG G

T GGGCG for ZF
binding, where a high affinity for guanine in DNA recognition is
frequently observed. The recognition motif typically involves helix
positions −1, +3 and +6 (numbered from the start of the helix),
each residue coordinating one nucleotide (Fig. 1B). However, high-
resolution crystal structures (Elrod-Erickson et al., 1996) have also
shown that water-mediated contacts and bonds to position (pos.) +2
might also occur. It is important to note that other interactions with
DNA bases showing non-classical binding modes are also physically
possible, but less common (Siggers et al., 2005; Wolfe et al., 2000).

Modeling protein interactions is a challenging problem in
computational structural biology. Indeed, despite recent advances
in the field (see, e.g. Mendez et al., 2005), empirical potentials are
still quite limited (Camacho et al., 2006). For instance, the best
outcome on a recent benchmark (Bueno et al., 2007b) of some of
the best known methods (machine learning, physical and knowledge
based) to predict changes in folding free energy for single mutants of
aliphatic side chains was a mere 72% success rate on ��Gs within
±1 kcal/mol of the experimental data. The reasons for this dismal
outcome are the same for protein–DNA interactions, i.e. the poor
sampling of complexes (Morozov et al., 2005) and the difficulty in
assessing changes in polar and water-mediated interactions (see, e.g.
Bueno and Camacho, 2007a; Ernst et al., 1995). More interestingly,
the aforementioned benchmark revealed that all methods resulted in
more or less equivalent predictions despite the fact that the number
of free parameters varied widely between 5 and 40, reflecting the
poor assessment of model over-fitting.

Recently, a 2 year effort mapping structural models to
high-quality binding affinity data of ZF/DNA complexes
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Fig. 1. Interactions of ZF-DNA triplets. (A) EGR–DNA complex (Elrod-
Erickson et al., 1996). (B) Binding mode of finger I of EGR. H-bonds are
shown as pink dashed lines. Binding site residues are indicated. (C) 2D
representation of the interaction network of finger I of EGR to its DNA
target. Inter-molecular H-bonds are indicated by arrows between residues
and DNA, side-chain backbone and side-chain–side-chain intra-molecular
bonds are noted as arrows over the top and lines below the protein sequence,
respectively. (D) Typical interaction network of an EGR-like ZF. H-bonds
typically form at positions −1,+2,+3 and +6 with respect to the beginning
of the helix. Dashed lines in fingers II and III from pos +2 show the possible
H-bonds by Ser residues to C (finger II) or A (finger III) in the complementary
strand.

(Temiz and Camacho, 2009) led to the development of a novel
interaction code. The key feature of this approach is the pre-selection
of structural models based on distance constraints as opposed to
optimizing an imperfect scoring function. A 10 parameter ZF/DNA
atomic interaction code was developed using five crystals (Elrod-
Erickson et al., 1996; Elrod-Erickson et al., 1998; Kang, 2007)
as templates for homology models of ZF structures and binding
modes, a minimal set of binding affinities from seven mutants of
finger I of EGR (Liu and Stormo, 2005) and three mutants of finger
III (Bae et al., 2003). Predictions on independent validation sets
resulted in structural models for the mutant complexes, as well as
in differences between mutant (multiple amino acid and nucleotide
mutations) and wild-type (WT) binding affinities, ��Gbind, of just
a few tenths of a kcal/mol.

From a methodological point of view, the code assumed that the
experimental ��Gbind of the selected mutants were exact. This is
not a common assumption for this type of data. However, the manual
optimization of a full binding affinity database of feasible structural
models (referred to as ‘submodels’) involved the difficult task of
checking an exponentially large number of submodel combinations.
For instance, Figure 2 shows a simple example for two data points
where each mutant has three different arrangements of possible
inter-molecular bonds, leading to 32 combinations. For all 35
mutants available for EGR finger I (Liu and Stormo, 2005), one has
roughly 335 possible ways of minimizing ��Gbind. To provide a
mathematical framework to solve this type of problems and validate
the experimentally based approach to decode protein interactions,
we develop a novel non-linear mixed integer programming (MIP)
method which optimizes over all mutants of EGR finger I.

The scalability of the method allows us to probe the over-fit
and under-fit of the method by solving interaction codes with

Fig. 2. Sketch of three feasible submodels for two mutants, and the nine
possible combinations (I, … , IX) in which, depending on the value and
number of parameters, different submodels minimize the binding free energy
(see text). Arrows correspond to H-bonds, circles and squares correspond to
desolvation penalties and half open or filled triangles indicate the absence
or presence of excess water molecules near the indicated interaction. For
details and color codes see (Temiz and Camacho, 2009).

different number of parameters i.e. from 12 interactions all the way
down to five independent variables. The resulting codes strongly
support the robustness of the physical parameters obtained in (Temiz
and Camacho, 2009), improving the correlation coefficient R2

to 0.998 with just seven free parameters (minimum over-fitting).
Further decreasing the number of parameters negatively under-
fits the predictions in the validation sets. To demonstrate that the
MIP is independently capturing the underlying interactions, we
systematically eliminated all seven finger I mutants used to map
the original code, obtaining in a few minutes almost equivalent
interaction codes. Finally, given that the homology (sub)models of
finger II and III mutants of EGR involved the extra challenge of
predicting water-filled cavities at the binding interface, we show
how one can use the unprecedented accuracy of our MIP-based code
to further validate water positions.

2 METHODS

2.1 ZF/DNA interactions
The basic assumption of the experimentally based approach to represent
ZF/DNA interactions (Temiz and Camacho, 2009) is that changes in the
affinity of a complex due to mutations are uniquely determined by changes
in the contact energies and solvation factors between the structures. Based
on the above, we developed the following scheme to decode the interaction
potential:

• Build homology submodels of mutant TF based on templates from
known complex structures. Based on the conservation of the tetrahedral
coordination of the zinc ion and helical binding domain, predicting both
quality alignment and backbone submodels is relatively straightforward
(Prasad et al., 2003).

• Perform MD simulations of the homology submodels in the absence
of DNA in explicit solvent to readily identify feasible intra-molecular
hydrogen bonds (H-bonds).

• ZF/DNA homology submodels are built by superposition in crystal-
lographically validated binding modes. DNA structures considered
in our submodels are from DNA bound to ZFs; if not available,
DNA triplets are taken from the PDB. Inter-molecular H-bonds are
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deemed feasible if side chain conformations sampled from the MD in
the absence of DNA are within an empirical 4 Å distance threshold
of the DNA acceptor/donor. With this pre-screening, we define a
series of submodels of feasible low energy combinations of intra-
and-inter-molecular H-bond networks for each complex (see, e.g.
Fig. 2).

• Unless crystal information is available, water molecules are placed in
all cavities that can fit one. These waters are used to predict whether
bonds are more or less exposed to solvent, and to determine whether
the accessibility water factor is applicable (see below).

• Effective free energies are assigned to all H-bonds: eij to inter-
molecular H-bonds, δi to atomic desolvation penalties triggered by
unmatched hydrogen bond donors or acceptors and buried hydrophobic
residues. These interactions are further modulated by a novel water
factor λw that is applied depending on the number of water molecules
contacting the atomic interactions. Thus, given a submodel, these
assignments allow us to compute the binding energy as:

�GCalc =
∑

k

(−f (λw)×εk +f (λw)×δk) (1)

the water factor is f (λw) = (1−λw) for multiple waters surrounding a H-
bond and 1/(1−λw) for a water free bond. Then, the change in binding
free energy relative to a reference state (often, the wild type (WT)
configuration) is ��Gbind = �GCalc (submodel)−�GCalc (WT), which is
related to biochemical binding data using the ratio of the dissociation
constants Kd as

KdMut

KdWT
=exp

(
��Gbind

RT

)
(2)

where R and T are the gas constant and temperature, respectively, and Mut
refers to the mutation relative to WT.

Using just seven mutant complexes of finger I [see ref. (Temiz and
Camacho, 2009) for details], the interaction code was solved for a seven
parameter interaction potential. These include: (i) three H-bonds, (a) the
two (bidentate) H-bonds between Arg and Guanine, e1 ≡ Arg = G, which is
assumed to be twice the strength of both a single K −G H-bond and of a
side chain phosphate backbone (bb) H-bond, (b) the bidentate e2 ≡Gln =A
H-bond, which is assumed to have the same strength as Asn =A with the
strength of individual H-bonds (e.g. Asn.OD-A) partitioned proportional
to their partial charges, (c) e3 ≡Asp-C H-bond used to estimate all bonds
involving Asp side chains; (ii) three desolvation penalties (a) e4 ≡ δNH2 for
unmatched side chain NH2 groups, (b) e5 ≡ δOD for a free side chain with
an unmatched oxygen group at the binding interface from Gln, Asn, Glu or
Asp and (c) e6 ≡ δHB for burying a sc-sc H-bond between any two interface
residues at positions −1, +2, +3 or +6 and leaving at least one oxygen
unmatched; and (iii) the water factor λw, corresponding to the fraction by
which the transition state of H-bonds exposed to extra waters is decreased.
Three other mutants from finger III of EGR were used to model interactions
not present in finger I.

2.2 Mixed integer programming
Mixed integer programming (MIP) is a mathematical tool which can be used
to find solutions to problems involving some combinatorial structure. MIP
formulation may include both integer and continuous variables, constraints
(which typically enforce restrictions on permissible variable combinations),
as well as an objective function, which provides for a means of evaluating
the quality of a given solution satisfying the constraints (Floudas and
Pardalos, 2009; Pardalos and Resende, 2002). Three standard methods for
solving different classes of MIPs include exact methods [e.g. branch-and-
bound, branch-and-cut, branch-and-price, cutting plane (Nemhauser and
Wolsey, 1988)], metaheuristic techniques (Glover and Kochenberger, 2003;
Vazirani, 2001), as well as approximation algorithms (Vazirani, 2001). MIPs
have being successfully applied to a broad range of problems including
bioinformatics (Floudas and Pardalos, 2000), protein design (Fung et al.,
2005) and structural alignment (Dundas et al., 2007).

Fig. 3. Mapping of MIP parameters onto a free energy landscape of four
submodels (‘j’) of complex (‘i’) QDNR/GAC. The condition that only one
submodel minimizes the free energy is imposed by the constraint �jxij = 1.
H-bonds are represented by two letters, the first letter corresponding to
the residue and the second the nucleotide. In practice, the arrangement of
submodels on the funnel is given by the solution of the MIP application.

2.3 Mapping interaction code into a MIP
Variable definition (Fig. 3):

• ek : parameters in the interaction code (0≤ ek ≤ 4), H-bonds and
desolvation factors;

• λw: unknown water factor (0 ≤ λw ≤ 1);

• xij = 1 if submodel j⊂Si (where Si is a list of feasible submodels for
ZF/DNA complex i) is assigned to complex i; xij = 0 otherwise.

Data modeling:

• Submodel j(∈ Si) for i is defined as the sum of the interactions of the
submodel relative to a reference, i.e.

∑
k wk

ij(λw)ek , where wk
ij is either

a known coefficient or a known function of λw. When ek is not present,
wk

ij is defined as 0.

• ��Gi: experimental change in binding energy for complex i.

Basic MIP optimization formulation:

• Objective function minimizes binding energy over all complexes:

min
e,λw,x

∑
i

∣∣∣∣∣∣��Gi −
∑
j∈Si

{
xij ·

∑
k

wk
ij(λw)ek

}∣∣∣∣∣∣,subject to: (3)

• the constraint that exactly one submodel is correct for each complex i:∑
j∈Si

xij =1 ∀i (4)

• the constraint that the correct submodel for each complex i has the
lowest energy of all submodels for that complex:

xij ·
∑

k

wk
ij(λw)ek ≤xij ·

∑
k

wk
i�(λw)ek (5)

for all i,j∈Si, for all �∈Si and � �= j;

• and constraints on type and bounds of variables:

0≤λw ≤1,0≤ek ≤4 ∀k and xij ∈{0,1} ∀i,j. (6)

Equivalent non-linear mixed 0–1 reformulation of (3-6):

• Formulation (3)-(6) is simplified by reformulating the non-linear
integer program into a mixed integer problem, which is linear for a
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fixed λw. Objective function (3) is replaced by:

min
e,λw,x,t,y

∑
i

ti subject to ti ≥Ei −
∑
j∈Si

yij and (7)

ti ≥−Ei +
∑
j∈Si

yij ∀i

where Ei is ��Gi and new variables ti serve to eliminate the
non-linear absolute value terms in (3). Depending on the sign of
Ei −∑

j∈Si
yij , minimization of (7) yields either ti ≥Ei −∑

j∈Si
yij or

ti ≥−Ei +∑
j∈Si

yij ∀i.
Note that we still retain the constraint (4).

New variables yij =xij ·∑k wk
ij(λw)ek serve to linearize the non-linear

terms inside absolute values in (3) via the following constraints (8)-(9), which
force yij to be equal to

∑
k wk

ij(λw)ek if xij =1 and 0 otherwise:

0≤yij ≤Mijxij ∀i,j∈Si and yij ≤
∑

k

wk
ij(λw)ek ∀i,j∈Si (8)

yij ≥
∑

k

wk
ij(λw)ek −Mij(1−xij) ∀i,j∈Si (9)

where Mij is a constant chosen to be large enough to give a valid upper bound
on variable yij .

• Lastly, linearized constraint set (10) is equivalent to (5), while (11) is
same as (6): ∑

k

wk
ij(λw)ek ≤

∑
k

wk
i�(λw)ek +Mij(1−xij) (10)

for all i, j∈Si, for all �∈Si and � �= j;
0≤λw ≤1, 0≤ek ≤4 ∀k and xij ∈{0,1} ∀i,j. (11)

Formulation (4), (7)-(11) is a much simplified version of (3)–(6). While it
is still non-linear on the parameter λw, we can further transform it into a
standard (linear) MIP through a straightforward discretization-linearization
procedure.

3 RESULTS

3.1 Solving MIP formulation to decode protein
interactions

While formulation (7)–(11) eliminates the difficulties of the
absolute values present in the objective (3) as well as non-linear
constraints (5), there remains the presence of non-linearities in the∑

k wk
ij(λw)ek expressions. However, these non-linearities always

appear in the form of a product of some ek parameters together with
expressions involving λw. By representing continuous parameter
λw as its binary representation, we are able to introduce further
linearizations which transform the problem into a mixed integer
program without any non-linearities.

Assuming we desire to represent λw within accuracy ε=10−p,
where p is some positive integer, then we need exactly

Z =
⌈

log10

log2
p

⌉
(12)

binary variables z� ∈{0,1}, so that λw ≈∑Z
�=12−�z�.

The products involving λw and ek appear in two distinct forms: (a)
(1−λw)ek and (b) ek/(1−λw). To reformulate (a) using the binary
representation of λw, any product (1−λw)ek can be represented as
ek −λwek =ek −∑Z

�=1ek2−�z�, where each ek2−�z� is a product of
a continuous variable ek and binary variable z�. Let c�k =z�ek,�=
1,...,Z , where the equality over non-linear products is imposed via

a standard linearization technique using four additional constraint
sets, see, e.g. (Prokopyev et al., 2005; Wu, 1997). Then (a) can
be rewritten as ek −∑Z

�=12−�c�k . For the reformulation of (b),
first let uk =ek/(1−λw). Then we can equivalently write ek =
uk −λwuk . The term λwuk can be linearized in the same manner as
previously described; let v�k =z�uk,�=1,...,Z . Then by enforcing
ek =uk −∑Z

�=12−�v�k , together with the additional four constraint
sets on the v�kvariables, we can replace any occurrence in the form of
expression (b) with uk . The four additional constraint sets necessary
to enforce the equality of c�k =z�ek,�=1,...,Z and v�k =z�uk,�=
1,...,Z , respectively, are 0≤c�k ≤ek and ek −4(1−z�)≤c�k ≤4z�
(for c�k), and 0≤v�k ≤uk and uk −Mk(1−z�)≤v�k ≤Mkz� (for
v�k), where Mk is a large enough constant upper bounding uk .

After the aforementioned discretization-linearization procedure
is performed, we obtain a linear mixed 0–1 programming problem,
which can be tackled utilizing any standard MIP solver, e.g. CPLEX
(ILOG, 2007). Each solution in our computational experiments was
obtained within 30 min using a Dual-core Intel Xeon machine with
3 GB of RAM.

3.2 Avoiding over-fitting
We use the MIP formulation to optimize a 12 parameter interaction
code (six H-bonds, five desolvation penalties and the water
factor λw), mapping the 35 mutants of EGR finger I (Liu and
Stormo, 2005). In Figure 4, we compare the MIP solution to the
parameters obtained based on Equation (2), i.e. directly reading the
interactions from well-defined mutants [no optimization; see (Temiz
and Camacho, 2009)], as well as the corresponding correlation
coefficient R2. It is important to stress that these parameters are
all fundamental interactions (H-bonds and desolvation energies),
including the novel water accessibility factor λw that corresponds to
an implicit solvation parameter. For a 12 parameter representation,
we obtain a correlation coefficient R2 = 0.99857.

Upon inspection of the results, one immediately notices possible
correlations on the parameters that in hindsight could easily
correspond to chemically equivalent interactions. Hence, the power
of our MIP formulation is perhaps best reflected in that testing this
possibility, say, whether the desolvation penalty of an unmatched
NH (δNH) is half that of a NH2 (δNH2) group, is as simple as
introducing one additional constraint, i.e. δNH2 = 2δNH. The new
set of parameters with now 11 parameters is shown in Figure 4,
resulting in a R2 = 0.99855. Further analysis of the code in Figure 4
suggests an equivalence between a single H-bond of Arg-G and a
Arg-phosphate DNA backbone H-bond, followed by matching the
Arg-A and Arg-G bonds by simply scaling the bonds according with
the AMBER (Cornell et al., 1995) partial charges of the different
nucleotides A and G. The elimination of these two free parameters
yields an almost identical R2 value.

Although the chemistry behind the H-bonds Gln =A and Asn =A
is identical, our parameters suggest that the Gln =A bonds are
slightly weaker, consistent with the extra entropy loss entailed by
the larger Gln side chain. Nevertheless, we assess the impact of
equating the strength of these two sets of H-bonds, obtaining almost
no change in the quality of our predictions. Finally, equating an
oxygen desolvation from Asp, Gln and Asn results in a seven
parameter potential with R2 = 0.9983, as compared with the same
parameters decoded from Equation (2) using individual mutants
R2 = 0.9975.
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Fig. 4. Convergence of MIP optimization code based on EGR mutants of
finger I. Top panel shows the R2 correlation coefficient as a function of
the number of parameters. Lower panel displays changes in the optimal
parameters as equivalent parameters are collapsed into one. For comparison,
we show the results of (Temiz and Camacho, 2009) with no optimization
(boxed points and black square). The two symbols for six parameters
correspond to whether a H-bond or a desolvation penalty is further eliminated
as a free parameter.

It is important to emphasize that the solutions of the MIP
formulation not only extract an accurate interaction code but also
predict the interaction submodels that minimize the binding free
energy of each complex. For instance, for 12 parameters, the
combination of submodels V in Figure 2 minimized the free energy,
whereas for 9 parameters submodels II are selected. It is only with
seven parameters that the MIP solution converged to the pair of
submodels in I. The shift from one set of optimal submodels to
another is expected. In fact, this is what makes the problem of
optimizing a structure-based energy score difficult (i.e. different
set of parameters lead to possibly different minima). However,
contrary to other methods, our approach benefits from searching for
the optimal solution among a set of feasible pre-defined structures
(e.g. Fig. 3) such that predictions are at least consistent with known
protein–DNA structures.

Besides eliminating parameters, our approach could as easily
eliminate mutants. Supplementary Table S1 shows the MIP results
for seven parameters after the systematic elimination of all seven
finger I complexes used to map the original code, demonstrating the
underlying consistency of the parameters and not just the fact that
we have already found a good solution based on selected mutants.
Moreover, we note that for all the MIP solutions, the submodels that
optimized the objective function did not change.

Our approach to reduce over-fitting is somewhat similar to
iterative backward elimination, a standard technique in regression
to remove superfluous parameters. However, in general this
phenomenon is virtually impossible to eliminate. The results of any
such prediction technique which minimizes the distance between
observed and fitted values (including our MIP formulation) are
fundamentally influenced by multiple factors, including the criteria

Fig. 5. Predictions of ��Gbind in independent validation datasets of fingers
II and III mutants of EGR. R2 correlation coefficient of predicted and
experimental changes in binding affinities for MIP solutions with different
number of parameters. Open spheres and open squares show correlation
coefficients for finger II and III mutants of EGR, respectively. Solid sphere
and solid square show the original predicted correlation coefficient (Temiz
and Camacho, 2009). The two symbols for six parameters correspond to
whether a H-bond or a desolvation penalty is further eliminated as a free
parameter.

by which we minimize error, as well as the quantity and accuracy
of experimental data. While minimizing the L2-norm (least squares)
is a standard means to minimize residual error, our alternate choice
to minimize the L1-norm (least absolute values) is also a widely
accepted approach to minimize error, and has the further advantage
of making our formulation more amenable to the subsequent
linearizations that we implement. A distinct advantage of our applied
exact solution technique versus other possible heuristic approaches
is that it guarantees the global optimality of the obtained solution for
the considered mathematical programming formulation, rather than
just an adequate solution. Hence, our contribution for this paper
is at least as much the introduction of the novel MIP optimization
approach to solve such problems, as it is in getting definitive results
on the protein–DNA interactions with the initial dataset we solved.

3.3 Avoiding under-fitting
Numerically, the formulation would allow us to continue eliminating
parameters. However, contrary to a neural net or a scoring function
where parameters do not have a clear meaning, here there is no
intuition to equate, say, the magnitude of the Gln =A H-bonds of
−0.90 kcal/mol and the NH2 + 0.95 kcal/mol desolvation penalty.
On the other hand, further equating parameters of the same type
(either H-bonds or desolvation) are detrimental to the mapping of
the binding data (Figs 4 and 5).

It is important to point out that the assessment of whether the
representation under-fit the data depends on the expected accuracy. It
is quite possible that, as more high-quality binding data is available,
mapping some of the small differences that were inconsequential for
the present analysis might subsequently turn out to be statistically
significant.

3.4 Submodel reassessment and validation based on
MIP-optimal parameters

We test the different set of optimized parameters against two
independent sets of finger II and III mutants that were not part of the
MIP optimization process. Predictions of the complex structures and
binding affinities on these validation datasets resulted in correlations
of R2 = 0.97 (Fig. 5 and Supplementary Figure S1). Although these
correlations are good, they are not as good as EGR finger I. One
reason is that homology submodels for fingers II and III are naturally
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Fig. 6. Re-examining context-dependent solvation effects in finger II
mutants of EGR. (A) Changes in solvation patterns for finger II mutants.
First column shows the finger I crystal complex of Q (dark boxes) and D
(light boxes) binding modes (Elrod-Erickson et al., 1998). Second column
shows the original solvation patterns (Temiz and Camacho, 2009) and third
column shows the updated solvation patterns (this study). (B) Cartoon of
the updated submodel QGDR/GCA complex. DNA is shown in dark sticks.
Asp+3 is shown in light sticks. Crystal waters are shown as spheres. Dashed
lines indicate H-bond interactions. Gln-1 and Arg+6, shown in light sticks,
protect Asp+3 from solvation. Light colored numbers are predicted affinities
using optimized code (in parenthesis are affinities based on unoptimized
code, and black numbers are predicted and experimental relative affinities.

less reliable than those of finger I, since most of our templates are
from finger I co-crystals.

Since placing water molecules in a protein interface is still a
challenging problem (Bonvin et al., 1998; Dennis et al., 2000), it is
not surprising that some of the largest deviations between predicted
and experimental binding affinities were in submodels where water
molecules play a critical role modulating the interactions (Fig. 6).
This problem is compounded by context-dependent effects from
adjacent ZFs (Liu and Stormo, 2008; Pabo et al., 2001; Segal et al.,
1999). This is the case of the binding modes that have a Gln or
Asp at pos. −1 that show different solvation patterns in the finger I
crystals and in the validation dataset for finger II models. Crystal
structures (Elrod-Erickson et al., 1998) show side chains at pos. −1
are partially solvated, while the binding interfaces at pos. +3 and
+6 are desolvated, relative to WT (see shaded and open triangles).
Similar submodels for finger II (Temiz and Camacho, 2009) reflected
the excess of water molecules at pos. +3 and +6 observed in the
WT finger II crystal structure, and the extra protection of side chains
at pos. −1 relative to WT finger I that has solvent at its 5′ end.

Based on the increased accuracy of the MIP formulation, we found
that predictions for at least two of these original submodels became
worse. Close inspection of these models led to a reassessment of
the solvation patterns, leading us to conclude that bonds at pos. +3
might not be as solvated as expected. For instance, Figure 6B shows
a new submodel of QGDR/GCA using the crystal waters visible in
WT, where the Asp+3-C H-bond is >3 Å away from the closest
water molecule. Moreover, contrary to our earlier submodels, we
now estimate that the extra waters modeled in complexes involving
purines, as in QSNR/GAA, are blocked by the Ser+2-C′ H-bond
(but not necessarily by the Ser+2-A′ in finger III). Thus, the Gln−1
bonds are now desolvated as in QGDR/GCA. Something similar
occurs withAsp−1-C in the D binding mode.As shown in Figure 6A,
these updated solvation patterns in the new submodels are not only
more consistent among each other but also have greatly improved

some of the worst predictions in (Temiz and Camacho, 2009). Using
Equation 2, the new relative affinities (in red in updated submodels)
lead to ��Gs of −0.65, −1.82 and −0.58 for the three finger
II mutants QGDR/GCA, QSNR/GAA and DGNR/GAC compared
with the experimental values of −0.95, −1.77, −0.71, respectively.
Overall, the correlation coefficient R2 of finger II mutants improved
from 0.957 to 0.971.

4 CONCLUSION
Our understanding of how transcription factors work cooperatively
to regulate gene expression is still in its infancy. A major challenge
for computational biology in the coming years is to develop tools that
help us understand the molecular basis of how transcription factors
identify and bind their multiple targets. The most important missing
pieces of this puzzle are the lack of a quantitative understanding
of protein–DNA interactions and experimental techniques that can
account for DNA specificity.

Here, we demonstrate that the problem of decoding protein–
DNA interactions using a pre-selected set of feasible homology
submodels is particularly suited to be tackled via a method involving
mixed integer programming. Specifically, the MIP solution of the
interaction code for C2H2 ZF transcription factors resulted in an
almost exact mapping of the change in binding free energies of a set
of 35 mutants of EGR finger I, as well as that of two validation sets
of mutants of fingers II and III of EGR (Fig. 5 and Supplementary
Figure S1). It is also clear that using MIP can further expedite the
discovery and validation of relevant parameters by providing an
efficient tool to optimize the increasing complexity of the objective
function that minimizes the difference between the predicted lowest
binding free energy submodel of each complex and experimental
data. Three key advantages of our mathematical formulation are
its inherent flexibility, extensibility and scalability. Thus, as we
receive or gather more complete information in the form of new
crystals or binding data, results can be automatically updated and
re-optimized, eliminating the need for manual intervention of every
ZF and ensuring an optimal prediction power.

The removal of constraints and variables from our representation
is just as important as their addition. As shown here, a given
solution can suggest the convergence of physical parameters, which
can reduce the number of parameters by simply enforcing a new
relationship. Doing so lowers the available degrees of freedom in
our representation, resulting in a more compact interaction code
less prone to over-fitting. Here, the convergence of the interactions
as the number of free parameters were reduced strongly support
the universality of the selected physical parameters, which include
three H-bonds, three desolvation penalties and a water factor. Other
interactions can now be further built based on other sets of mutants
(e.g. from finger III) to obtain a more complete representation of
possible interactions. It is important to stress, however, that the
combination of high-quality crystal structures and binding data of
finger I mutants of EGR is not available for other ZFs.

Our unique methodology also eliminates most false positives by
scoring the lowest binding free energy submodel in each complex,
significantly limiting the effect of missing the ‘true’ complex
structure by simply selecting a related feasible submodel belonging
to the same funnel (see Figs 3 and 6). Moreover, close inspection
of outliers can be used as a self consistent proof checking of initial
submodels. Such a feedback was used in Figure 6 to suggest new
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submodels for finger II mutants, and, in all likelihood, should prove
useful elucidating other context-dependent effects from adjacent ZFs
or DNA, which are quite subtle to generalize.

In summary, the combination of biochemical data, structural
information and the described MIP mathematical framework,
provides an easily scalable and efficient tool for the (i) automatic
selection of exactly one submodel for each complex; (ii) each
selected submodel has the lowest energy for each complex; and
(iii) parameters as well as selected submodels provide the closest fit
to the experimental data for the considered objective function with
minimum over-fitting.
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