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Abstract

aA-crystallin and aB-crystallin are members of the small heat shock protein family and function as molecular chaperones
and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is
known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate
binding, and human cataract formation, we used proteomic and mass spectrometric methods to analyze the effect of
mutations associated with hereditary human cataract formation on protein abundance in aA-R49C and aB-R120G knock-in
mutant lenses. Compared with age-matched wild type lenses, 2-day-old aA-R49C heterozygous lenses demonstrated the
following: increased crosslinking (15-fold) and degradation (2.6-fold) of aA-crystallin; increased association between aA-
crystallin and filensin, actin, or creatine kinase B; increased acidification of bB1-crystallin; increased levels of grifin; and an
association between bA3/A1-crystallin and aA-crystallin. Homozygous aA-R49C mutant lenses exhibited increased
associations between aA-crystallin and bB3-, bA4-, bA2-crystallins, and grifin, whereas levels of bB1-crystallin, gelsolin, and
calpain 3 decreased. The amount of degraded glutamate dehydrogenase, a-enolase, and cytochrome c increased more than
50-fold in homozygous aA-R49C mutant lenses. In aB-R120G mouse lenses, our analyses identified decreased abundance of
phosphoglycerate mutase, several b- and c-crystallins, and degradation of aA- and aB-crystallin early in cataract
development. Changes in the abundance of hemoglobin and histones with the loss of normal a-crystallin chaperone
function suggest that these proteins also play important roles in the biochemical mechanisms of hereditary cataracts.
Together, these studies offer a novel insight into the putative in vivo substrates of aA- and aB-crystallin.
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Introduction

a-crystallins are major proteins of lens fiber cells that comprise

approximately 35% of the water-soluble lens protein and are

essential for lens transparency. Mutations in a-crystallin genes are

known to cause hereditary cataracts in humans. However, the

cellular functions of a-crystallin in maintaining growth, develop-

ment, and transparency of the lens and the mechanisms by which

loss of a-crystallin function leads to cataracts are not fully

understood.

The vertebrate lens expresses two a-crystallin proteins, aA and

aB, at a high concentration in lens fiber cells and at lower levels in

the lens epithelium [1–4]. Transcription of aA and aB-crystallin

genes commences early in lens development, beginning at

embryonic day 10.5 and 9.5 respectively in the mouse, and

continues as the lens matures [5]. In lens fiber cells, a-crystallins

form heteroaggregates of aA- and aB-crystallins in a 3:1 ratio [6].

aA- and aB-crystallins are members of the small heat shock

protein family of molecular chaperones [7]. Homo-oligomers of

aA-crystallin and aB-crystallin and the a-crystallin heteroaggre-

gates possess chaperone-like activity, binding to partially unfolded

or denatured proteins to suppress non-specific aggregation [7].

The molecular mechanisms by which point mutations in

crystallin genes lead to hereditary human cataract formation are

not completely understood [8–11]. Mouse models carrying

naturally occurring a-crystallin mutations have provided valuable

information on the functions of these mutant proteins in vivo [12–

14].

The R49C mutation in aA-crystallin was found to be associated

with nuclear cataract in four generations of a Caucasian family

[15]. The mutant protein is mislocalized to the nucleus, and has

reduced solubility [15,16]. Most notably, this mutation is in the N-

terminal region of aA-crystallin, a region thought to be important

for aggregation interactions [16]. In mice, the R49C mutant

produces a small eye/lens phenotype and severe cataracts at birth

in 100% of mice homozygous for the mutation, indicating a gain
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in toxic function of aA-crystallin protein. Compared with

homozygous mice, heterozygous aA-R49C knock-in mice, which

mimic human cataract patients, develop cataracts at approxi-

mately 2 months of age and exhibit decreased protein solubility

and altered cell signaling. Moreover, the R49C mutation

significantly alters interactions between aA-crystallin, aB-crystal-

lin, bB2-crystallin, c-crystallins, and the cytoskeletal protein

tubulin. The aB-R120G mutation in aB-crystallin also causes

cataracts in humans [8]. aB-R120G knock-in mice have lens

opacities, which are evident even in 3-week-old animals [17]. We

found that 100% of heterozygous mice ranging in age from 3

weeks to 5 months had lens opacities, with severity increasing with

age. Homozygous mice also developed lens opacities, but the effect

did not appear to be dependent on mutant gene dosage.

Our novel studies using knock-in mouse models for these

mutations have shown profound effects on the lens and eye and

indicate that a-crystallins affect lens epithelial and fiber cell growth

and survival, in addition to their well-known role in transparency

and optical properties of the lens. Moreover, our data suggest that

aA- and aB-crystallin mutations alter the structure and function of

lens epithelial and fiber cells and exert toxic effects at an early

stage of development, when primary fiber cell differentiation

commences.

It is well established that abnormal interactions between

chaperone and substrate proteins can result in increased protein

aggregation and disease [8,18]. The substrate-chaperone interac-

tion between aB-crystallin and its substrates involves multiple

interactive domains that have been extensively characterized

[19,20]. However, the in vivo substrates of aA- and aB-crystallin in

the lens have not been identified. In the absence or reduction of a-

crystallin chaperone function, it is likely that partially unfolded

proteins will accumulate and aggregate [21,22]. We therefore

focused on determining which proteins are associated with a-

crystallin chaperones with the aim of identifying proteins that are

dependent on the chaperone activity of aA- and aB-crystallins to

retain their native conformations in vivo. To achieve this, we

analyzed the abundance of proteins in aA-R49C and aB-R120G

knock-in mutant mice lenses by proteomics and mass spectrom-

etry. We have already applied this approach to identify several

proteins and enzymes not previously known to be affected by aA-

or aB-crystallin loss of function [23]. This method has also been

used to identify the effect of loss of function of the heat shock

chaperone protein HSP90 [24].

Results

Two-day-old aA-R49C Mouse Lenses
To identify proteins that showed altered abundance in mouse

lenses with the R49C aA-crystallin mutation, we performed 2D-

DIGE of 2-day-old WT, aA-R49C heterozygous mutant, and aA-

R49C homozygous mutant lenses. Figure 1 and Fig. S1 in File S1

show 2D gels of proteins and Table 1 lists the approximately 100

protein spots that showed a change in abundance between these

samples. Figure 2 shows the 3D plots for some of the spots that

changed in abundance in these lenses. Compared with WT, aA-

R49C heterozygous lenses had a 15-fold higher abundance of

crosslinked aA-crystallin, a 3-fold higher abundance of more

acidic aA-crystallin, and a 2.6-fold higher abundance of degraded

aA-crystallin. The association of aA-crystallin with filensin

increased 17-fold, the association of aA-crystallin with actin and

creatine kinase B increased 15-fold, and the amount of actin alone

increased 10.79-fold. The amount of a more acidic form of bB1-

crystallin increased, whereas that of a basic form of bB1-crystallin

decreased. aA-crystallin associated with bA3/A1 was more acidic

and had a slightly lower apparent molecular weight than free aA-

crystallin. The number of protein spots with altered abundance

was much greater in the aA-R49C homozygous mutant lenses

than in the heterozygous lenses. In the homozygous lenses, several

proteins in the high molecular weight region (.75 kDa) were

altered. A high-molecular weight crosslinked aA-crystallin associ-

ated with creatine kinase B, actin, and erlin was enhanced 15-fold.

The association of aA-crystallin with a-enolase and bA3/A1 was

also enhanced in homozygous lenses. In the same lenses, the

amount of bB1-crystallin decreased and more acidic forms of bB1-

and bB3-crystallins were associated with aA-crystallin. Among

proteins in the 20-kDa region (Table 1, Fig. 1 and Fig. S1 in File

S1), the amount of aA-crystallin and bA3/A1-crystallin decreased

in homozygous lenses. Among the cytoskeletal proteins, the levels

of more basic forms of filensin and phakinin decreased, whereas

levels of more acidic forms of these proteins increased. High

molecular weight forms of phakinin and actin decreased 2.9-fold in

homozygous lenses. The amount of tubulin, vimentin, and

microtubule associated protein RP/EB associated with aA-

crystallin increased in homozygous lenses, while that of phospho-

glycerate mutase decreased. The amount of hemoglobin subunit 1

complexed with cD-, aB-, cS-, cB-, bB3-, and cA-crystallins

decreased in homozygous lenses and increased with age. The

abundance of forms of Hsp71 increased 2.5-fold, and the amount

of aA-crystallin associated with vimentin, tubulin, and T-complex

protein increased 4-fold in homozygous lenses. The amount of

grifin associated with aA-crystallin increased in several spots.

There was an increase in b-globin, histone and peptidyl-prolyl

cis-trans isomerase associated with aA-crystallin in homozygous

lenses (Table S1). The abundance of aB-crystallin, hemoglobin,

and histones also increased. A spot containing a high molecular

weight form of spectrin-a and nucleosome assembly protein

increased in homozygous lenses. In the high molecular weight

region, the abundance of aA-crystallin and spectrin increased and

that of filensin, gelsolin, and calpain 3 decreased in homozygous

lenses. There was an increase in mitochondrial 60-kDa HSP

associated with aA-crystallin, and many other proteins including

vimentin.

Among proteins in the cytoskeletal and 20 kDa regions (Table 1,

Fig. 1 and Fig. S1 in File S1), there was an increase in aA-crystallin

associated with bB3-crystallin, bA4-crystallin, grifin, fatty acid

binding protein, thymosin, and glutamate dehydrogenase in

homozygous lenses. Surprisingly, the amount of aA-crystallin

alone and in association with bA3/A1-crystallin, bA4-crystallin,

cE-crystallin, and cA-crystallin in the high molecular weight

region decreased in homozygous lenses.

Increased amounts of degraded proteins were detected in the

low molecular weight region (,20 kDa). The amount of degraded

glutamate dehydrogenase alone and in association with cyto-

chrome c increased 4-fold and 53-fold, respectively, in homozy-

gous lenses. The amount of more acidic forms of aA-crystallin,

and more degraded forms of creatine kinase B, aA-crystallin,

actin, and phakinin increased 19-fold in homozygous lenses. In the

molecular weight range below 20 kDa, the amount of degraded

aB-crystallin associating with bA2-crystallin, a-enolase, and other

proteins increased 112-fold in homozygous lenses. The amount of

other degradation products of aA-crystallin associated with b- and

c-crystallins also increased in homozygous lenses. Some of these

were more basic than the original aA-crystallin. The amount of a

very acidic cohort of aA-crystallin with bA3/A1-crystallin,

hemoglobin subunit a, and G3PDH increased 7-fold in homozy-

gous lenses. There was also an increase in the amount of a very

low molecular weight aA-crystallin associated with stathmin and

other b-crystallins in homozygous lenses.

Substrates of Alpha Crystallins
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Previous work demonstrated that there is less insoluble protein

in heterozygous lenses than in homozygous lenses [10]. To

determine whether changes in protein abundance reflect this

difference in solubility, equal amounts of WT, heterozygous, and

homozygous mutant lens proteins were further analyzed on

multiple gels using various combinations of cyanine dyes to label

WT and mutant lens samples. Multi-gel analysis of WT and aA-

R49C mutant proteins is shown in Table 2 and Figures 3 and 4.

Biological variation analysis (BVA) of WT and aA-R49C

heterozygous and homozygous lenses showed that mutant gene

dosage correlated with an increase in alanyl-tRNA synthetase, aA-

crystallin, the mammalian cytoplasmic chaperone TCP-1 theta,

and high-molecular weight bA3/A1-crystallin. The statistical

significance of the change in protein abundance of each spot is

shown in Table 2. The levels of two different members of the

HSP70 protein family, HSC70 and mitochondrial stress protein

70, as well as the V-type proton ATPase catalytic subunit, also

increased in aA-R49C mutant lenses. Mitochondrial stress protein

70 increased in two spots (spots 928 and 948) and TCP-1

associated with aA-crystallin increased in three spots (spots 593,

1081, and 1146). High molecular weight bB1-crystallin increased

slightly in a mutation- and dose-dependent manner. The

abundance of bA3/A1-crystallin associated with aA-crystallin

(spot 1477) and aA-crystallin alone (spot 1612) decreased. It is

noteworthy that for several spots, the differences were statistically

significant (p,0.05) between WT and the aA-R49C homozygous

lenses only. The 79-fold increase in aA-crystallin (spot 1540) in the

high molecular weight region was highly significant, suggesting

increased crosslinking of aA-crystallin in aA-R49C mutant lenses.

Creatine kinase B associated with aA-crystallin in the high

molecular weight region increased 22-fold (spot 1519), confirming

the results of the single gel analysis in Table 1. The amount of aA-

crystallin associated with eukaryotic translational initiation factor

increased 1.44- and 2.24-fold in heterozygous and homozygous

mutant lenses, respectively. Among the proteins that showed

decreased abundance in a mutation- and dosage-dependent

manner were bB1-crystallin (spots 1856 and 1868) associated with

eukaryotic translational initiation factor, aA-crystallin associated

with histone H4, implantin, myotrophin, and more basic aA-

crystallin associated with bA4- and bA3/A1-crystallins in spot

2772.

Additional proteins that decreased in abundance relative to wild

type (Fig. 4 and Table 2) were bB1-crystallin (in homozygous

lenses only), and a mutation- and dose-dependent decrease in

bA3/A1-, bA4-, bA2-crystallins associated with aA-crystallin (spot

2109), aB-crystallin, and bB2-crystallin (spots 2115 and 2123

showed a 8.57-fold decrease in homozygous lenses relative to WT).

The abundance of cD-crystallin, peptidyl-prolyl cis-trans isomer-

ase, cA-crystallin, cB-crystallin, and cC-crystallin also decreased

(spot 2413). Other spots that decreased in abundance in a

mutation- and dose-dependent manner were nucleoside diphos-

phate kinase, peptidyl-prolyl cis-trans isomerase, and cD-crystallin

(spot 2454), fatty acid-binding protein and aA-crystallin (spot

2553). A more acidic form of aA-crystallin increased 4- and 5-fold

in heterozygous and homozygous lenses (spot 2294). In contrast,

spot 2317 decreased 4.8- and 9.2-fold in heterozygous and

homozygous mutant lenses, respectively. Spot 2351 increased in a

mutation- and dose-dependent manner with 4.6- and 10.4-fold

increases in heterozygous and homozygous lenses, respectively.

Spots 2317 and 2351 contained only aA-crystallin at its normal

molecular weight, but spot 2351 was more acidic, suggesting a

decrease in the pI of aA-crystallin by the R49C mutation. Spot

2417, containing only a lower-than normal molecular weight aA-

crystallin also increased 7.5- and 10.5-fold in aA-R49C mutant

lenses relative to WT, but two additional spots containing only aA-

crystallin decreased (spots 2533 and 2631). The abundance of

epidermal fatty acid binding protein and 40S ribosomal protein

S12 also decreased in association with aA-crystallin, but these

changes were not mutation- and dose-dependent.

Two-week Old aA-R49C Mouse Lenses
Figure 5 shows 2D gels for 14-day-old WT and mutant proteins

of aA-R49C knock-in mice. Table 3 shows the approximately 50

protein spots that showed a change in abundance between WT

and aA-R49C mutant in 14-day-old lenses. The abundance of the

high molecular weight cytoskeletal protein spectrin-a and its acidic

forms decreased in aA-R49C lenses (spots 700 and 769). Acidic

forms of filensin increased 4-fold (spot 2675), whereas basic forms

decreased 15-fold (spot 2448). Hsp70 also increased 3- to 6-fold in

three spots. High molecular weight phakinin decreased 10-fold,

while acidic and low molecular weight phakinin increased 8-fold.

Among the crystallins, the amount of aA-crystallin that was

crosslinked and associated with bA3/A1-crystallin increased in

four spots, and aA-crystallin associated with annexin increased 3-

fold in one spot (spot 4872). Normal and basic forms of bB1-

crystallin decreased 6- to 25-fold in three spots. More basic forms

Figure 1. 2D-DIGE analysis of proteomic changes in whole lenses of 2-day-old mice with knock-in of the aA-R49C mutation. (A) 2D
gel of cyanine dye-labeled lens proteins derived from wild-type sample 1 (WT1) proteins labeled with Cy2, WT2 proteins labeled with Cy3, and aA-
R49C heterozygous proteins labeled with Cy5. (B) 2D gel of cyanine dye-labeled lens proteins derived from WT1 proteins labeled with Cy2, WT2
proteins labeled with Cy3, and aA-R49C homozygous proteins labeled with Cy5. Protein spots that were selected for analysis from the gels shown in
(A) and (B) are shown in Fig. S1 in File S1 and were identified by tandem mass spectrometry and Mascot searches. Quantitative image analysis and
mass spectrometry data for the identified proteins are listed in Table 1. Arrows indicate the shift in position of the aA-crystallin bands (red) to a more
acidic pI with the mutation.
doi:10.1371/journal.pone.0095507.g001
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of bB2- and bB3-crystallins in association with glutathione S-

transferase-m (GST-m) increased 8-21-fold in two spots. Very acidic

forms of bB2-crystallin, bB3-crystallin, and GST-m decreased 18-

fold in spot 5625.

aB-crystallin that was degraded and associated with b- and c-

crystallins increased in two spots. The amount of aA-crystallin

slightly larger than 20 kDa decreased 60- to 71-fold (spot 6341),

and 13-fold when associated with b- and c-crystallins (spot 6352).

Acidic and degraded aA-crystallin increased 34-fold (spot 6485).

Spots containing cA-, cB-, cC-, and cD-crystallins decreased 6-

fold. Degraded aA-crystallin associated with cC-, cA-, and cB-

crystallins increased 15-fold. Nine spots containing degraded aA-

crystallin increased in mutant lenses, whereas degraded but more

basic forms than the original aA-crystallin decreased in abundance

(spots 7068, 7089, and 7419). Wild type and aA-R49C homozy-

gous lenses were further analyzed (Fig. S2 in File S1 and Table

S1). There was a large change in bB2-crystallin expression with

age of the wild type lenses (from 2 days to 2 weeks). Spots 5446

and 5466 (Table S1) show an increase in bB2-crystallin in wild

type mouse lenses confirming the results of a previous study [23].

Two-week Old aB-R120G Mouse Lenses
Figure 6 shows 2D gels for 14-day-old WT and mutant proteins

of aB-R120G knock-in mice. Table 4 shows the approximately 50

protein spots that showed a change in abundance between WT

and mutant spots in the 14-day-old lenses. Figure 7 shows 3D plots

for some of the protein spots that changed in abundance in the aB-

R120G mutant lenses. Heterozygous aB-R120G lenses showed

several spots with decreased abundance of phosphoglycerate

mutase (spots 5353, 5441, 5456 and 5468). Phosphoglycerate

mutase was the only protein in spots 5353 and 5468 but was

associated with bB1-crystallin in spots 5441 and 5456. aA- and

aB-crystallins decreased in a very basic high molecular weight spot

(spot 2982). The abundance of aA-crystallin increased 2.8- to 10-

fold in spot 6415, and was slightly degraded and more acidic than

normal aA-crystallin. In the same region, spots 6449 and 6848

(aA-crystallin associated with grifin) increased 12-fold and 2.5 fold,

respectively. Degraded and more basic forms of aA-crystallin

alone (spots 6920 and 7257) or with aB-crystallin and bB3-

crystallin (spot 7451) also increased in abundance in heterozygous

lenses. A spot containing aA-, cA-, cB-, cC-, and cD-crystallins

also decreased 2.7-fold in heterozygous lenses.

Homozygous aB-R120G lenses showed an 8-fold increase in the

abundance of a more acidic spot (5961) containing aB- and other

crystallins, whereas the more basic spot 5963 decreased 5.6-fold.

Spot 6120 containing aA-, aB-, and cB-crystallins also increased

in abundance in homozygous lenses. This spot was more acidic

than the other aB-crystallin spots and was located near the aA-

crystallin position. Spot 5938, which was very close to spot 5963

but slightly more acidic, also decreased in abundance. Spots 7164

increased in abundance by 2.0-fold in aB-R120G homozygous

lenses relative to WT. It contained both aA- and aB-crystallins,

which were more degraded and basic than the original proteins.

Overall, a few unique spots changed in abundance in aB-R120G

homozygous lenses than in aB-R120G heterozygous lenses.

To obtain a general perspective of cellular systems affected in

the aA-R49C and aB-R120G mutant lenses, we mapped the

proteins identified by mass spectrometric analysis to existing

networks. These networks represent interactions known to occur

among the proteins identified in our analysis. The interactions

shown in these networks did not originate from lens tissue in our

study. Ingenuity Pathway software analysis generated eight

different networks for the proteins identified in the aA-R49C

mutant lenses, two of which are shown in Figure 8, with additional
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networks shown in Fig. S3 in File S1. One network generated by

this approach included the chaperones HSPA8 and HSPA2 which

interact with aB-crystallin. A second network included histone H4

which has been shown to interact with the PI3kinase complex.

Four different protein networks were generated by this method in

the aB-R120G lenses including one in which the ubiquitin

proteasome was at the hub (Figure S4). An interaction between the

lens-specific protein grifin and the transcription factor IKZF1 was

evident in both aA-R49C and aB-R120G mutant lenses (Figs. S3,

S4 in File S1, and Table S2).

Discussion

Several mechanisms can cause hereditary cataracts, including

increases in protein mass, aggregation, insolubility, and light

scattering. In the present study, we characterized changes in

protein abundance at an early postnatal age in mouse lenses with

knock-in mutations of aA- or aB-crystallins. We also investigated

proteins that showed increased association with aA- or aB-

crystallins in mutant lenses, defined by an increase in the level of

urea-resistant protein in the same spot.

Several important assumptions of this study require further

discussion. The present study identified changes in abundance of

many spots in which aA- or aB-crystallin was present together

with other proteins. This association indicates similar pI and

molecular weights of the ancillary proteins and the a-crystallin in

these spots. We cannot speculate on the mechanism by which the

proteins are associated with a-crystallins. Our evidence from 2D-

gel analysis is suggestive of an association, but is not conclusive.

Since this association was observed in multiple gels of wild type

and knock-in mutant lenses, the presence of aA- and/or aB-

crystallin with specific proteins in the same spots is suggestive of a

true association. Previous studies suggest that mutant a-crystallins

may exert a gain-of-toxic function on the lens [25]. Thus, it is

possible that the differences in protein abundances between

normal and knock-in mouse lenses may not be directly due to

incompetent chaperones per se, although a previous study with the

aA and aB-crystallin DKO mouse lenses strengthens the

conclusions of the present work [23]. Nevertheless, a toxic gain-

of function by the mutant a-crystallins could be a potential factor

in the observed results.

There was a significant decrease in the abundance of actin

(15.6-fold), filensin (17.5-fold), bA3/A1-crystallin, cD-crystallin (6-

fold), and grifin (1.74-fold). We also observed degradation of

glutamate dehydrogenase, which was associated with cytochrome

Figure 2. Quantitative analysis of abundance changes in proteins from postnatal 2-day-old WT and aA-R49C knock-in lenses by
mass spectrometry. The 3D data sets for representative proteins in two WT (WT1 and WT2) and one aA-R49C heterozygous or aA-R49C
homozygous mutant sample are shown. WT1 and WT2 proteins were labeled with Cy2 and Cy3 dyes, respectively and aA-R49C mutant proteins with
Cy5. Fold changes between each sample are indicated on the right. See Table 1 for the identity of proteins present in each protein spot.
doi:10.1371/journal.pone.0095507.g002
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c in some spots. Because the abundance of these proteins changed

at a young age, even in the heterozygous mutant aA-R49C lens,

with no apparent change in lens morphology, it is very likely that

they are in vivo substrates of a-crystallin. Our analysis also suggests

that enzymes involved in lens metabolism, such as creatine kinase

B and phosphoglycerate mutase, and the detoxification enzyme

GST-m are in vivo substrates of aA- and aB-crystallins. These

proteins may be structurally labile and might interact with aA- and

aB-crystallins for conformational maintenance during the early

stages of lens growth but become more stably associated with the

protein when the chaperone is mutated. Structural analysis of

these enzymes is necessary to reveal any common structural

domains. These findings suggest that key metabolic pathways are

involved in the mechanism of cataract formation by the aA-R49C

or aB-R120G mutations. The decrease in phosphoglycerate

mutase levels in the postnatal aB-R120G knock-in mouse lens

suggests that mutation of the chaperone protein in the lens affects

lens metabolism even before the opacification process becomes

evident.

The association of histones with aA-crystallin increased in the

mutant lenses. The possibility that histones are protected by a-

crystallins is particularly important because histones are critical

and long-lived proteins [26]. The R49C mutant of aA-crystallin

exhibits increased apoptosis and aberrant accumulation of nuclei

in the lens, suggesting a possible explanation for the increased

abundance of histones [15,27]. We previously reported an

increased abundance of histones in aA/aB double knock-out

(DKO) lenses [23], and in lens cells expressing another human

cataract-related mutant of aA-crystallin in which the arginine 116

residue is replaced by cysteine [28]. Therefore it seems likely that

histones may be protected by aA- and aB-crystallins in the lens. In

2-week-old aA-R49C mutant lenses there was an increase in aA-

crystallin associated with annexins. These proteins are associated

with apoptosis, which has been observed in the aA-R49C mouse.

Interestingly, phosphoglycerate mutase, a-enolase, and peptidyl-

prolyl cis-trans isomerase are oxidized and have reduced enzyme

activities in Alzheimer’s disease, another disease associated with

protein aggregation [29].

An intriguing observation of the present study was the presence

of albumin in the 2-day-old lens (Table 1). Extracellular albumin,

an abundant protein in the aqueous humor, becomes internalized

in the lens in vivo [30]. It has been suggested that albumin is a

carrier for lipids and other metabolites, and could be essential for

normal lens physiology [31,32]. A decrease in plasma albumin has

been linked with an increased risk of human cataract [33]. The

abundance of the spot containing albumin, aA-crystallin and

filensin showed a 3.6-fold variation between the two biological

replicates of the WT mouse lens, and increased 16- to 17-fold in

the aA-R49C heterozygous lenses. Further studies will be

necessary to understand the significance of these observations.

We detected increased aA-crystallin in protein spots containing

cytoskeletal proteins, and increased abundance of degraded and

more acidic cytoskeletal proteins including spectrin-a, filensin,

phakinin, tubulin, vimentin, and microtubule-associated protein

RP/EB in the aA-R49C mutant knock-in lenses. The abundance

of filensin and phakinin decreased in aA-R49C mutant lenses,

suggesting that these proteins are in vivo substrates for aA-

crystallin. The spectrin-actin membrane skeleton contributes

significantly to lens fiber cell organization and is functionally

linked to the phakinin-filensin network [34]. Disruption of the

spectrin-actin membrane cytoskeletal complexes may therefore be

responsible for the morphological changes observed in aA-R49C

homozygous mutant lenses at an early age [27,35]. There was also

an increase in the amount of degraded and more acidic grifin, a

protein whose interaction with aA-crystallin has been demon-

strated previously [36], and the abundance of aA-R49C associated

with grifin increased 16-fold in homozygous mutant lenses. The

amount of hemoglobin subunit a decreased in aA-R49C

homozygous mutant lenses indicating that it is a likely substrate

for aA-crystallin. Previous studies support the possibility that

destabilized forms of hemoglobin show increased binding to aB-

crystallin in vitro [37].

We found an increase in b-crystallin isoforms with more acidic

pI in the mutant lenses. Decreases in more basic forms of bB1- and

bB3-crystallins and increases in more acidic forms indicate that

aA-crystallin is a chaperone for these two crystallins. Furthermore,

aA- and aB-crystallins were increasingly associated with b-

crystallins in the mutant lenses, suggesting that they may have

formed heteromeric complexes. Previous studies have identified

covalent multimers of crystallins in aging human lenses [38].

Recently, the crosslinks between b-crystallin isoforms have been

identified by mass spectrometry [39]. Deamidation of bB2-

crystallin has been proposed to disrupt normal crystallin structure

and short-range order necessary for lens transparency [40].

Deamidation has been shown to lower the temperature necessary

for bB2-crystallin unfolding and aggregation, suggesting decreased

bB2-crystallin stability, although its 3D dimeric structure was not

significantly altered [41]. Interestingly, the nature and amount of

the destabilized b-crystallin intermediate is important for recog-

nition by the chaperone [42]. Decreased amounts of bB1-crystallin

were detected in five spots and in an additional four spots

containing other b-crystallin polypeptides. aA-crystallin was

associated with b-crystallins in these spots. The decrease in bB1-

crystallin was noteworthy because bB1-crystallin has a unique role

Figure 3. 2D-DIGE analysis of proteomic changes in whole lenses of WT, aA-R49C heterozygous, and aA-R49C homozygous mutant
lenses using a pool-based analysis. (A) WT samples were labeled with Cy2, a pool of all samples (containing WT, aA-R49C heterozygous and
homozygous proteins) was labeled with Cy3, and the aA-R49C heterozygous mutant sample was labeled with Cy5. The pool sample was a common
comparator for each sample. (B, C) Spots that were selected based on analysis of the gels are shown. Quantitative image analysis by biological
variation analysis was performed across several samples, and mass spectrometry data for the identified proteins from these gels are listed in Table 3.
doi:10.1371/journal.pone.0095507.g003
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in promoting higher order crystallin association in the lens, and

any change in this order could result in increased light scattering

and loss of transparency [43–45]. The amount of aA and aB-

crystallins associating with bA3/A1-, bA2-, and bA4-crystallins

increased significantly in homozygous 2-day-old lenses. Our

studies also demonstrated a decrease in c-crystallins in homozy-

gous lenses at a young age. Many of these changes occurred in a

mutation- and dose-dependent manner; i.e., changes in the

Figure 4. Pool-based quantitative analysis of changes in abundance of postnatal 2-day-old lens proteins from WT and aA-R49C
knock-in lenses by mass spectrometry. The 3D data sets for representative proteins in one WT, one pool, and one aA-R49C heterozygous or aA-
R49C homozygous mutant sample are shown. WT proteins were labeled with Cy2, pool proteins with Cy3, and aA-R49C heterozygous mutant
proteins with Cy5. Fold changes between each sample are indicated on the right. See Table 2 for the identity of proteins present in each protein spot.
doi:10.1371/journal.pone.0095507.g004

Figure 5. 2D-DIGE analysis of proteomic changes in whole lenses of 14-day-old mice induced by knock-in of the aA-R49C mutation.
(A) A 2D gel of lens proteins labeled with cyanine dyes derived from WT1 proteins labeled with Cy2, WT2 proteins labeled with Cy3, and aA-R49C
homozygous lens proteins labeled with Cy5. (B, C) Protein spots that were selected for analysis from the gel in (A) are shown. Proteins were identified
by tandem mass spectrometry and Mascot searches of spots that were selected from the gels. Quantitative image analysis and mass spectrometry
data for the identified proteins from these gels are listed in Table 3.
doi:10.1371/journal.pone.0095507.g005
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amounts of certain proteins were greater in the complete absence

of a WT aA-crystallin gene (homozygous mutant) than with only

one copy of the WT gene (heterozygous mutant). Examples are

shown in Tables 1-3 for the aA-R49C protein. The effect of

developmental age was investigated using 2- and 14-day-old R49C

mutant lenses (Fig. S2 in File S1 and Table S1). The increased

abundance of several proteins and the degradation of aA-crystallin

previously observed in 2-day-old homozygous mutant lenses were

confirmed at 14 days.

An important conclusion of the present study is that the aB-

R120G mutation causes specific in vivo changes in protein

abundance. Protein changes in the aB-R120G lenses were

distinctly different from those in aA-R49C mutant lenses. The

main changes in the aB-R120G mutant lens included altered

abundance of b- and c-crystallins, increased degradation of aA-,

aB-, and c-crystallins, and degradation of phosphoglycerate

mutase, a glycolytic enzyme that is very important in metabolism

but has not been studied in the lens in detail [46–49]. There was

also a 12-fold increase in the amount of aA-crystallin associated

with grifin in these lenses.

Our studies demonstrated that 2-week-old aA-R49C homozy-

gous lenses contained a high abundance of low molecular weight

proteins (,14 kDa) indicating that the absence of WT aA-

crystallin leads to protein instability, greater susceptibility to

proteolysis, and protein degradation. This occurred as a primary

event at an early postnatal stage. Previous studies have identified

lens protein truncation with age in human lenses [50,51]. In future

work, we intend to identify the common structural features that

make the proteins more labile to proteolysis, which will provide

critical information needed to develop a model of in vivo cataract

formation. Our previous studies involving molecular weight

measurements of the aA-R49C homozygous lenses by light

scattering also demonstrated an increase in low molecular weight

proteins (,15 kDa) in these lenses [10]. We first examined the

presence of low molecular weight proteins in the homozygous

lenses, and then compared WT, heterozygous, and homozygous

lenses. We subsequently identified the low molecular weight

proteins as aA-crystallin associated with other crystallins, gelsolin

and degraded ceruloplasmin, that were absent from WT mouse

lenses but abundant in 2-week-old aA-R49C homozygous lenses

(Table 3).

aA- and aB-crystallins were degraded in both aA-R49C and

aB-R120G mutant lenses at a young age, suggesting that the

mutations make these proteins less stable. Decreased stability was

associated with increased crosslinking of aA-crystallin, as shown by

the 15-fold increase in crosslinking of aA-crystallin to form a

higher molecular weight form of approximately 40 kDa that

corresponded to a crosslinked dimer. We detected increased

crosslinking of aA-crystallin very early, even in lenses of 2-day-old

postnatal aA-R49C heterozygous mice. Previous studies have

shown that increased crosslinking can reduce the chaperone

activity of a-crystallin [52]. We previously used immunoblot

analysis to show an increase in the amount of water-insoluble aB-

crystallin in 6-week-old aB-R120G mutant lenses [17]. We now

demonstrate the presence of high molecular weight aB-crystallin in

postnatal aB-R120G heterozygous and homozygous lenses,

indicating that they appear early during postnatal development

and consistent with their important role in opacification of aB-

R120G heterozygous and homozygous lenses.

In previous studies we investigated the effect of aA/B double

knock-out. The expression of bB2-crystallin increased 40-fold in 6-

week-old aA/B DKO lens epithelial cells; however, the upregula-

tion of bB2-crystallin protein was not observed in 2-day-old DKO

lenses, indicating that this was not a physiological stress-induced

Figure 6. 2D-DIGE analysis of proteomic changes in whole lenses of 14-day-old mice induced by knock-in of the aB-R120G
mutation. (A) 2D gel of lens proteins labeled with cyanine dyes derived from WT1 proteins labeled with Cy5, WT2 proteins labeled with Cy3, and aB-
R120G heterozygous lens proteins labeled with Cy2. (B) 2D gel of lens proteins labeled with cyanine dyes derived from WT1 proteins labeled with
Cy2, WT2 proteins labeled with Cy3, and aB-R120G homozygous proteins labeled with Cy5. (C, D) Protein spots that were selected for analysis from
the gel shown in (A) and (B) are shown in (C) and (D), respectively. Proteins were identified by tandem mass spectrometry and Mascot searches of
spots that were selected from analysis of the gels. Quantitative image analysis and mass spectrometry data for the identified proteins from these gels
are listed in Table 4.
doi:10.1371/journal.pone.0095507.g006
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effect but probably developmental. Surprisingly, in 6-week-old

DKO mouse lenses we did not observe an increase of lower

molecular weight (,14 kDa) proteins as seen in the knock-in

lenses. This was the major difference between aA/B DKO lenses

and aA-R49C homozygous lenses although there were other

distinct differences between the proteins altered in knock-out

versus knock-in aA-R49C mutant and aB-R120G mutant lenses.

For example, the following effects were observed only in knock-in

mutant lenses: increased abundance of creatine kinase B associated

with aA-crystallin (only in aA-R49C mutant lenses); decreased

abundance of phosphoglycerate mutase; changes in grifin associ-

ated with aA-crystallin; association of chaperones of the HSP70

and TCP-1 families with aA-crystallin (only in the aA-R49C

mutant lenses); decreased abundance of in c-crystallins; increased

abundance of the apoptotic protein annexin. In contrast,

degradation of titin, b1-catenin, and a decrease in serine threonine

protein kinase were observed only in aA/aB DKO lenses.

However, common features in our analyses of aA/aB-knock-out

lenses and the aA-R49C and aB-R120G mutant knock-in lenses

included changes in histones, hemoglobin, glutamate dehydroge-

nase, GST-m, and bB1-crystallin. An increase in bB1-crystallin

crosslinking and degradation was observed in the knock-in mutant

lenses, but only its crosslinking increased in the knock-out lenses.

Crosslinking of vimentin, tubulin, and actin increased and their

abundance decreased in both knock-out and knock-in lenses.

These differences in protein abundance and degradation among

the three model systems indicate that specific cellular conditions

dictate the substrates for a-crystallins during the early stages of lens

development. This reveals variable substrate recognition by a-

crystallins, which when fully understood may provide insights into

how to limit the damage resulting from protein unfolding in

cataracts and could implicate use of the aggregation-preventing

properties of a-crystallins to control damage due to stress and

disease.

It has been proposed that a combination of interaction sites

could be key in substrate recognition by aA-crystallin [53]. The

interaction of a-crystallins with substrate proteins is non-covalent

in nature, and hydrophobic interactions need only a subtle change

on the protein surface of the target proteins. Hydrophobic

interactions are probably more common than previously believed

because proteins are dynamic systems. A very small area might

become exposed and bind to a hydrophobic surface on the

chaperone protein even though the particle size may not change

sufficiently to cause light scattering. Moreover, changes in the pI of

proteins can occur without a stability change. Surface anisotropy

can change many times in response to unidentified factors in the

Figure 7. Quantitative analysis of the changes in abundance of proteins in postnatal 14-day-old lens from WT and aB-R120G knock-
in mice by mass spectrometry. The 3D data sets for representative proteins in two WT (WT1 and WT2) and one aB-R120G mutant sample are
shown. (A) WT1 and WT2 proteins were labeled with Cy3 and Cy5 dyes, respectively, and aB-R120G heterozygous mutant lenses with Cy2. (B) WT1
and WT2 proteins were labeled with Cy2 and Cy3 dyes, respectively, and aB-R120G homozygous mutant lenses with Cy5. Fold changes between each
sample are indicated on the right. See Table 4 for the identity of proteins present in each protein spot.
doi:10.1371/journal.pone.0095507.g007
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environment of cells. There is no change in protein size in many

hereditary cataracts caused by c-crystallin mutations, instead the

cataract is formed by increased electrostatic interaction between

the positively charged E107A cD-crystallin and the negatively

charged a-crystallins, which increases the amount of light

scattering [54,55]. This may also occur in aA-R49C and aB-

R120G mutant proteins in which the negative charge on arginine

is lost when it is replaced by cysteine or glycine, respectively, and

the proteins have a more acidic pI, resulting in an increase in light

scattering. Thurston et al. showed that the strength of the

interaction between native c- and a-crystallins is essentially

optimal for lens transparency, and that a small increase in this

interaction can increase light scattering and lead to cataract

[56,57]. Further studies are needed to elucidate the hierarchy in

the interaction of aA- and aB-crystallins with different proteins

and the interactive sequences involved.

In summary, our studies demonstrate that characterization of

changes in protein abundance in postnatal lenses is an effective

way to identify in vivo substrates of aA- and aB-crystallins. Proteins

that showed the greatest change in abundance at an early age are

very likely to be in vivo substrates of the a-crystallins. Further

quantitative studies are required to define the relationship(s)

between binding of aA- and aB-crystallins and polymerization and

subcellular distribution of the substrates identified in this study.

This will provide new information into protein abundance changes

that may occur in cataracts, even before the opacification process

becomes obvious. Our approach could therefore characterize the

in vivo state at the beginning of cataract development in the mouse

lens, providing information necessary to develop interventional

strategies to prevent future lens opacities.

Materials and Methods

Animals and Lenses
aA-R49C knock-in mice and aB-R120G knock-in mice were

generated by stem cell-based techniques as described previously

[17]. Mice were converted to the C57 background using speed

congenics. Wild type (WT), heterozygous mutant, and homozy-

gous mutant mice used in this study were genotyped by PCR-

based methods. All procedures involving mice were performed by

trained veterinary staff at the Mouse Genetics Core at Washington

University. All protocols and animal procedures were approved by

the Washington University Animal Studies Committee (protocol

number 20110258). Lenses from two different age groups of aA-

R49C knock-in mice (2-day old and 2-week-old) were analyzed by

mass spectrometry (2-4 mice in each replicate set of WT1, WT2,

and aA-R49C heterozygous mice and WT1, WT2, and aA-R49C

homozygous mice). WT and aA-R49C knock-in mutant lenses

were subjected to two-dimensional difference gel electrophoresis

(2D-DIGE). Lenses from 2-week-old aB-R120G heterozygous and

homozygous mice were also analyzed by 2D-DIGE.

Mass Spectrometric Analysis
Lenses were dissected and placed in lysis buffer containing

30 mM Tris-HCl (BioRad, Hercules, CA), 2 M thiourea (Sigma-

Aldrich, St. Louis, MO), 7 M urea (BioRad), 4% CHAPS

(BioRad), and 16 complete protease inhibitor cocktail tablets

(Roche, Indianapolis, IN), pH 8.5. Lens proteins (50 mg) were

labeled with 400 pmol Cy2, Cy3, or Cy5. Pools were prepared by

mixing equal quantities of protein from each sample after dye

labeling [58]. 2D-DIGE was performed at the Proteomics Core

Laboratory according to published methods [59]. Briefly, samples

were equilibrated onto immobilized pH gradient strips at 100 V

and subjected to isoelectric focusing using a maximum of 10,000

focusing volts (PROTEAN IEF cell: BioRad). After focusing,

proteins were reduced with Tris(2-carboxyethyl) phosphine

hydrochloride (TCEP, 10 mM) and alkylated with iodoacetamide

(20 mM). The strip was then layered on a 10-20% polyacrylamide

gel, and proteins were separated by SDS-PAGE. Samples were

imaged with a Typhoon 9400 Imager (GE Healthcare, Piscat-

away, New Jersey) using specific excitation and emission wave-

Figure 8. Ingenuity Pathways analysis of lens proteins identified in aA-R49C knock-in mutant lenses. Analysis of altered protein
networks by Ingenuity Pathway software. Biological networks and pathways generated from input data (Wild-type vs. aA-R49C, Tables 1-3 and Table
S1) indicate proteins with altered abundance in gray. (A) A network with HSPA8 at the hub. (B) A second network highlights Histone H4 at the hub of
the protein connectivity map. Additional networks are shown in Fig. S3 in File S1.
doi:10.1371/journal.pone.0095507.g008
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lengths for Cy2 (488 and 522 nm), Cy3 (520 and 580 nm), and

Cy5 (620 and 670 nm). Control and experimental samples were

labeled with blue or red fluorescent dyes and run on the same 2D

gel [60,61]. Image analysis was performed to assess differences

between WT and homozygous/heterozygous mutant lenses.

Individual protein spots that showed differential intensities were

excised from the gel and analyzed by mass spectroscopy. Fold

changes represented proteins with increased (positive numbers) or

decreased (negative numbers) expression in mutant versus WT

samples.

Single or multi-gel analyses were used to determine changes in

protein abundance between WT and knock-in mouse lenses.

Single gel analysis was performed to compare the following

conditions: WT and aA-R49C heterozygous and homozygous

mutant lenses (Tables 1, 3, Figs. 1 and 2, Table S1), and WT and

aB-R120G heterozygous and homozygous mutant lenses (Table 4,

Figs. 6 and 7). In addition, multi-gel analysis was performed with a

pooled internal standard. This approach was used to compare 2-

day-old WT, aA-R49C heterozygous, and homozygous mutant

lenses (Table 2 and Figs. 3 and 4). Multi-gel comparisons were

performed using different combinations of sample sets. The WT

sample was labeled with Cy2 and mutant samples were labeled

with Cy5. A pool of all samples was labeled with Cy3 and served as

a standard that was common to each gel. The pooled standard, the

control, and one test sample were combined and run on each gel.

Images were generated and compared within each 2D gel using

DeCyder v.6.5 image analysis software (GE Healthcare). Differ-

ential in-gel analysis (DIA) was used to normalize and compare

quantitative differences between images from each gel. Image

analysis using DeCyder software generates a relative value for the

abundance of the spot in different samples, but there is no

mechanism to determine the statistical significance of the

differences. We therefore performed analysis of combined

biological replicates for the different genotypes. In addition, we

used Biological Variation Analysis (BVA) for the 2-day-old aA-

R49C knock-in mouse lenses to obtain statistical significance as

described below [59].

Analysis of Pool-Based Data
Pool-based studies involved a pool of proteins from all samples

in the experiment, providing a common comparator for each

sample. Because the pool is identical on each gel, the fold change

‘‘difference’’ for a spot in the pool image is 1.0 (representing no

change) when comparing pool images from any two gels. This

designation allowed us to compare protein amounts for spots of

WT or aA-R49C heterozygous lens samples to the pool on the

same gel to determine relative amounts of protein. Although WT

and mutant samples were resolved on different gels, their fold

changes were determined in comparison to the pooled sample,

which was also run on each gel. Because the pool from one gel is

identical to the pool from another, the WT and mutant fold

change values could be directly compared. Pairwise analysis of

proteins across different physical gels was performed using the

BVA module to quantify relative differences between the samples

[59]. BVA compares the quantitative value of the spot as it is

represented among different samples. BVA data generates t-test

and assigns p value to identify statistical significance. p , 0.05

denotes statistical significance (Table 2).

Database Searching
The mass spectra were acquired using nano-LC-MS as

previously described [62]. All tandem mass spectrometry samples

were analyzed using Mascot (Matrix Science, London, UK;

version 2.1.1.0) as previously described [23]. Mascot was set to

search the Uniprot mouse database (downloaded 12/28/2010,

135387 entries) using trypsin as the digestion enzyme, with a

fragment ion mass tolerance of 0.80 Da and a parent ion tolerance

of 50 ppm for data from the LTQ FT mass spectrometer. The

QSTAR data were searched using a parent and fragment

tolerance of 0.1 Da. The iodoacetamide derivative of cysteine

was specified in Mascot as a fixed modification and methionine as

a variable modification. Scaffold software (v. 3.6.1) was used to

display proteomic data. Additional data processing details have

been previously described [59].

Criteria for Protein Identification
Scaffold (version Scaffold_3_01_00, Proteome Software Inc.,

Portland, OR) was used to qualify MS/MS-based peptide and

protein identifications [63]. Protein identification was accepted if

identity could be established at .95.0% probability and involved

at least one identified peptide. Protein probabilities were assigned

using the Protein Prophet algorithm ([64] AI et al 2003). Proteins

that contained similar peptides but were not differentiated based

on MS/MS analysis alone were grouped to satisfy the principles of

parsimony. Mass spectra for all the proteins identified in this study

are shown in Table S4.

Knowledge-based Network Analysis
After false positive analysis (Protein Prophet) and removal of

contaminants (e.g., keratins), proteins listed in Tables 1-4 and S1

(identified by UNIPROT accession numbers) were entered into

Ingenuity Pathways (www.ingenuity.com) (IPA, version 8.8,

Redwood City, CA) as a *.xls file. The software mapped 99 of

118 Gi numbers, corresponding to 99 gene symbols. Duplicate

names corresponding to the same gene were eliminated. Ingenuity

was set to generate up to 25 networks containing up to 35

members each, with no additional restrictions. Biological networks

and pathways were generated from the input data (‘focus genes’’)

and gene objects in the Ingenuity Pathways Knowledge Base

(IPKB). Interaction networks generated using this method showed

proteins present in our samples as shaded in grey and other

interacting proteins not identified from these gels as unshaded.

Supporting Information

Table S1 Analysis of proteins that showed differences in
abundance between 2-day-old WT, 14-day-old WT and 2-
day-old aA-R49C homozygous mouse lenses. WT, Wild-

type.

(DOC)

Table S2 Ingenuity Pathway Analysis (IPA) molecules
table for proteins affected by aA-crystallin R49C muta-
tion in the mouse lens.

(XLS)

Table S3 Ingenuity Pathway Analysis (IPA) molecules
table for proteins affected by aB-crystallin R120G
mutation in the mouse lens.

(XLS)

Table S4 Mass spectrometry and database search
results for proteins identified in this study.

(XLSX)
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File S1 Supplementary figures. Figure S1, 2D-DIGE
analysis of proteomic changes in whole lenses of 2-day-old mice

with knock-in of the aA-R49C mutation. Protein spots that were

picked for analysis from the 2D gels of WT and aA-R49C

heterozygous (A) and WT and aA-R49C homozygous lenses (B-D)

www.ingenuity.com


in of the aA-R49C mutation. (A) A 2D gel of lens proteins labeled

with cyanine dyes derived from 2-day-old WT proteins labeled

with Cy3, 14-day-old WT proteins labeled with Cy5, and aA-
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