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Abstract

Major vault protein (MVP) is the major component of the vault particle whose functions are not 

well understood. One proposed function of the vault is to serve as a mechanism of drug transport, 

which confers drug resistance in cancer cells. We show that MVP can be found in cardiac and 

smooth muscle. In human airway smooth muscle cells, knocking down MVP was found to cause 

cell death, suggesting that MVP serves as a cell survival factor. Further, our laboratory found that 

MVP is S-glutathionylated in response to ligand/receptor-mediated cell signaling. The S-

glutathionylation of MVP appears to regulate protein-protein interactions between MVP and a 

protein called myosin heavy chain 9 (MYH9). Through MYH9 and Vsp34, MVP may form a 

complex with Beclin-1 that regulates autophagic cell death. In pulmonary vascular smooth muscle, 

proteasome inhibition promotes the ubiquitination of MVP, which may function as a mechanism 

of proteasome inhibition-mediated cell death. Investigating the functions and the regulatory 

mechanisms of MVP and vault particles is an exciting new area of research in cardiovascular/

pulmonary pathophysiology.
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Introduction to vault and major vault protein (MVP)

In 1986, Kedersha and Rome[5] reported their discovery of a novel ribonucleoprotein 

particle in rat liver-coated vesicle preparations with a barrel-like structure resembling the 

multiple arches forming cathedral vaults. The authors named these particles ‘vaults’, which 

were found to be largely composed of a protein with a relative molecular mass of 104,000 

subsequently named MVP.
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Later, Scheper et al.[
14] reported the discovery of a protein with a relative molecular mass of 

110,000 that is overexpressed in P-glycoprotein (Mdr1)-negative multidrug-resistant tumor 

cell lines. This protein was named ‘lung-related resistance protein’. The cloning of this gene 

revealed that lung-related resistance protein is MVP[12].

The findings that MVP[14] and vaults[6] are upregulated in multidrug-resistant cancer cells 

supported the concept that vaults play a role in drug resistance. MVP has been proposed to 

export drugs from the nucleus for sequestration in cytosolic vesicles[1, 9] and regulate drug 

resistance in concert with ABC transporters[13]. In drug-resistant and MVP-overexpressing 

non-small cell lung cancer cells, MVP was co-localized with doxorubicin in cytoplasmic 

vesicles[10]. The siRNA knockdown of MVP inhibited the sequestration of doxorubicin and 

promoted drug accumulation and cytotoxicity[4].

Contrary to the ample evidence for the role of MVP in multidrug resistance in cancer cells, 

some reports do not support this hypothesis. First, Siva et al.[
15] reported that the 

upregulation of vaults was not sufficient to induce multidrug resistance. These findings can 

be explained, however, by the concept that the post-translational activation of MVP may be 

needed. Second, MVP knockout and thus vault-less mice were reported not to be 

hypersensitive to neoplastic drugs[11]. These experiments, however, were performed in non-

cancerous cells and did not account for the activated MVP state, which might occur in 

cancer cells.

While the function and regulation of MVP remain unclear, the structure of vaults has been 

well understood. In addition to MVP, two minor proteins form the vault, namely 193-kDa 

vault poly(ADP-ribose) polymerase (vPARP)[7] and 240-kDa telomerase-associated 

protein-1 (TEP1)[8]. The vault also contains four RNAs with sizes of 88, 88, 98 and 101 

bases. Recently, the structure of the rat liver vault was obtained at 3.5-angstrom resolution, 

which revealed that a vault comprises of 78 MVP chains[16].

MVP is expressed in smooth muscle and cardiac muscle

To our knowledge, studies of MVP in smooth muscle cells (SMCs) had never been 

conducted until our publications, which show that human airway SMCs[2] and lung vascular 

SMCs[17] express MVP. Fig. 1A shows that MVP is expressed in the primary culture of 

human bronchial smooth muscle cells (HBSMCs), human pulmonary artery smooth muscle 

cells (HPASMCs) and isolated rat pulmonary artery (PA) as monitored by Western blotting. 

The human smooth muscle cell MVPs migrated in a similar way to MVP in HeLa human 

cervical carcinoma cells. As human MVP contains 893 amino acids and rat MVP contains 

861 amino acids, smaller rat MVP migrated a little more in the SDS polyacrylamide gel than 

the human MVP molecule. MVP was also detected in both growth-arrested and proliferating 

smooth muscle cells in the presence of platelet-derived growth factor (PDGF). The siRNA 

knockdown of MVP in HPASMCs validates that the band observed is indeed MVP (Fig. 

1B). Immunohistochemistry also demonstrates the expression of MVP in the pulmonary 

vascular smooth muscle, which was remarkably found to be higher than that in any other 

parts of the lung in normal healthy rats (Fig. 2A).
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The expression of MVP was also found in the heart. Fig. 1 shows that MVP is expressed in 

the left ventricle (LV) and the right ventricle (RV) of the heart in normal rats as well as in the 

hypertrophied RV in rats with pulmonary arterial hypertension (PAH). 

Immunohistochemistry also shows the expression of MVP in cardiac muscle as well as in 

coronary artery smooth muscle in normal rats (Fig. 2B).

MVP functions as a cell survival factor

One function of MVP in smooth muscle appears to involve defining the fate of cells. As 

shown in Fig. 3A, the siRNA knockdown of MVP reduced the number of human airway 

smooth muscle cells[2]. Fig. 3B shows that this was accompanied by the formation of 

cleaved caspase 3, a marker of apoptosis[2]. Thus, MVP appears to serve as a cell survival 

factor. Moreover, the MVP regulation of heat-induced cell death suggests the existence of 

MVP actions that are distinct from the drug sequestration[2].

The cell survival role of MVP is likely due to its function as a part of the vault, as vPARP -- 

another component of the vault -- also serves a similar role. As shown in Fig. 4A, the 

knockdown of vPARP in human airway smooth muscle cells by siRNA caused a significant 

reduction in cell number. vPARP knockdown also promoted apoptosis as monitored by 

measuring caspase-3 cleavage (Fig. 4B). Fig. 4C shows the extent of vPARP knockdown by 

siRNA. These results suggest that both MVP and vPARP are needed for cell survival, 

strengthening the notion that these proteins act as part of the vault particle.

Post-translational modifications of MVP (S-glutathionylation)

Recently, our laboratory reported that the treatment of HBSMCs with growth factors such as 

PDGF caused post-translational modifications of proteins via S-glutathionylation, a process 

of adding glutathione to cysteine residues[2]. Mass spectrometry revealed that MVP is the 

protein that is S-glutathionylated. Immunoprecipitation with the glutathione antibody 

followed by non-reducing SDS-PAGE and immunoblotting with the MVP antibody 

confirmed the mass spectrometry results by showing that PDGF promoted the S-

glutathionylation of MVP after 10 min of cell stimulation (Fig. 5A). The S-glutathionylation 

of MVP was also promoted by knocking down glutaredoxin 1, a protein that catalyzes the 

deglutathionylation reaction (Fig. 5B). Conversely, the siRNA knockdown of thioredoxin-

interacting protein, which is an endogenous inhibitor of thioredoxin, inhibited platelet-

PDGF-induced MVP glutathionylation (Fig. 5A).

To identify the function of the redox regulation of MVP, we tested the hypothesis that 

protein-protein interactions with MVP may occur in a protein S-glutathionylation-regulated 

fashion. This hypothesis was tested by treating HBSMCs with control siRNA or siRNA for 

glutaredoxin 1, immunoprecipitating cell lysates with MVP, running SDS-PAGE and 

staining proteins in the gel with Coomassie Blue. Through this approach, we identified a 

protein in samples from cells in which glutaredoxin 1 was knocked down (thereby increasing 

protein S-glutathionylation), but not from cells treated with control siRNA. Mass 

spectrometry identified that this protein is non-muscle myosin heavy chain 9 (MYH9), and 

this finding was confirmed by immunoprecipitation/Western blotting (Fig. 6A). The siRNA 
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knockdown of MYH9 inhibited cell death (Fig. 6B), suggesting that MYH9 serves as a 

mediator of cell death[2].

A series of experimental observations suggested that the deglutathionylation of MVP and 

thus the dissociation of MYH9 from MVP promote autophagy-mediated cell death. MVP 

knockdown caused the downregulation of p62 (Fig. 7A), indicating the activation of 

autophagy, while MVP overexpression had the opposite effect (Fig. 7B). On the other hand, 

the heat-induced downregulation of p62 was completely inhibited by MYH9 knockdown 

(Fig. 7C) and was partially but significantly inhibited by glutaredoxin 1 knockdown (Fig. 

7D). Since MYH9 has been shown to interact with Vps34[18], which binds to Beclin-1 for 

the activation of autophagy[3], we propose that Beclin-1, Vps34 and MYH9 form a complex 

that mediates cell death and that the ROS-dependent S-glutathionylation of MVP triggers the 

binding of MYH9 to the vault complex, inhibiting Beclin-1-dependent cell death (Fig. 8).

Post-translational modifications of MVP (ubiquitination)

To determine the efficacy of a clinically used proteasome inhibitor on reversing pulmonary 

vascular remodeling by killing PA smooth muscle cells, we treated rats with PAH as well as 

proliferating cultured HPASMCs with carfilzomib. We found that carfilzomib effectively 

killed human PA smooth muscle cells and reversed pulmonary vascular remodeling in intact 

rats[17]. We further found that ubiquitin is essential for carfilzomib-induced cell death and 

some proteins are ubiquitinated in response to carfilzomib treatment. Mass spectrometry 

identified that one of the proteins ubiquitinated by carfilzomib is MVP, and this was 

confirmed by immunopecipitation and immunoblotting[17]. The ubiquitination of MVP is 

promoted in PAs in response to treating rats with PAH by carfilzomib, but not in healthy 

control rats[17]. This ubiquitination of MVP in the remodeled pulmonary vasculature with 

thickened PA smooth muscle was observed in two different rat models of PAH, namely 

SU5416 injection plus hypoxia and SU5416 injection plus ovalbumin immunization without 

changing the expression levels of MVP[17].

Summary

MVP, the major constituent of vault particles is expressed in cardiac and smooth muscle and 

may play important roles in cardiovascular pathophysiology. It appears that one function of 

MVP in smooth muscle includes being a cell survival factor. Such a mechanism may include 

the regulation of autophagic cell death through the interactions of MVP with Beclin-1 and 

its associated proteins. In smooth muscle cells, MVP can be S-glutathionylated or 

ubiquitinated. These post-translational modification mechanisms of MVP may be involved 

in cell regulatory processes. Investigating the functions and regulatory mechanisms of MVP 

and the vault particle in cardiac and smooth muscle presents an exciting new research area in 

cardiovascular/pulmonary biology.
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Abbreviations

HBSMCs human bronchial smooth muscle cells

HPASMCs human pulmonary artery smooth muscle cells

LV left ventricle

MVP major vault protein

MYH9 non-muscle myosin heavy chain 9

PA pulmonary artery

PAH pulmonary arterial hypertension

PDGF platelet-derived growth factor

RV right ventricle

SMCs smooth muscle cells

TEP1 telomerase-associated protein-1

vPARP vault poly(ADP-ribose) polymerase
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Figure 1. Western blotting shows that cardiac and smooth muscle express MVP
Cell lysates or tissue homogenates of (A) HeLa human cervical cancer cells, human 

bronchial smooth muscle cells (HBSMCs), human pulmonary artery smooth muscle cells 

(HPASMCs), isolated rat pulmonary artery (PA), rat left ventricle (LV), rat right ventricle 

(RV) and the RV from a rat with pulmonary arterial hypertension (PAH) and (B) untreated 

HBSMCs, HBSMCs treated with platelet-derived growth factor (PDGF) for 24 h, untreated 

HPASMCs, HPASMCs treated with PDGF, normal rat RV, the RV from a rat with PAH and 

HPASMCs in which MVP treated with MVP siRNA were subjected to Western blotting to 

monitor MVP levels. MVP siRNA and antibody were purchased from Santa Cruz 

Biotechology (Dallas, TX, USA).
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Figure 2. Immunohistochemistry shows that cardiac and smooth muscle express MVP
Rat lung (A) and heart (B) tissues were immersed in buffered 10% formalin at room 

temperature and embedded in paraffin. Paraffin-embedded tissues were cut and mounted on 

glass slides. Tissue sections were subjected to immunohistochemistry with the MVP 

antibody (Santa Cruz).
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Figure 3. MVP protects against cell death
Human bronchial smooth muscle cells were transfected with control siRNA or siRNA to 

knockdown MVP. (A) The cell number was determined by counting on a hemocytometer. 

(B) Cell lysates were subjected to immunoblotting to monitor cleaved caspase-3 expression. 

Bar graphs represent means ± SEM. * denotes values significantly different from the control 

at P<0.05. Reprinted with permission [2].
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Figure 4. vPARP protects against cell death
Human bronchial smooth muscle cells were transfected with control siRNA or siRNA to 

knockdown vPARP (Santa Cruz). (A) The cell number was determined by counting on a 

hemocytometer. (B & C) Cell lysates were subjected to immunoblotting to monitor the 

expression of cleaved caspase-3 (Cell Signaling Technology, Danvers, MA, USA) and 

vPARP (Santa Cruz). Bar graphs represent means ± SEM (n = 4). * denotes values 

significantly different from control at P<0.05.
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Figure 5. MVP is glutathionylated
(A) Human bronchial smooth muscle cells were transfected with thioredoxin-interacting 

protein (TXNIP) siRNA and treated with platelet-derived growth factor (PDGF). (B) Cells 

were transfected with siRNA to knockdown glutaredoxin 1 (Grx1). Cell lysates were 

immunoprecipitated with the glutathione (GSH) antibody, followed by immunoblotting with 

the MVP antibody. Bar graphs represent means ± SEM. * denotes values significantly 

different from the control, and ** denotes values significantly different from each other at 

P<0.05. Reprinted with permission [2].
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Figure 6. MVP interacts with MYH9 to mediate cell death in a glutaredoxin 1-dependent manner
(A) Human bronchial smooth muscle cells were transfected with control or Grx1 siRNA. 

Cell lysates were immunoprecipitated with the MVP antibody and subjected to 

immunoblotting with the myosin 9 antibody. (B) Human bronchial SMCs transfected with 

control siRNA or siRNA to knockdown myosin 9 siRNA. Cells were then heated at 65°C for 

10 sec and incubated at 37°C for 2 h. The cell number was determined by counting on a 

hemocytometer. The bar graph represents means ± SEM. * denotes values significantly 

different from each other at P<0.05. Reprinted with permission [2].
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Figure 7. MVP and MYH9 regulate autophagy
(A & B) Human bronchial smooth muscle cells were transfected with siRNA to knockdown 

MVP or treated with adenovirus (Ad) to overexpress MVP. Cell lysates were subjected to 

immunoblotting to monitor p62 expression. Bar graphs represent means ± SEM. * denotes 

values significantly different from the control at P<0.05. (C & D) Human bronchial smooth 

muscle cells transfected with siRNA to knockdown myosin 9 siRNA or to knockdown Grx1. 

Cells were then heated at 65°C for 10 sec and incubated at 37°C for 2 h. Cell lysates were 

subjected to immunoblotting to monitor the expression of p62. Bar graphs represent means ± 
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SEM. * denotes values significantly different from each other at P<0.05. Reprinted with 

permission [2].
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Figure 8. A proposed mechanism for the role of MVP in Beclin-1/Vps34/MYH9 complex-
mediated cell death
The ROS-dependent S-glutathionylation of MVP triggers the binding of the MYH9 complex 

along with vascular protein sorting 34 (Vps34) and Beclin-1 to the vault complex, inhibiting 

Beclin-1-dependent cell death. Glutaredoxin 1 (Grx1) and thioredoxin (Trx), which inhibit 

this cell survival mechanism, enhance smooth muscle cell death.
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