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ABSTRACT

Objective: Computing patients’ similarity is of great interest in precision oncology since it supports clustering

and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of bio-

medical data, characterized by large feature sets and sparse content, motivates the development of new meth-

ods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge.
Materials and Methods: In this work, we developed a data integration approach based on matrix trifactorization

to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy

of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing

levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study.

The results obtained are finally compared with the ones of traditional similarity calculation methods.
Results: In the analysis of the synthetic data set, where the ground truth is known, we measured the capability

of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained

with the different clusters and measured their statistical difference by means of the log-rank test. In presence of

noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in

the AML data.
Discussion: In case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully

fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to dis-

cover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the

definition of new research hypothesis for precision oncology.
Conclusion: The better performance of the proposed approach presents an advantage over previous methods

to provide accurate patient similarities supporting precision medicine.
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BACKGROUND AND SIGNIFICANCE

The concept of precision medicine is based on the assumption that a

careful identification of patients’ subgroups is able to properly take

into account individual variability, which may play a major role in

any prevention and treatment strategies.1 This concept is not new:

blood typing, for instance, has been used to correctly allocate blood

transfusions for more than a century.2

The oncology-field seems to be a clear choice for taking advantage

of precision medicine. Cancers are common diseases highly impacting on

the population because of their lethality, severe symptoms, and toxicity

associated with the oncological treatment. Moreover, each cancer has its

own genomic signature, along with some common features shared by

multiple cancer types.3 Patient similarity is an emerging approach in pre-

cision oncology and medicine, identifying patients with similar profiles

and derive insights to investigate diseases and potential treatments. In

precision oncology, patient similarity is traditionally measured through

preidentified signatures (eg Oncotype DXTM,4 PAM50,5 and other clini-

cally available classifiers), or patient-specific biomarkers.6 However,

these preidentified onco-signatures rely only on a relatively small number

of molecular features, and the trials launched to test the real impact of

the precision oncology in daily clinical practice have so far yield little

results,7–9 being limited only to a tiny proportion of the entire population

enrolled in the trials.9–11 Therefore, conventional studies designed on the

basis of the classical 4-phases of drug-development are probably neither

effective nor fit for precision oncology.12

The availability of large heterogeneous biomedical data naturally

opens ways to develop computational methods leveraging on the

whole multidimensional patient data framework to search for patient

similarity. These data include, among others, clinical (ie coded data,

text, images, signals), -omics (from genome to metabolome), and

exposome data. The capability of computing patient similarity in

presence of such large features becomes therefore a crucial component

to enable large-scale precision medicine implementation.13 In litera-

ture, patient similarity seems highly dependent on the specific prob-

lems considered, and there is no consensus about the best metrics or

the best algorithms to calculate it in presence of heterogeneous and

sparse data.14 To face these problems and consider patient similarity

from a multidimensional perspective, in recent years a number of

methods to determine patient similarity has been developed.15–22

In this article, we propose a novel method to compute patient sim-

ilarity for precision oncology by an unsupervised discovery of patient

subgroups. This method is based on a strategy that integrates data

and knowledge in a sound and formal way. In particular, we

exploited a modified version of a non-negative matrix trifactorization

algorithm recently developed23 and applied also to biomedical prob-

lems by Gligorijevic et al,21 Zang et al,24 Utro et al, and Zitnik et

al.21,25–30 Factorization techniques are efficient tools for data fusion

of large sparse data sets (like the ones available in the clinical setting).

These approaches adopt a useful dimension reduction by directly

compressing the starting data into a lower number of features (ie vec-

tor components). The decomposition methods play a central role in

the analysis of the latent structure hidden in the data that may unveil

unknown interactions of the initial data, that is patient similarities. In

recent years, several dimension reduction techniques have been pro-

posed to tackle biological problems. Examples rely on collective ma-

trix factorizations,31,32 tensor decomposition,33 Bayesian multitensor

factorization,34 and group factor analysis (GFA).35,36

Our approach takes into account the structural relation of several

highly heterogeneous data, such as clinical and genomic data, and

available knowledge from several public repositories. It implements

both metafeatures extraction and distance measures to reveal hidden

patient similarities. In the majority of state-of-art dimension reduction

methods, there is no constraint on the sign of the metafeature elements,

thus admitting negative components or subtractive combinations into

the representation.37 Our method, on the contrary, is based on non-

negative trifactorization. The incorporation of non-negative constraints

has been shown to enhance the interpretability of the data integrated.37

We tested the performance of the proposed algorithm on different syn-

thetic data sets, affected by increasing levels of noise and data sparsity.

We further validated the method by fusing a real data set coming from

an AML study with several external knowledge sources. By comparing

it with state-of-art techniques, we show our method outperforms other

approaches in both simulated and real data. Identified patients’ sub-

groups are validated as significantly different by survival curves.

MATERIALS AND METHODS

An overview of the trifactorization algorithm
The structure of data sources and knowledge bases is typically orga-

nized into relational matrices associating various objects/concepts, such

as patients, clinical data, genes, diseases, and so on. The non-negative

trifactorization algorithm naturally exploits these data structures to per-

form data fusion by first representing them in a matrix form and subse-

quently organizing them in a unique big block matrix. The algorithm

aims at identifying low-rank non-negative matrices whose product can

provide a good approximation of the original non-negative matrix. The

result is a new matrix containing predictions and novel knowledge

about the associations represented. This algorithm can be considered as

a knowledge-based method that allows dealing with sparsity by interpo-

lating missing data through a prediction derived by explicitly modeling

the correlation and the dependency between attributes.

A Matlab implementation of our algorithm is available at

https://gitlab.com/smarini/MaDDA.

The algorithm is described step by step as follows.

Let us consider r different types of concepts, say, patients, genes,

miRNAs, . . ., which we call objects o1;o2; . . . ;or and let’s suppose

that we have a set of data sources that relate pairs of objects (oi; ojÞ
for some i and j: for example we can have the objects “gene” and

“disease” and the repository “DisGeNeT”38 that relates them. If the

number of objects of type oi are ni and the number of objects of

type oj are nj the data source when i 6¼ j can be represented as a

sparse matrix Rij 2 R
ni�nj , called relation matrix (Figure 1). For in-

stance, the relation matrix may contain information of the relation-

ships between genes (eg BRCA1) and diseases (eg breast cancer). If

we also have observations about the relationships of the objects of

the same type, such as genes coexpression, we might represent them

with a matrix Hi 2 R
ni�ni , called constraint matrix (Figure 1).

Considering the entire set of Rij relation matrices given by all the

data sources of interest, we can represent them as a block matrix R,

which may miss elements (eg not all the genes in the genome can be

related to a given disease):

R ¼

� R12 . . . R1r

R21 � � R2r

..

. ..
. . .

.
�

Rr1 Rr2 . . . �

0
BBBBBBB@

1
CCCCCCCA

(1)
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The values of the matrix R express the strength of the relation-

ships between objects, and they correspond to numbers between 0

and 1, with 0 meaning no known relationships.

On the other hand, the constraint matrices Hi can be expressed

as a diagonal block set, Ht
i , where t¼1, 2,. . ., i denotes the possible

multiplicity of relationships of the same type, which can be derived

by i different knowledge sources (corresponding to different Hi ma-

trices of the same object). For example, coexpression may be mea-

sured through different types of experiments.

HðtÞ ¼ Diag H tð Þ
1 ;H

tð Þ
2 ; . . . ;H tð Þ

r

� �
: (2)

Differently from Rij matrices, Hi values vary between �1 and 1,

expressing the dissimilarity between elements of the same object

types, so that �1 means full similarity while 1 is full dissimilarity.

Once the data are represented into matrices, the trifactorization

algorithm jointly factorizes the matrices Rij using the matrices Hi as

constraints. First of all, a set of design parameters ki � ni is defined

for each object. These parameters, also called ranks, define the di-

mension of the latent factors for the ith object type with the objec-

tive of revealing hidden structure in the data. This is a crucial step in

the algorithm, since wrongly assigned ranks may lead to overfitting

(if too big), or may not be able to capture all the information (if too

small). There is no general consensus about how to select these val-

ues and different approaches can be applied.21,26,30 In this work, we

opted for an empirical approach (see Selection of initial parameters

section).

After rank selection, each block of the matrix R is factorized in 2

lower-rank block matrices, G and S (Figure 1), as follows:

G ¼ DiagðGn1�k1

1 ;Gn2�k2

2 ; . . . ;Gnr�kr
r Þ (3)

S ¼

� Sk1�k2

12 . . . Sk1�kr

1r

Sk2�k1

21 � � Sk2�kr

2r

..

. ..
. . .

.
�

Skr�k2

r1 Skr�k2

r2 . . . �

0
BBBBBBBBB@

1
CCCCCCCCCA

(4)

Thanks to the joint factorization, information is spread out from

and to the different relation matrices, so that the missing elements

are predicted on the basis of the multiplication of elements of much

lower rank.

The matrices S and G are reconstructed by minimizing the fol-

lowing objective function:

minG�0 J G; Sð Þ ¼
X
Rij2R

kRij �GiSijG
t
jk2 þ

Xmaxi ti

t¼1

trðGtHðtÞGÞ; (5)

where jj � jj is the Frobenius norm and tr() the trace of the matrix.

The procedure adopted to solve Eq. 5 starts with a random initiali-

zation of the G, next, S matrices are iteratively updated until conver-

gence (proof of convergence and details in references 23 and 30).

Details on the adopted procedure to solve the optimization problem

provided in Supplementary Material Method S1.

The algorithm described above has been adapted to calculate the

similarity between the same type of objects: in this article, we are in-

terested in the object “patients.” With a closer look to the approxi-

mation Rij � GiSijG
t
j , we can notice that matrix Gi is shared by all

blocks that are related to the object type oi (in our case patients),

while Sij is specific to the relations between the objects oi and oj.

Since Gi is an ni � ki matrix, the rows correspond to the elements of

the ith object type (in our case the different patients), while the col-

umns represent ki groups. Therefore, each element can be inter-

preted as the degree of membership of each patient (row) to each

group (column). Therefore, we can assign an element (ie a patient)

to the group (ie to a cluster) with the largest value, that is the col-

umn with the maximum value for the corresponding row.

Since the optimization strategy strongly depends on the initiali-

zation (ie the selection of the dimension of ki parameters), we aver-

aged the results over 10 applications to obtain a final consensus

matrix (Ĉ), which is calculated as the element-wise averaged sum of

the connectivity matrices. In our case, for example, a consensus ma-

trix element showing a value of 0.5 means that 5 times out of 10, in

the connectivity matrix, the 2 patients corresponding to the row and

column indexes of the element ended up grouped together.

Patient and external knowledge-based data sets
In Table 1 are reported the data sources used in this work. In detail,

we propose to integrate patient data (extracted from TCGA,39) and

several publicly available knowledge bases to extract meaningful pa-

tient similarities.

Figure 1. An example of the trifactorization algorithm constructed by considering 3 data sources. All the data sources are represented as relation matrices. Ri; j

matrices are used to describe associations between objects of the different type (eg gene-disease), their values range between [0, 1], where 1 indicates strong in-

teraction and 0 association absence or lack. Hi matrices represent relations between objects of the same type (eg gene-gene) and Hi elements vary between

[�1, 1], where �1 represents a strong association and 1 a lack of association. R matrix is then trifactorized by running and optimization algorithm (see Eq. 5) into

a set of lower-rank factors, eg Gi and Si; j . Finally, the whole matrix is reconstructed by multiplying matrices Gi and Si; j , thus revealing new associations.
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The AML TCGA cohort was used to (1) generate the data set for

a simulated study and (2) to validate the proposed approach on a

real data set. Gene expression data were normalized by using robust

multichip average (RMA),44 normalization method. Mutation data

were analyzed using the software PaPi.45 PaPi is a machine-learning

approach to classify and score human coding variants by estimating

the probability to damage their protein-related function. Each of the

1620 mutations,45 gets a score (probability) between 0 (ie tolerated

mutation) and 1 (ie damaging mutation). A list of 186 genes in-

volved in AML were selected from MalaCards.46 This list was subse-

quently integrated with the 428 genes associated with the mutation

data (Table 1). We finally retained the gene expression and mutation

data for that list of 	8900 genes and for the genes extracted as first-

degree interactor in BioGRID.40

Matrix definition
We represented all the data sources (Table 1) in the form of relation

matrices, each one formalizing the known associations between

pairs of objects. In detail, the considered objects are: o1 clinical

data; o2 mutations; o3 genes; o4 pathways; o5 diseases; and o6

patients. According to the integration algorithm and in order to

make the matrices comparable, associations between objects of dif-

ferent type (Rij matrices) were rescaled in the interval [0, 1]. On the

other hand, association between objects of the same type (Hi matri-

ces) were rescaled in the interval [�1, 1].

Details on data processing are provided in Table 2. Matrix data

are available at https://gitlab.com/smarini/MaDDA.

Selection of initial parameters
A crucial step in the factorization algorithm is the selection of the in-

put ranks ki. All the ranks, except the one related to the patient ob-

ject (k6), were computed resorting to an empirical rule proposed in

reference 29 (Eq. 10).

ki ¼
1

200

nnzrows
i þ nnzcols

i

� �
2

i 6¼ 6

; (10)

where nnz are the nonzero elements of the object i counted on the

rows (nnzrows
i ), and on column (nnzcols

i ), respectively.

On the other hand, the patient rank k6 corresponding to the

number of expected clusters is computed following the approach

presented in reference 21. We applied a grid search to select k6, since

Eq. 10 would provide a very high rank (ie high number of patient

clusters) due to the low sparsity of the gene/patient relationships.

Different values of k6 from a predefined interval are used as inputs

to the integration algorithm, and the results are compared in terms

of their dispersion coefficient, the larger the better (Eq. 11):

q Ĉ
k6ð Þ

� �
¼ 1

n2

Xn

i¼1

Xn

j¼1

4�½Ĉ k6ð Þ
ij � 1

2

2 lk6

¼ ½3; 5; 10; 20
 (11)

where k6 is a patient rank value from the list l, Ĉ
k6ð Þ

is the consensus

matrix (see An overview of the trifactorization algorithm section)

computed by using k6. The rank k6 obtaining the higher qðĈðk6ÞÞ
value was used as rank input for the proposed approach. This proce-

dure has been used for both the synthetic and the real data sets.

Simulated data set construction
To evaluate the performance of the proposed approach, we gener-

ated different synthetic data sets with the same size of the real one

(Table 1).

By varying 2 simulation parameters listed in Supplementary Ma-

terial Table S1, we created 25 data sets, differing for amount of

added noise, missing data, degrees of patient similarity, and data

sparsity. For each scenario, we simulated 200 virtual patients

grouped into 5 clusters with known similarity structures. The simu-

lation process is as follows:

1. Patient clinical data, gene expression levels, and the PaPi score

mutation data are used to construct a patient similarity matrix

by computing the Euclidean distance (ED) between patients.

Table 1. Patient data and external knowledge sources

Data type Retrieved data Resourceb

Patient data on acute myeloid leukemia

1) Clinical data (200 patients) Gender, age, vital status: dead or alive, days to death (if dead), days to

birth, days to last follow-up, date of the diagnosisa

TCGAc,39

2) Somatic mutations (195 patients) 1620 mutations associated with 428 genes

3) Gene expression profiles (197

patients)

22578 genes (8897 after filter application)

External knowledge data sources

4) Gene-gene interactions Starting from the 186 genes involved in AML (extracted from MalaCard)

and the 428 genes associated with the mutations, we extracted 37 811

first-degree gene-gene interactions between 8897 unique genes.

BioGRIDd,40

5) Gene-pathway associations 3202 associations between the 8897 genes and 383 KEGG pathways KEGGe,41

6) Disease-disease relationships 35 201 associations between 6402 unique diseases. DOf,42

7) Disease-gene associations 1925 associations between 6402 diseases and 278 genes. DisGeNET v4.038

8) Disease-pathway relations 605 associations between the 6402 diseases and the 383 pathways. KEGGe,41

aWe listed the clinical variables used in this work.
bData have been accessed in November 2016.
cThe Cancer Genome Atlas. Data have been retrieved by using the cBioPortal for Cancer Genomic,43 last updated 05/31/16.
dBiological General Repository for Interaction Datasets, Release 3.4.142.
eKyoto Encyclopedia of Genes and Genomes, Release 80.0.
fDisease Ontology, Release 2016-01-07.
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Next, we selected the 5 less similar patients according with the

mean ED values.

2. For each patient P of the 5 patients identified in (i), 39 ‘virtual

patients’ are generated by adding Gaussian noise with mean of

zero and variance equal to one half of the population variance to

all the P’s clinical data (excluding the gender variable). The

gender is assigned according with a probability ¼ .9 to be the

same as P. Finally, gene expression levels and PaPi mutation

scores of a new simulated patient j are obtained according with

Eq. 12.

Table 2. Matrix Rij and Hi construction

Matrix Relation Matrix value definition

R16 ¼ R61 Clinical data-pa-

tient**

We used 4 clinical variables (ie rows) for each patient (ie column), that is Female, Male, Age, and

Survival.

The gender variable was used to create 2 rows, that is Female and Male, for each patient, whose

value was set to 0 or 1 according to the gender.

The age field was used to define the Age row whose values are given by:

age ið Þ ¼ ai�amin

amax�amin
(6)

where ai is the ith patient age at the time of the death or at the last follow-up, while amin and amax are

the cohort minimum and maximum ages, respectively.

Finally, a Survival row for each patient was obtained by dividing the patients into alive and deceased

individuals. Since the majority of the patients died within 1 year from the diagnosis date, we con-

sidered the survival S at one year computed as:

S ið Þ ¼

1 if di > 365 days

di � dmin

dmax � dmin
if di < 365 days and vital status ¼ deceased

0 if di < 365 days and vital status ¼ alive

8>>>>><
>>>>>:

(7)

where di is the number of days between the diagnosis and death rate or the follow-up date of the pa-

tient i. dmin and dmax are the global minimum and the maximum number of days between the di-

agnosis and death date, respectively. 0 means that it is unknown if the patient is alive or deceased

1 year after the diagnosis since the last follow-up date occurred before that time. This allowed to

obtain values ranging between [0, 1].

R23 ¼ R32 Mutation-Gene Mutations mapped to their respective genes.

R26¼ R62 Mutation-patient PaPi45 scores evaluating harmfulness of each mutation, per patient.

R34 ¼ R43 Gene-disease We used DisGeNET data associating genes and diseases. Since DisGeNET score provided is already

in the interval [0, 1], no further processing was required.

R35 ¼ R35 Gene-pathway* Genes mapped to KEGG pathways. Presence/absence of a gene in pathway determines its binary 1/0

value.

R36 Gene-patient Gene-patient values correspond to the sum (mutational burden) of the PaPi scores of all the muta-

tions associated to a specific gene. The obtained values were then rescaled between [0, 1].

R45¼ R54
0 Disease-pathway* Matrix values correspond to 0 or 1 according to the information extracted from KEGG about all the

diseases altering each KEGG pathway.

R46 ¼ R64 Disease-patient Rows of this matrix represent the diseases and column the 200 patients. The values of the row corre-

sponding to acute myeloid leukemia (DOID: 9119) were set to 1 indicating the association.

R63 Patient-gene Gene expression data from TCGA were used as matrix values according with the formula:

Expression i; jð Þ ¼ ei;j�emin

emax�emin
(8)

where ei is the patient i expression of the gene j; while emin and emax are the global minimum

and the maximum values of the gene j.

H1 Clinical data-clinical

data

The rows and the columns of this matrix are Age, Female, Male, and Survival. The diagonal values

are �1 (ie fully associated). Male and female association is 1 (ie not associated).

H1 Mutation-mutation No assumption was made on the mutation similarity, beside considering each mutation similar to it-

self.

H3 Gene-gene Gene-gene interactions from BioGRID. The raw data needed a preprocessing step, since for each

gene pair, the related associations may appear multiple times (corresponding to different kind of

interaction, eg direct physical binding, genetic interaction40). For this reason, denoting with x the

number of times a certain pair appears, its score was determined by:

f xð Þ ¼ � 1
2 1þ lnðxÞ

lnðxmaxÞ

� �
(9)

H4 Diseasedisease The similarity between 2 diseases is set to �0:8n where n is the length of the shortest path between

corresponding terms in the DO (ie the minimum number of steps to reach one disease from the

other one).

H5 Pathway-pathway KEGG relations were used to measure binary pathway similarity. Also, each pathway is considered

similar to itself.

H6 Patient-patient No assumption was made on the patient similarity, besides considering each patient similar to itself.

aData have been automatically extracted by using Python Bioservice 1.4.8.47

bIn case of missing data, the value of the element was set to 0 (ie unknown).
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Dj
i ¼ D0

i 6CV mi;

1 < j < 39
(12)

where D0
i is the patient j’s value of the object i (gene or muta-

tion) in the reference data set, the value mi is the mean value of an

element in the population of the object i (eg mean expression value

of a gene), and CV is the coefficient of variation.48

3. A percentage di sparsity is added to all the simulated data set in

order to test the robustness of the approach to sparse data.

With this procedure, we generated the 25 simulated data sets by

varying the CV parameter and the data sparseness as reported in

Supplementary Material Table S1. The obtained data were then inte-

grated with the external knowledge (Table 1) in order to apply the

proposed algorithm.

Result evaluation of synthetic data

We evaluated the performance of the trifactorization algorithm on

the 25 simulated data sets by measuring the mean absolute error

(MAE),49 defined as:

MAE ¼
Xn

i¼1

Xm
j¼1

1

N
jcCij �Cexpected

ij j; (13)

where n and m are the number of matrix rows and columns, N is the

total number of matrix elements, Ĉij is the estimated consensus ma-

trix in the position ij, Cexpected
ij is the ideal consensus matrix (ie each

simulated patient is clustered with its corresponding real patient, for

a total of 5 clusters of 40 patients).

Result comparison with other techniques

In addition, using the simulated data sets, we assessed and compared

the proposed approach with 2 widely used methods, that is principal

component analysis (PCA),50 and the ED measure. The results were

also compared to 2 more advances techniques to integrate heteroge-

neous data: (1) a deep learning method based on restricted Boltz-

mann machines,51 that is multimodal deep belief networks

(MDBN),20,52 and (2) a GFA,36 based on factor analysis. Unlike the

matrix trifactorization algorithm, these methods are not designed to

include external knowledge sources associating entities not related

to the prediction target (ie gene-gene interactions do not involve

patients). These methods were therefore applied considering only

the patient-related data (R1; 6; R2; 6; R3; 6; R6; 3; Table 2). Details

on the adopted procedures used to apply PCA, ED, MDBN, and

GFA methods are provided in Supplementary Material Method S1.

In order to evaluate their performances, MAE was computed by

replacing in Eq. 12 the Ĉij matrix with the similarity matrix Simij

obtained by applying the PCA, EA, MDBN, or GFA method. In this

case, Simij is built by setting its elements Simij ¼ 1 if the patient i

and the patient j belong to the same cluster, and Simij ¼ 0, other-

wise.

Validation case study of acute myeloid leukemia
We investigated the biological relevance of the patient similarities

uncovered by the proposed methodology focusing on AML. AML is

a myeloid neoplasm related to an uncontrolled proliferation of white

blood cells. It is the most common leukemia in adult patients. AML

is curable from 35 to 40% of patients younger than 60 years of age,

while for older patients the percentage decreases from 5 to

10%.53,54 Moreover, AML is an heterogeneous disease and, over

the past 15 years, its molecular heterogeneity has become appar-

ent,54 thanks to -omics technologies. The analysis of public data on

AML combined with external knowledge sources may reveal novel

insights into AML patient profiles to discriminate between good or

bad responders and suggest tailored therapies. In order to test our

approach, we collected patient data from The Cancer Genome Atlas

(TCGA),39 and integrated them with external knowledge sources

(Table 1). Collected data were then transformed into a matrix for-

mat according with Table 2.

The resulting matrices (Figure 2) were used to construct the R

and H block matrices providing the inputs for the factorization algo-

rithm. Note that the R block matrix will be symmetrical except for

the R36 and R63 blocks since these 2 matrices were obtained by us-

ing 2 different knowledge sources (ie mutation and gene expression

data).

All the object ranks except the patient one were initialized as in

Eq. 10, while the patient rank k6 was initialized to the value resulted

by performing a grid search and computing the dispersion coeffi-

cient as in Eq. 11.

The convergence of the algorithm was then monitored by mea-

suring the objective function (Eq. 5). The algorithm stopped when

the difference between 2 consecutive norms was under the threshold

10�5. The number of repetitions n was set to 10, in order to reduce

the effect of the initialization. The resulting consensus matrix Ĉ was

used as a similarity matrix to extract patient-patient similarities.

Validation of real data results
To validate the results on the real data set, we further applied the

proposed algorithm on the same data set (Figure 2) but excluding

the Survival column (ie n1 ¼ 3) that corresponds to what we want to

estimate. We applied a hierarchical clustering on the resulting pa-

tient similarity matrix where the linkage was determined using com-

plete link method.55 The survival curves were estimated by the

Figure 2. Data sources and matrix representation. The figure shows the num-

ber of rows of each matrix constructed starting from the patient-related data

and the external knowledge. Nij corresponds to the number of nonzero ele-

ments in the matrix. Matrix data are available at https://gitlab.com/smarini/

MaDDA/tree/master/Patient_similarity_TCGA/matrices.
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Kaplan-Meier method56 and were compared using the log-rank

test.57

As for the simulated data sets, we assessed and compared the

real data results of the proposed methodology with the ones

obtained by applying the PCA, ED, MDBN, and GFA to the patient-

related data. As for the trifactorization approach, a hierarchical

clustering using complete link method was applied to the similarity

matrices resulting by applying these techniques. The different per-

formances were finally evaluated by comparing survival curves of

the cluster of patients identified.

RESULTS

Simulation study
To evaluate the performance of the proposed approach, we pro-

duced 25 synthetic data sets as described in Simulated data set con-

struction section.

The k parameters (Selection of initial parameters section) were

initialized following Eq. 10 for all the objects except the patient

rank (k6Þ. k6 was defined through a grid search (Eq. 11) on the sim-

ulated data set with 10% of missing data and noise between 0% to

10% (Supplementary Material Table S1). k6 ¼ 10 resulted as the

rank with the highest values of q (Supplementary Material Table S2).

The proposed algorithm was therefore applied to all the 25 data

sets by selecting as input k6 ¼ 10, while the other objects ranks

were computed according with Eq. 10.

The trifactorization performances on simulated data were evalu-

ated by comparing the algorithm’s MAE (Eq. 13) with the MAEs

obtained by applying the PCA, ED measure, MDBN, and GFA on

the same data sets. The results are shown through heatmaps in Fig-

ure 3 (details in Supplementary Material Table S3). These confirmed

the best performance are achieved with the trifactorization algo-

rithm, and our approach showed its robustness in presence of differ-

ent similarity structures and missing data.

Validation study: patient similarity in acute myeloid

leukemia
We investigated the patient-patient similarities uncovered by the tri-

factorization algorithm by applying it to a real case, that is consider-

ing the AML data sources reported in Figure 1. The rank parameters

were computed as in Eq. 10 for all the objects except the patient 1

that was set to k6 ¼ 5 (ie rank with the highest q values—Eq. 11).

The other input ranks obtained were: k1 ¼ 2,

Figure 3. Heatmaps of the mean absolute error (MAE). MAEs were obtained by applying: A, the proposed trifactorization algorithm; B, principal component analy-

sis (PCA); C, Euclidean distance; D, multimodal deep belief network (MDBN); E, group factor analysis (GFA) to the 25 synthetic data sets. The simulated data sets

were constructed by considering different percentages of missing data (ie heatmap columns) and noise (ie heatmap row). The noise was added based on the co-

efficient of variation (CV) (Eq. 12). The map clearly shows smaller MAEs for the proposed approach. The trifactorization gave results less sensitive to sparse data

(ie high number of missing data).
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k2 ¼ 14; k3 ¼ 480, k4 ¼ 13, k5 ¼ 19. The consensus matrix

obtained by applying this procedure is shown in Figure 4.

The result validation was then conducted by applying the pro-

posed algorithm to same data set but not containing the survival in-

formation (Result validation section). The trifactorization revealed

2 major groups that we labeled G1 and G2 (dendrogram reported in

Supplementary Material Figure S1).

In order to validate the obtained clusters, we plotted the Kaplan-

Meier survival curves of the 2 patients’ groups, as reported in

Figure 5A. The survivals of the 2 groups were clearly different (log

rank P-value¼ .0159) with G1 indicating a better prognosis

than G2.

In addition, we compared our results by performing on the AML

data set the PCA, ED, MDBN, GFA methods. In Figure 5 are shown

all the survival curves obtained with these approaches and no statis-

tical difference between the 2 groups was found (ED P-val-

ue¼ .7763, PCA P-value¼ .6278, MDBN P-value¼ .2954, and

GFA P-value¼ .1652). Taken together, these analyses demonstrated

the capacity of the proposed method to add value in integrating dif-

ferent knowledge sources and provide patient-patient similarities for

personalized medicine.

DISCUSSION

The availability of increasingly larger amount of biomedical data is

pushing researchers and companies to investigate useful information

by combining data from difference resources, with the aim of unveil-

ing hidden knowledge on patients, diseases and therapies. However,

biomedical data are characterized by high complexity, heterogene-

ity, sparsity,58 and “large m small p” problems.59 Sparsity,58 is a

characteristic of matricial/graph representations where most of the

elements are null, that is zeros/absent links. This particularly true

for genomic data (eg in a gene network, the number of links con-

necting the nodes will be orders of magnitude smaller than the num-

ber of nodes), or temporal data (eg hospitalizations, complications

and different blood tests for different patients are sparse along a

mostly uneventful time line). “large m small p” problems,59 is the

fact that the number of records (predictors) can be orders of magni-

tude bigger than samples (observations). For example, a gene panel

can measure the expression of thousands of genes, but cohorts are

usually tens to hundreds of patients.

A number of approaches have been recently proposed to data in-

tegration and to bring out intrinsic characteristics of the data. In

particular, a specific class of methods rely on the dimension reduc-

tion of the data through the definition of metafeatures that allows

the projection of the data into a low dimensional space. This prop-

erty can be used in a machine learning framework in order to cap-

ture the hidden interaction effects between variable.

State-of-the-art algorithms are typically based on the metafea-

ture extraction method,20 or the patient distance measure.19 They

also leverage on a small set of different data types, mostly gene ex-

pression,15–17,19,20,22 methylation,19,20 copy number variation,15

protein interactions,17 clinical data,16 and diseases.18 Gligorijevic

et al,21 used also drug information since their aim was to reposition

drugs for subgroups of patients.

In this work, we proposed a framework based on matrix trifacto-

rization that integrates several source of data and knowledge with

the aim of predicting patient similarity. The proposed approach

combines several more data and external knowledge sources respect

to other methods recently developed. In detail, our approach pro-

vides a comprehensive framework for the prediction of patent simi-

larity by fusing both clinical and multiomics data of patients, and

automatically integrating them with external knowledge sources (eg

gene-gene interactions, disease-disease associations).

The findings obtained by applying the trifactorization algorithm

on synthetic data sets showed better performances if compared to

other traditional methods (Figure 3). Moreover, this novel strategy

provides more resistance to sparsity and noise, which is ubiquitous

in biological data. The application of the trifactorization algorithm

to the real AML data set underlined 2 big groups of similar patients

(Figure 4). To further confirm this finding, we searched for the ex-

clusive gene signatures characterizing each group, in order to investi-

gate the presence of a molecular mechanism distinguishing the 2

groups. A univariate analysis of gene expression level did not pro-

vide significant differences (data not shown). On the other hand, by

analyzing mutation data, we extracted a common gene signature

consisting of 19 genes mutated in at least one patient in both groups

(Supplementary Material Table S4). As expected, these genes

resulted significantly enriched for ‘leukemia’ Online Mendelian In-

heritance in Man (OMIM),60 annotation (Table 3; Fisher’s exact

P-value¼ .00245;—enrichment results shown in Supplementary

Material Table S5). In addition, we further searched for the genes

whose mutation frequency differs significantly between the 2 groups

[Fisher’s Exact test, False Discovery Rate (FDR) adjusted P-value].

We found 5 genes, namely IDH1 (P¼ .00022), NPM1

(P¼3.54867e�14), NRAS (P¼ .00145), PTPN11 (P¼ .01), TET2

(P¼ .00015). Mutations associated with all these genes have been

found to be highly related to AML development and progression.61–65

These findings confirm both the 2 identified groups characterized by a

common AML gene signature. Finally, we identified gene signatures

discriminating the 2 groups by retrieving the mutations present ex-

clusively either in patients of G1 (better prognosis) or the G2 (good

prognosis). The gene signatures resulted in 342 (Supplementary Ma-

terial Table S6) and 52 (Supplementary Material Table S7) genes for

G1 and G2 group, respectively. An OMIM enrichment analysis con-

ducted on the 2 gene signatures retrieved the term ‘leukemia’ only

Figure 4. Consensus matrix obtained by applying the trifactorization algo-

rithm to the acute myeloid leukemia (AML) data. Matrix rows and columns

correspond to the 200 patients, and it was constructed by considering the

resulting G6 matrix (An overview of the factorization algorithm section). The

matrix shows 2 groups of patients clustered together (the corresponding den-

drogram is reported in Supplementary Material Figure S1).
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for G2 (Table 3; Fisher’s exact P-value¼ .0175, complete results in

Supplementary Material Tables S8 and S9), coherently with the hy-

pothesis the second group, associated with a poor survival progno-

sis, presents a more aggressive instance of AML. Interestingly, the

groups are not significantly different for sex (P¼ .2594, Fisher’s Ex-

act test) or age (P¼ .0884, Wilcoxon rank sum test), indicating that

our unsupervised method did not simply discriminated obvious pa-

tient subgroups, but was able to mine more subtle differences char-

acterizing poor-vs-good prognoses.

The current study showed is power in discovery patient-patient

similarity by integrating several data and knowledge sources that

involve associations between clinical data, mutations, genes, dis-

eases, pathways, and patients to extract patient similarity. The same

approach can be applied to classify novel patients and, the results

might be used to suggest potential tailored treatments based on

successful drug treatments extracted from the patient’s clinical his-

tories. Moreover, further improvements and novel features can be

provided by directly including into the trifactorization framework

data sources involving drugs (ie DrugBank,66 PharmGKB,67). In

this way, by selecting as target the patient-drug matrix, the algo-

rithm could predict targeted therapies for specific profiles of

patients.

Figure 5. Survival curves. Survival curves corresponding to the clusters obtained by the trifactorization algorithm (A), principal component analysis (PCA) (B), Eu-

clidean distance (ED) measure (C), multimodal deep belief network (MDBN) (D), and group factor analysis (GFA) (E). All the plots report the P-value (P) resulting

from the log-rank test. Only the 2 clusters obtained with the proposed approach have statistically significant survival curves (trifactorization P-value¼ .01; ED

P-value¼ .7763; PCA P-value¼ .6278; MDBN P-value¼ .2954; GFA P-value¼ .1652).
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The main limitations of the proposed approach are 2-fold:

• On the one hand, it is necessary to represent data and knowledge

in terms of bidimensional relation matrices. This often requires

flattening concept hierarchies and graphs, thus generating matri-

ces of very high dimensionality. The computational burden of

the optimization algorithm is highly dependent on the number of

data sources and on the size of the relational matrices, in particu-

lar when such matrices are not sparse.
• On the other hand, the method has a number of crucial design

parameters, the ranks, which requires fine tuning in order to obtain

a compromise between the quality of matrix reconstruction and the

need of representing data with low dimensionality latent vectors.

Nevertheless, we believe that the proposed approach represents a

powerful and interesting strategy to deal with data and knowledge

fusion for similarity calculation, which may provide advantages in

precision oncology applications.

Finally, the proposed approach is particularly suitable for preci-

sion oncology due to the high number of available data sources on

cancer, but it can be easy applied to other fields and diseases.

CONCLUSION

In this work, we analyzed the problems related to the application of pre-

cision oncology. Literature evidence seems to show how a traditional

clinical trial approach looking for biomarker-specific patient subgroups

is particularly hard to implement due to heavy, intrinsic statistical limi-

tations. We have shown how the problem of subgroup identification

can be solved with a data fusion approach exploiting relations of hetero-

geneous, multidimensional data sources. In our application, we consid-

ered objects as diverse as clinical data, diseases, genes, mutations,

pathways, and the patients themselves. Thanks to a latent feature repre-

sentation via matrix trifactorization, we were able to identify clinically

meaningful patient subgroups. The approach showed better perfor-

mance when compared with standard clustering strategies. Future

works will deal with optimizing the factorization strategy and to pro-

vide automated explanations of the results obtained.
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