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Background: Carbapenemase-producing Klebsiella pneumoniae (CpKP) has been
implicated as an increasing threat to public health. CpKP is a ubiquitous, opportunistic
pathogen that causes both hospital and community acquired infections. This organism
hydrolyzes carbapenems and other β-lactams and thus, leading to multiple resistance to
these antibiotics. Despite the difficult to treat nature of infections caused by CpKP, little has
been discussed on the mortality, clinical response and microbiological success rates
associated with various antibiotic regimen against CpKP. This meta-analysis was designed
to fill the paucity of information on the clinical impact of various antibiotic therapeutic
regimens among patients infected with CpKP.

Materials and Methods: Literature in most English databases such as Medline through
PubMed, Google Scholar, Web of Science, Cochrane Library and EMBASE, were
searched for most studies published between the years 2015–2020. Data were
analyzed using the R studio 2.15.2 statistical software program (metaphor and meta
Package, Version 2) by random-effects (DerSimonian and Laird) model.

Results: Twenty-one (21) studies including 2841 patients who had been infected with
CpKP were analysed. The overall mortality rate was 32.2% (95%CI � 26.23–38.87; I2 �
89%; p-value ≤ 0.01, Number of patients � 2716). Pooled clinical and microbiological
success rates were 67.6% (95%CI � 58.35–75.64, I2 � 22%, p-value � 0.25, Number of
patients � 171) and 74.9% (95%CI � 59.02–86.09, I2 � 53%, p-value � 0.05, Number of
patients � 121), respectively. CpKP infected patients treated with combination therapy are
less likely to die as compared to those treated with monotherapy (OR � 0.55, 95%CI �
0.35–0.87, p-value � 0.01, Number of patients � 1,475). No significant difference existed
between the mortality rate among 60years and above patients vs below 60years (OR �
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0.84, 95%CI � 0.28–2.57, p-value � 0.76, 6 studies, Number of patients � 1,688), and
among patients treated with triple therapy vs. double therapy (OR � 0.50, 95%CI �
0.21–1.22, p-value � 0.13, 2 studies, Number of patients � 102). When compared with
aminoglycoside-sparing therapies, aminoglycoside-containing therapies had positive
significant outcomes on both mortality and microbiological success rates.

Conclusion: New effective therapies are urgently needed to help fight infections caused
by this organism. The effective use of various therapeutic options and the strict
implementation of infection control measures are of utmost importance in order to
prevent infections caused by CpKP. Strict national or international implementation of
infection control measures and treatment guidelines will help improve healthcare, and
equip governments and communities to respond to and prevent the spread of infectious
diseases caused by CpKP.

Keywords: Klebsiella pneumoniae, carbapenemase-producing, clinical outcomes, meta-analysis, antibiotic
regimen

INTRODUCTION

Klebsiella pneumoniae is one of the Enterobacteriaceae that has
increasingly become a threat to public health (Effah et al., 2020),
and has been implicated in severe mortality and morbidity
(Munoz-Price et al., 2013; World Health Organization, 2017).
K. pneumoniae is a ubiquitous, opportunistic pathogen that
causes both hospital and community acquired infections
including pneumonia, urinary tract infection, bloodstream
infections, cystitis, surgical wound infections, endocarditis,
pyogenic liver abscesses and endogenous endophthalmitis
(Podschun and Ullmann, 1998; Navon-Venezia et al., 2017).
Based on several resistant mechanisms employed by this
organism, there have been several strains that have been
reported circulating worldwide. These mechanisms which
include but not limited to vertical and horizontal transfer of
resistant genes, efflux pump mechanisms and the dissemination
and acquisition of resistant genes that are carried on plasmids and
transposons have resulted in these hard to treat strains. The most
notable strain ofK. pneumoniae is the type that produces extended-
spectrum β-lactamases (ESBLs). ESBL-K. pneumoniae (ESBL-KP)
are now distributed worldwide and has been implicated in
numerous outbreaks (Paterson and Yu, 1999; Tumbarello et al.,
2006). According to Beigverdi et al. (2019), the pooled prevalence
of ESBL-KP was 43.5% (95% CI 39.3–47.9%) among clinical K.
pneumoniae isolates in Iran and the prevalence of each resistant
mediated gene varies. Carbapenems are usually the antibiotics that
are the first call or the first-line therapy that are employed during
the treatment of severe infections caused by ESBL-producing K.
pneumoniae (Pitout and Laupland, 2008). However, Yigit et al.
(2001), Jacob et al. (2013) and other authors have reported on K.
pneumoniae carbapenemase (KPC)-producing K. pneumoniae
isolate. Carbapenemases are lactamases that hydrolyze
carbapenems and other β-lactams and thus, provides resistance
to these antibiotics. The Carbapenemase genes have since 2001
being spreading to all corners of the world. The KPC gene is the
most common and the most prevalent of all the carbapenemases
followed by the OXA genes (mainly blaOXA-48, blaOXA-162, and

blaOXA-181), NDM genes, VIM genes, IMP genes, SME genes and
others. The spread of these encoding plasmids poses a significant
threat to public health as their acquisition leads to a multi-drug
resistant (MDR) and extremely drug resistant (XDR) pathogen. In
terms of epidemiological data, the prevalence of carbapenemase-
producing Enterobacteriaceae (CPE) vary considerably from
country to country. KPC and other carbapenemases including
IPM, VIM, OXA-48 and NDM are known to be endemic in Israel,
Japan, Greece, Turkey and India, respectively, and have been
distributed across the globe (Cantón et al., 2012). KPC
producers are also known to be endemic in some areas of Latin
America, such as Colombia and Argentina (Levy Hara et al., 2013).
There have been reported imports of KPC producers from endemic
areas into Europe and this has led to a widespread of KPC
producers to almost every part of Europe (Munoz-Price et al.,
2013). European countries with the highest KPC-producing
isolates are Italy and Greece, with rates ranging between 25 and
50% and >50% for invasive infections caused by CPE (European
Antimicrobial Resistance Surveillance Network (EARS-Net),
2017). In Israel, KPC producers have been linked to numerous
healthcare-associated reports and some community-acquired
cases. The extent to which KPC producers are distributed in
South East Asia is unknown, even though China may face some
endemic situations. Reports on KPC-producing isolates in India
are scanty, however, NDM and OXA-48-like carbapenemases are
the most commonly reported. ST 258, a K. pneumoniae clone that
produces KPC-2 or KPC-3, has been widely identified worldwide
(Cuzon et al., 2010). Several outbreaks of different NDMproducers
have been documented in Pakistan, India and Sri Lanka (Poirel
et al., 2011). In India, the prevalence of NDM is estimated at 5–15%
(Day et al., 2013). Because of their close ties with India and
Pakistan, the United Kingdom (UK), has recorded considerable
spread of NDM producers (Johnson and Woodford, 2013). Since
then, there have been a number of reports on NDM producers in
Enterobacteriaceae from countries all over the globe, including
countries in Africa, Asia, Europe, Australia, and the Americas
(Berrazeg et al., 2014). OXA-48 producers have been extensively
reported in Turkey, North Africa, the Middle East and India as the
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cause of healthcare-associated outbreaks (European Antimicrobial
Resistance Surveillance Network (EARS-Net), 2017; Girlich et al.,
2014). There is a growing prevalence of this carbapenemase in
many countries of Europe, including France. As reported by the
European Antimicrobial Resistance Surveillance Network (EARS-
Net), 2017, carbapenem resistance was rampantly recorded in K.
pneumoniae between the years 2014 and 2018, with some countries
reporting resistance rates exceeding 10%.

Due to the difficult to treat nature of infections caused by
carbapenem-producing K. pneumoniae (CpKP), there are limited
treatment options that are currently available. Studies have
reported that antibiotics such as colistin, gentamicin,
tigecycline, and fosfomycin that are used for the treatment of
infections caused by CpKP can lead to severe adverse effects such
as nephrotoxicity (Akajagbor et al., 2013; Osorio et al., 2017) and
hepatotoxicity (Lim et al., 2010; Florescu et al., 2012). According
to (Tumbarello et al., 2012a; Daikos et al., 2014), it has been
reported that during bacteremic infections, combination
treatment regimens are recommended; however, it has been
reported by Gutiérrez-Gutiérrez et al. (2017) that, combination
therapies should be used when patients are in critical conditions.
Also, in some retrospective studies on bloodstream infections
caused by CpKP, it was realized that patients that were placed on
antibiotic combination regimen were significantly more likely to
survive than patients who were on monotherapeutic regimen
(Zarkotou et al., 2011; Qureshi et al., 2012). Although a lot of
studies have asserted that the use of more than one in vitro active
drug may be superior to monotherapy, the rate of clinical failure
still remains high (Tzouvelekis et al., 2014; Tumbarello et al.,
2015a; Gutiérrez-Gutiérrez et al., 2017).

Despite the milestones achieved by various researchers in their
quest to add to knowledge on the mortality, clinical response and
microbiological response rates associated with various antibiotic
regimen against carbapenemase-producing K. pneumoniae, there
is still a paucity of information that needs to be filled. Most of the
available review studies have focused on the mortality outcomes
associated with these regimens (Tzouvelekis et al., 2014; Xu et al.,
2017; Rodríguez-Baño et al., 2018) and these studies have not
focused on CpKP but rather the broader carbapenem-resistant
Enterobacteriaceae (CRE). To know the true effect of these
therapeutic regimens, there is a need to evaluate the total
clinical outcomes (mortality rates, clinical success rate and the
microbiological success rates) associated with these regimens.

In this current study, we reviewed the clinical impact of
various antibiotic therapeutic regimen against CpKP infected
patients. First, we reviewed on various mono and combination
therapies utilized in the treatment of infections caused by CpKP.
Then, we finally performed a meta-analysis to evaluate the
therapeutic outcomes of various antibiotic regimen on various
clinical outcomes.

Current and Emerging Treatment Strategies
Against CpKP
Monotherapy
The most active aminoglycoside against CpKP is gentamicin
(Castanheira et al., 2010; Souli et al., 2010; Livermore et al.,

2011). There are limited data on the use of aminoglycosides as
monotherapy, however, aminoglycoside monotherapy appears to
be the most effective in the treatment of urinary tract infections
(UTIs) caused by CpKP (Hirsch and Tam, 2010; Satlin et al.,
2011; Tzouvelekis et al., 2014). When compared to the use of
polymyxin B or tigecycline in the treatment of CpKP bacteriuria,
treatment with an in vitro active aminoglycoside resulted in a
much greater rate of microbiological clearance (Satlin et al.,
2011). The use of targeted gentamicin among CpKP-induced
sepsis patients was associated with reduced mortality (20.7 versus
61.9%, p � 0.02) until Day 30 (Gonzalez-Padilla et al., 2015). Also,
oral gentamicin treatment was effective in the eradication of
CpKP from the gastrointestinal reservoir which means that
gentamycin could serve as additional tool in the combat
against the nosocomial spread and severe infections caused by
this difficult-to-treat organism (Zuckerman et al., 2011).

In a study by Lee et al. (2009), blood isolates from one patient
infected with CpKP and treated with polymyxin B monotherapy
showed a significantly increased polymyxin B MIC in just 5 days
(0.75 g/ml to 1,024 g/ml). A meta-analysis of 15 studies involving
55 different patients concluded that colistin monotherapy had
lower clinical success than colistin combination therapy (with
tigecycline or gentamicin) for the treatment of infections caused
by CpKP (14.3% [1 of 7] vs. 72.7% [8 of 11]) (Hirsch and Tam,
2010).

In addition, a study involving a small number of patients
infected with CpKP concluded that 71.4 percent (5 of 7) had a
favourable clinical outcome with tigecycline treatment (Hirsch
and Tam, 2010). In two separate cohort studies, high mortality
rates were reported to be associated with the use of tigecycline
monotherapy in the treatment of bloodstream infections caused
by CpKP (Tumbarello et al., 2012b; Daikos et al., 2014). One
study assessed the therapeutic outcomes of tigecycline on
164 non-duplicate clinical strains of CpKP isolated from
hospital-acquired pneumonia (HAP). The study found that
doubling the tigecycline dose resulted in a higher cumulative
fraction of response, which is an indication of better clinical
efficacy (90.2 percent vs. 71.2 percent) (Trecarichi et al., 2016).
Balandin Moreno et al. (2014) discovered no statistical significant
differences in mortality rates between high-dose tigecycline and
standard-dose tigecycline.

Other potential monotherapies with promising outcomes
include: cefiderocol, a new siderophore cephalosporin, which
has shown significant in vitro and in vivo activity against
CpKP (Saisho et al., 2018). Cefiderocol has a unique
antibacterial mechanism in which its catechol side chain binds
to ferric acid, and the complex is actively carried into bacteria via
bacterial iron transporters (Ito et al., 2016). Cefiderocol is also
very effective at inhibiting carbapenemase hydrolysis (Wright
et al., 2017). Cefiderocol has shown considerable in vitro activity
against carbapenem-resistant Enterobacteriaceae (CRE) isolates,
recording a cefiderocol MICs of less than 4 mg/L in 97.0 percent
(991/1,022) of isolates (Hackel et al., 2018). Eravacycline is
another unique synthetic tetracycline analogue which
overcomes the basic mechanism of tetracycline resistance and
possesses in vitro action against CpKP. However, its clinical
evidence on the treatment of CpKP is sparse. Apramycin is
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also a monotherapy with promising action against CpKP.
Apramycin is an aminoglycoside that has been traditionally
used in veterinary medicine.

Combination Regimens
Treatment with a dual-carbapenemmay be an effective option for
CpKP infections (Ceccarelli et al., 2013; Giamarellou et al., 2013).
Based on experimental data, it has been known that the affinity of
KPC enzyme for ertapenem is higher than other carbapenems;
therefore, when administered together, KPC preferentially
inactivates ertapenem, thereby preventing degradation and
subsequently enhancing the potency of the other carbapenems
(Bulik and Nicolau, 2011; Wiskirchen et al., 2013). According to
case reports, ertapenem in combination with doripenem or
meropenem has been used successfully to treat CpKP
infections (bacteremia, ventilator-associated pneumonia, and
UTI). Dual-carbapenem therapy is a promising option that
may be most effective when used concomitantly with a third
drug (Zavascki et al., 2013). To assess the mortality rate associated
with carbapenem-containing-combination therapy for CpKp
bacteremia, Daikos et al. (2014) performed a large cohort
study and reported an increased mortality rate from 19.4% (6
of 31, MIC ≤8 μg/ml) to 35.5% (11 of 31, MIC >8 μg/ml). In a
meta-analysis of 20 clinical studies, it was realized that therapies
that contain carbapenem recorded lower mortality rates
compared to the non-carbapenem-containing regimens (18.8
vs. 30.7%) (Tzouvelekis et al., 2014). In addition, a
retrospective study from a 10-bed intensive care unit found
that carbapenem-sparing-combination therapy was effective in
24 of 26 (92 percent) patients with CpKP infections (Sbrana et al.,
2013). A non-controlled case series study found that combining
two carbapenems (ertapenem plus prolonged infusion of
meropenem or doripenem) can be effective in treating CpKP
infections, with clinical success rates ranging from 39 to 77.8
percent (Cprek and Gallagher, 2016; Souli et al., 2017).

A new β-lactam/β-lactamase inhibitor (BL/BLI), ceftazidime/
avibactam, has been approved for the treatment of complicated
intra-abdominal infection, complicated urinary tract infection,
hospital-acquired and ventilator-associated pneumonia caused
by CpKP (Kaye and Pogue, 2015). Avibactam, unlike most
β-lactamase inhibitors, is not a β-lactam. However, this novel
drug is a unique synthetic non-β-lactam (diazabicyclooctane)/
β-lactamase inhibitor that inhibits a wide range of β-lactamases,
including Ambler Class A (GEM, SHV, CTX-M, and KPC), Class
C (AmpC), and some Class D (OXA-48) β-lactamases (de Jonge
et al., 2016). However, Class B metallo- β-lactamases (MBLs)
(IMP, VIM, VEB, and NDM) are not inhibited by avibactam
(Syue et al., 2016; Wong and van Duin, 2017). Because of this
great inhibitory potential, avibactam, when added to ceftazidime,
restores the potent activity of ceftazidime against CpKP and
other CRE.

Furthermore, to achieve a more efficient synergistic effect in
the treatment of infections caused by CpKP, meropenem/
vaborbactam (MER-VAB) can be used alone or in
combination with non-active in vitro drugs (Qureshi et al.,
2012; Guimarães et al., 2019; Tumbarello et al., 2019). Because
Ambler class A and C carbapenemases are responsible for

conferring resistance to meropenem by most bacteria,
vaborbactam, which is a novel boron-containing serine
lactamase inhibitor, has been proposed as a suitable option for
restoring the efficacy of meropenem against organisms possessing
these enzymes (Castanheira et al., 2017). However, it has no
in vitro activity against Class B MBLs producers (NDM or VIM)
or Class DOXA-48 β-lactamases (Castanheira et al., 2016; Nelson
et al., 2017). The development of resistance to MER-VAB by
CpKp is rarely documented. However, when it happens, it may be
as a result of mutation in ompK35 and ompK36 or, mutation of
kvrA which leads to downregulation of the ompK35/36 porin.
Furthermore, when compared to CAZ/AVI, MER-VAB is less
affected by KPC-2 mutations which confers resistance to CAZ/
AVI. Base on this, it can be argued that MER-VAB offers the best
therapeutic option available for CpKP.

Imipenem/cilastatin and relebactam therapy is one of the
potent therapies against CpKP, and is made up of a
combination of an approved carbapenem and a novel BLI.
The chemical structure of relebactam is similar to that of
avibactam (Watkins et al., 2013). The structure is made up of
a diazabicyclooctane core, which under in vitro conditions,
covalently and reversibly binds to Class A and C β-lactamases.
Relebactam also possesses similar inhibitory mechanism as
avibactam (Blizzard et al., 2014). Just like avibactam,
relebactam cannot inhibit Class D OXA-48 (Petty et al., 2018;
Zhanel et al., 2018).

Cefepime/zidebactam is one promising therapy which is made
up of a combination of cefepime and the novel BLI, zidebactam.
Unlike the other BLI, Zidebactam possess dual inhibitory
mechanisms; it has high-affinity to penicillin binding protein 2
(PBP2) and also inhibit Ambler class A and C carbapenemase
enzymes. When compared to the use of cefepime alone, the
combination of zidebactam with cefepime has been shown to
be a more effective therapy against CpKp (Livermore et al., 2017;
Thomson et al., 2019). Other promising and emerging BL/BLI
combination therapy against CpKP are Cefepime/taniborbactam,
Imipenem/relebactam, Meropenem/nacubactam and
Meropenem/QPX7728 combination.

MATERIALS AND METHODS

This study followed the required guidelines and reporting
procedures for Systematic Reviews and Meta-analysis
(PRISMA) (Moher et al., 2009).

Search Strategy
The literature search was conducted in most English databases
such as Medline through PubMed, Web of Science, Cochrane
Library, EMBASE, and Google scholar. The search was carried
out by three independent individuals. The keywords employed in
the search were Klebsiella pneumoniae*, carbapenem-producing*,
antibiotic regimens*, clinical outcomes*, mortality rate*, clinical
success*, microbiological success*, carbapenem resistance*, VIM-
producing*, IMP-producing*, NDM-producing*, Metallo beta
lactamase*, OXA*, KPC*, CRE* and the search was restricted
to studies published between the years 2015–2020.
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Inclusion and Exclusion Strategy
For a study to meet the inclusion criteria of this study, it should
have reported the outcomes among CpKP infected patients
following antibiotic regimes. Prospective and retrospective
randomized-controlled trials (RCTs), cohort and case control
studies as well as case series and case reports were included.
Studies were originally screened for eligibility in this review based
on their titles and abstracts. Eligible studies were chosen in three
steps: first, on the basis of the title, then on the basis of the
abstract, and finally, on the basis of the full-text publication.
Studies were deemed suitable for this work if clinical outcomes
such as clinical response, microbiological response and mortality
had been reported; if the phenotypic detection of the
carbapenemase genes was done by methods such as Etest, or
doubledisk synergy test based on the guidelines provided by the
Clinical and Laboratory Standards Institute, 2015; and if
molecular methods such as PCR were used in the
confirmation and detection of the carbapenemase gene. Studies
that were excluded from this study were, conference proceedings,
editorials, duplicate publications, animal and in vitro studies.

Data Extraction Methods
For this meta-analysis, the following data were extracted from the
various studies; the name of the first author, the type of Study, the
year of publication, the country where the study was conducted,
the study period, sample size, study characteristics (such as the
site of infection, age of patients, comorbidities, etc), the
susceptibility breakpoints standards used and clinical outcomes
(such as mortality, clinical success, microbiological success).

Study Quality Assessment
Three reviewers assessed the quality of the studies base on the quality
assessment scale. Any disagreements among the reviewers were
resolved through dialogue. For this meta-analysis, the validity of
the non-randomized studies was assessed with the Newcastle-
Ottawa Scale (NOS) for non-randomized studies (Wells, 2004); for
a study to be included, a score of 5 or more was needed.

Definitions and Outcomes
The definitions of outcomes that were used in this meta-analysis were
those retrieved from individual studies. Crude mortality was defined
as death by any cause evaluated at end of patient follow-up. Clinical
success was defined as resolution of clinical signs and symptoms of the
infections without relapse at the end of the antibiotic treatment. The
microbiological success was defined as a culture negative for CpKP
from subsequent specimen cultures. Different studies had different
experimental durations. Generally, Clinical and microbiological
outcome among studies was evaluated on D14 and D28 (some
studies at the end of D30 or D90). Microbiological success was
defined as a culture negative at D14 and/or D28. Follow-up also
vary among studies and in some studies this was possible until
discharge from the hospital or death. Mortality was evaluated at
the end of the follow-up period (i.e. either D14, D28, D30 or D90).

Statistical Analysis
For the overall microbiological response, clinical success and
mortality estimation, the Freeman-Tukey double arcsine

transformed proportions and the random-effects
(DerSimonian-Laird) model (Borenstein et al., 2009) were
used. Following antibiotic therapies, the treatment outcomes
were compared and the results were presented as odds ratios
[OR]. Subgroup and sensitivity analyses were performed
according to the various treatment regimens. Q test was used
to evaluate between-study heterogeneity. The reliability of pooled
assessments was evaluated via the leave-1-out sensitivity analyzes,
and a study was considered relevant when the pooled result
without that study, was beyond the 95% confidence interval [CI]
of the overall pooled estimate. The degree of heterogeneity was
quantified by I2 with the significance level set at 0.05. A high I2

value (>50%) indicated heterogeneity. If heterogeneity was not
present (I2 < 50%), a fixed-effect model was applied for analysis;
otherwise, a random effect model was adopted. The visualization
approach of the funnel plots was utilized in the assessment of
publication bias whilst the Egger’s test was used to quantify this
bias. Statistical analyses were performed using the R studio 2.15.2
statistical software program (metaphor and meta Package,
Version 2) by random-effects (DerSimonian and Laird) model.

RESULTS

Systematic Literature Review and Study
Characteristics
After an extensive literature search, 1,156 studies were initially
retrieved. After record evaluation and assessment for duplicates,
367 references were excluded. Six hundred and forty-two (642)
studies were further eliminated after the study titles and abstracts
were evaluated. The Full-text assessment was carried out on 147
studies, of which 126 studies were further eliminated. The
primary reasons for rejection were that the articles were
conference proceedings (38), editorials (18), animal studies
(31) and in vitro studies (39). Twenty-one (21) studies met the
inclusion criteria set for this meta-analysis. The Prisma flow chat
(Figure 1) gives a detailed screening and selection procedure of
this study.

Table 1 describes and summarizes the basic characteristics of
the studies included in this meta-analysis. These studies were
made up of 2841 patients who had been infected by CpKP. The
average age reported in these studies ranges from 46 to 69years.
Comorbidities associated with these patients were urinary tract
infections, bloodstream infections, pneumonia, diabetes, cancer,
chronic renal failure and cardiovascular disease among others.
Also, the bloodstream, lungs, urinary tract, skin and soft tissues
were the common sites of infection. Based on the Newcastle-
Ottawa scale for nonrandomized trials scores of the included
studies, studies were rated as having good quality (Table 2).

Quantitative Synthesis
Overall Outcomes
The overall mortality rate from 15 studies involving 2716 patients
that had received different antibiotic regimes was 32.2% (95%CI �
26.23–38.87; I2 � 89%; p-value ≤ 0.01) (Figure 2). Pooled clinical
success was estimated in 9 studies involving 171 CpKP infected
patients treated with various antibiotic regimes (Figure 3). The
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overall clinical success rate was 67.6% (95%CI � 58.35–75.64, I2 �
22%, p-value � 0.25) as compared to the microbiological success
rate of 74.9% (95%CI � 59.02–86.09, I2 � 53%, p-value � 0.05)
which was realized from 7 studies involving 121 CpKP infected
patients that have been treated with different antibiotic regimen
(Figure 4). From Figure 5, the resistant rate of CpKP isolates
varied across the different types of antibiotics. The resistant rates
were Colistin (47.6%), Gentamycin (63.1%), Tigecycline (25.7%),
Fosfomycin (37.9%), Ertapenem (99.7%) and
Meropenem (99.7%).

Subgroup Analysis on Mortality Outcomes
Subgroup analysis on mortality was performed to ascertain the
mortality rate of CpKP-infected patients. The following subgroup
analyses were performed on patients: 1) Treated with
combination therapy vs monotherapy 2) Among patients who
are 60 years and beyond vs. less than 60 years 3) Who received
triple combination therapy vs. double combination therapy 4)
Among multicenter studies vs single center studies 5) Among

studies published between 2015–2016 vs. studies published in
2017 and beyond 6) Among studies conducted in Europe vs
others and 7) Among prospective studies vs retrospective studies
(Table 3). Also various mortality outcomes associated with
specific antibiotic class were analyzed. There is a significant
difference between the mortality rate among CpKP patients
treated with monotherapy and those treated with combination
therapy. Patients treated with combination therapy had reduced
death rate (OR � 0.55, 95%CI � 0.35–0.87, p-value � 0.01, 7
studies, Number of patients � 1,475). No significant difference
existed between the mortality rate among the following
subgroups: 60years and above patients vs below 60years (OR �
0.84, 95%CI � 0.28–2.57, p-value � 0.76, 6 studies, Number of
patients � 1,688), triple therapy vs double therapy (OR � 0.50,
95%CI � 0.21–1.22, p-value � 0.13, 2 studies, Number of patients
� 102), multicenter vs single center studies (OR � 1.01, 95%CI �
0.47–2.16, p-value � 0.98, 7 studies, Number of patients � 2404),
studies published in 2017 and beyond vs studies published below
2017 (OR � 0.70, 95%CI � 0.33–1.47, p-value � 0.35, 8 studies,

FIGURE 1 | Prisma flow chart of study selection.
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TABLE 1 | Charcteristics of included studies.

Author
(Year)

Study
type

(country)

Study
period

Sample
size

Site
of infection

Susceptibility
breakpoints

used

Study
characteristics

Age Monotherapy
outcome/
mortality

Combination therapy outcome/
mortality

Clinical
success

Microbiological
success

Overall Double
combination

Tripple
combination

Gregory (2019) SC
retrospective,
Brazil

2015–2016 82 BSI (13%),
pneumonia
(30.5%), UTI
(11%),
SSI (11%)

CLSI (2017),
EUCAST (2017)
for colistin and
tigecycline

Cardiovascular disease
(47.6%), Cancer (40.2%),
Chronic lung disease
(15.9%), Chronic kidney
disease (29.3), HIV (7.3)

57.6 ± 17
(mean ±
SD)

26/36 17/45 NA NA NA NA

Shaw et al. (2018) SC
retrospective,
Spain

2016–2017 10 cUTI (20%),
Pneumonia
(20%),
BSI (10%)

EUCAST (2017) oesophageal cancer (10%),
cirrhosis (10%), kidney
stones (20%), prostate
cancer (10%), Liver
transplant (30%)

68.5
(mean)

NA 3/10 NA NA 6/10 NA

Machuca et al. (2017) SC
prospective,
(Spain)

2012–2016 104 BSI, UTI,
pneumonia

EUCAST (2000),
US FDA (for
tigecycline)

All inpatients, chronic renal
disease (26%), baseline renal
failure (42.3%), diabetes
(34.6%), COPD (14.4%),
transplant (10.6%), active
solid tumour (28.8%), septic
shock (46.2%), critical
care (53.8%)

NA 14/32 18/72 12/40 6/32 NA NA

Gutiérrez-Gutiérrez et al.
(2017)

MC
retrospective,
Multi-country

2004–2013 375 BSI (100%) CLSI (2012) NA NA 85/208 47/135 NA NA NA NA

Giannella et al. (2018) MC
prospective,
Italy

2010–2015 595 BSI (100%) EUCAST NA 65.5
(median),
54–76
(IQR)

127/595 NA NA NA NA NA

Alexandra (2016) NA NA 15 UTI (8), SSTI (2),
EPI (2), PNA (1),
MSI (2)

NA NA 60.9 ±
10.9
(mean ±
SD)

NA NA NA NA 12/15 12/15

Tanır Basaranoglu et al.
(2017)

NA NA SBSI (1),
CRBSI (2)

NA NA <1year NA NA NA NA 2/3 3/3

Rosa (2018) NA NA 2 UIT NA NA 46 (mean) NA NA NA NA 2/2 2/2
De Oliveira et al. (2015) MC

Retrospective
NA 118 NA NA NA NA 21/57 32/61 NA NA NA NA

Tumbarell et al. (2015a) MC
retrospective,
Italy

2010–2013 661 BSI (67.6%),
LRTI (12.9%),
IAI (6.4%), UTI
(12.4%),
other (0.8%)

EUCAST (2015) COPD (16%), CVD (41.6%),
diabetes (25.4%),
cerebrovascular disease or
dementia (12.2%),
haematological malignancy
(13.5%), solid tumour
(22.2%), liver disease
(10.9%), chronic renal failure
(18.4%), HIV (3%),
neutropenia (10.6%), SOT
(7.9%), shock (15.1%),
ICU (34.8%)

68
(median)
55–76
(IQR)

80/156 93/291 NA NA NA NA

Chang et al. (2015) SC
retrospective
Autralia

2012 10 NA NA KPC-KP infected patients NA 4/10 NA NA NA NA NA

(Continued on following page)
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TABLE 1 | (Continued) Charcteristics of included studies.

Author
(Year)

Study
type

(country)

Study
period

Sample
size

Site
of infection

Susceptibility
breakpoints

used

Study
characteristics

Age Monotherapy
outcome/
mortality

Combination therapy outcome/
mortality

Clinical
success

Microbiological
success

Overall Double
combination

Tripple
combination

Freire et al. (2015) SC
retrospective,
Brazil

2009–2013 83 UTI (32.3%),
BSI (38.9%),
pneumonia
(9.7%)

CLSI (2012), US
FDA (for
tigecycline),
EUCAST (2014)

Oncology patients with
culture positive for KPC-KP

54
(median)
21–72
(range)

49/83 NA NA NA NA NA

Venugopalan et al.
(2017)

SC
retrospective,
USA

2010–2016 36 BSI (100%), UTI
(41.7%), lung
infection
(22.2%),
IAI (2.8%)

CLSI (2010) CVD (86.1%), pulmonary
disease (22.2%), diabetes
(50%), malignancy (19.4%),
CKD (27.8%), seizure
disorder (8.3%)

NA 11/36 NA NA NA 13/18 15/16

Papadimitriou-Olivgeris
et al. (2017)

SC
retrospective,
Greece

2012–2015 139 BSI (100%),
pneumonia
(0.7%),
abdominal
infection (2.9%)

EUCAST (2016) ICU (100%), diabetes (18%),
COPD (6.5%), chronic heart
failure (12.2%), chronic renal
failure (2.9%), malignancy
(12.9%), septic
shock (53.2%)

56.7 ± 18
(mean ±
SD)

18/139 7/139 NA NA NA NA

Liao et al. (2017) SC
retrospective,
China

2012–2014 104 BSI (8.7%),
pneumonia
(81.7%), UTI
(16.3%),
IAI (3.8%)

NA Diabetes (41.3%), COPD
(27.9%), heart failure (23.1%),
hepatic failure (1.9%), renal
failure (23.1%), malignancy
(13.5%), ICU (83.7%)

67.2 ±
15.7
(mean ±
SD)

11/32 15/72 9/15 6/15 NA NA

De Pascale et al. (2017) MC
retrospective,
Italy

2012–2015 144 Pneumonia
(51.4%), UTI
(8.3%), BSI
(57.6%), IAI
(13.2%),
SSTI (8.3%)

EUCAST Chronic heart failure (31.3%),
chronic renal failure (10.4%),
COPD (16%), diabetes
(33.3%), chronic liver disease
(12.5%), septic shock
(54.9%), polymicrobial (16%),
ICU (100%)

59.4
(mean)

NA 42/144 NA NA 30/48 22/44

Cprek and Gallagher,
(2016)

SC
retrospective,
USA

2013–2014 18 BSI,
pneumonia,
UTI, SSSI, IAI

CLSI (2009) CVD (56%), diabetes (44%),
pulmonary disease (56%),
immunocompromised state
(39%), ICU (83%),
polymicrobial (33.3%)

62.5
(median)
51–67
(IQR)

NA 5/18 NA 5/18 7/18 11/14

Oliva et al. (2016) MC
prospective,
Italy

2012–2015 32 Pneumonia,
EVD, Cuti,
CRBI, BSI

NA Septic shock (25%) 55.1 ±
15.2
(mean ±
SD)

NA 6/32 6/32 NA 24/32 NA

Tumbarello et al. (2015b) MC
retrospective,
Italy

2010–2013 8 BSI EUCAST (2015) NA 66
(median)
55–76
(IQR)

NA 3/8 3/8 NA 5/8 NA

Souli et al. (2017) MC
prospective,
Greece

2012–2015 27 BSI, cUTI,
VAP, EVD

CLSI (2012),
EUCAST (2012)
for fosfomycin,
colistin, and
tigecycline

Inpatients (100%) ICU
(55.6%), cancer (7.4%),
rheumatoid arthritis (7.4%),
septic shock (22.2%)

59
(median)
15–83
(range)

NA 8/27 8/27 NA 21/27 20/27

Trecarichi et al. (2016) MC
prospective,
Italy

2010–2014 278 BSI, UTI,
respiratory tract
infection

NA Haematological malignancy
(100%), diabetes (15.5%),
chronic hepatic failure (1.8%),
chronic renal failure (4.3%)

NA NA 101/278 NA NA NA NA

Abbreviations: MC, multicenter; SC, single center; BSI, bloodstream infection; UTI, urinary tract infection; ICU, intensive care unit; SSTI, skin and soft tissue infection; HIV, human immunodeficiency virus; CLSI, Clinical and Laboratory
Standards Institute; EUCAST, European Committee on Antimicrobial Susceptibility Testing; IQR, interquartile range; SD, standard deviation; NA, not available; VAP, ventilator-associated pneumonia; COPD, chronic obstructive pulmonary
disease; IAI, intraabdominal infection; LRTI, lower respiratory tract infection.
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Number of patients � 2406) and prospective vs retrospective
studies (OR � 0.71, 95%CI � 0.55–1.08, p-value � 0.13, 5 studies,
Number of patients � 1706). Comparing studies conducted in
Europe to those conducted elsewhere, it was realized that those in
Europe had lower mortality as compared to those conducted
elsewhere (OR � 0.50, 95%CI � 0.34–0.74, p-value ≤ 0.01, 7
studies, Number of patients � 1899). Comparing the mortality
rates among the various antimicrobial class revealed that, apart
from carbapenem vs aminoglycosides (OR � 1.37, 95%CI �
0.74–2.98, p-value � 0.02, 7 studies, Number of patients �
1,310) there were no significant difference between the
mortality rates of CpKP patients treated with polymyxin vs
tigecycline (OR � 0.89, 95%CI � 0.33–2.21, p-value � 0.67, 6
studies, Number of patients � 1,167), carbapenem vs. polymyxin
(OR � 0.67, 95%CI � 0.46–1.66, p-value � 0.25, 4 studies, Number
of patients � 860), and carbapenem vs tigecycline (OR � 0.98,
95%CI � 0.28–2.87, p-value � 0.78, 4 studies, Number of patients
� 951) (Table 3). Comparing various combination therapies as
seen in Table 3, it can be deduced that aminoglycosides-
containing regimen significantly decreased the mortality rates
among patients infected with CpKP as compared with patients
treated with aminoglycosides-sparing regimen (OR � 0.86, 95%
CI � 0.35–1.13, p-value � 0.04, 5 studies, Number of
patients � 913).

Subgroup Analysis on Microbiological Outcomes
Because heterogeneity existed among the analysis conducted on
the overall or pooled microbiological success, we performed
subgroup analysis to check the source of the heterogeneity
(Table 4). There is a significant difference between the
microbiological success rates among CpKP patients treated
with monotherapy compared to those treated with
combination therapy. Patients treated with combination
therapy had more success rate (OR � 3.78, 95%CI � 0.95 �
6–17.9, p-value� <0.001, 4 studies, Number of patients � 121). No
significant difference existed between the microbiological success
rate among the following subgroups: 60years and above patients
vs below 60years (OR � 2.89, 95%CI � 0.57–7.13, p-value � 0.45, 2
studies, Number of patients � 96), triple therapy vs. double
therapy (OR � 1.29, 95%CI � 0.89–2.96, p-value � 0.24, 2
studies, Number of patients � 85), multicenter vs single center
studies (OR � 2.67, 95%CI � 0.34–1.46, p-value � 0.48, 5 studies,
Number of patients � 136), and prospective vs. retrospective
studies (OR � 0.71, 95%CI � 0.55–1.08, p-value � 0.13, 2 studies,
Number of patients � 89). Comparing studies conducted in
Europe to those conducted elsewhere, it was realized that
those in Europe had higher microbiological success rate as
compared to those conducted elsewhere (OR � 1.99, 95%CI �
0.18–2.84, p-value � 0.03, 3 studies, Number of patients � 102).
Similar to the mortality rate, the microbiological success rates
were significantly different among patients treated with
carbapenem vs aminoglycosides (OR � 2.07, 95%CI �
0.84–9.41, p-value � 0.06, 2 studies, Number of patients � 84)
but non-significant among those treated with polymyxin vs
tigecycline (OR � 3.45, 95%CI � 0.93–9.64, p-value � 0.84, 3
studies, Number of patients � 103) (Table 4). Combination
therapies that contain aminoglycosides significantly increased

the microbiological success rates among patients infected with
CpKP as compared with CpKP patients who were treated with
combination therapies which did not contain aminoglycosides
(OR � 2.98, 95%CI � 0.98–9.13, p-value � 0.03, 3 studies, Number
of patients � 109).

Publication Bias and Sensitivity Analysis
The publication bias of the eligible papers used in our study was
determined using Begg’s funnel and Egger’s test. Based on the
symmetrical funnel plot for the various outcomes (Figure 6), it is
evident that our results were not influenced by selection bias.
Furthermore, the Egger quantitative test revealed that there was
no major bias among our eligible studies, since all the pooled
outcomes had p-values greater than 0.05 (p � 0.8203 for pooled
mortality; p � 0.5942 for clinical success; and p � 0.189 for
microbiological success). Analysis of the sensitivity or reliability
of pooled estimates was then evaluated via leave-1-out sensitivity
analysis. The statistical significance of the findings did not change
when a specific study was omitted, demonstrating the validity and
reliability of our research findings.

DISCUSSION

When clinicians and infection control agencies are faced with a
sudden rise in infections that are caused by new antibiotic-
resistant organisms such as CpKP, they turn to ask these two
important questions: 1) whether there is an increase in the clinical
and economic burden of the infection which is cause by this
resistant organism relative to its susceptible counterpart.
Knowledge on this will inform various decisions such as
healthcare resource allocation, infection management and the
control of these infections 2) The second question is whether
treatment regimen data from clinical studies, are needed to
maximize treatment-related outcomes. This particular question
is very important when patients are infected with CpKP.

In this study, it was observed that tigecycline, fosfomycin and
colistin recorded the highest susceptibility rate against CpKP as
compared to the carbapenems which recorded almost 100%
susceptibility. Bratu et al. (2005) reported that KPC-producing
K. pneumoniae isolates are resistant to not only β-lactam
antimicrobials but also aminoglycosides and fluoroquinolones.
“The few remaining options are colistin, tigecycline, fosfomycin,
and gentamicin, which usually harbor highMIC values, and share
a suboptimal pharmacokinetic profile in terms of distribution at
many infection sites (Gutiérrez-Gutiérrez et al., 2017; Poulakou
et al., 2017).”Nonetheless, due to the risk of renal toxicity, the use
of colistin and gentamycin has been limited. KPC-encoding
blaKPC gene and other drug-resistant genes carried by K.
pneumoniae may lead to a pronounced drug resistant (Villegas
et al., 2007). Drug resistance has been noted to be associated with
increased mortality because patients tend to receive inappropriate
empiric therapies (Tumbarello et al., 2006; Cordery et al., 2008).
The High crude or pooled mortality rate realized in this study
shows that CpKP has stronger invasiveness.

There was a high clinical failure as compared to higher
microbiological success in this meta-analysis. The reduced
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clinical success realized in this study, despite a high
microbiological success, reemphasizes that other clinical
factors, rather than just the antibiotics (either in combination

or singly), may influence treatment results. The high overall
14 days through to 90 days mortality rate (32%) observed in
this meta-analysis is a cause for concern. Although the

TABLE 2 | Study quality assessment based on Newcastle-Ottawa scale.

Study Quality assessment criteria Total
scoreSelection Comparability Outcome/Exposure

1 2 3 4 1 2 3

Gregory (2019) * * * * 0 * * 6
Shaw et al. (2018) * 0 * * ** * * * 8
Machuca et al. (2017) * 0 * * 0 * * * 6
Gutiérrez-Gutiérrez et al. (2017) * * 0 * 0 * * 0 5
Giannella et al. (2018) * 0 * * 0 * * 0 5
Alexandra (2016) * * 0 * 0 0 * * 5
Tanır Basaranoglu et al. (2017) * * * * 0 * 0 * 6
Rosa (2018) * * * * 0 * * 0 6
De Oliveira et al. (2015) * 0 * * 0 * * * 6
Tumbarell et al. (2015a) * * 0 * ** * 0 0 6
Chang et al. (2015) * * * * 0 * 0 0 5
Freire et al. (2015) * * * * ** * * * 9
Venugopalan et al. (2017) * * * * ** * * 0 8
Papadimitriou-Olivgeris et al. (2017) * * 0 * ** * * 0 7
Liao et al. (2017) * 0 * * 0 * 0 * 5
De Pascale et al. (2017) * * 0 0 ** * * 0 6
Cprek and Gallagher, (2016) * 0 * * 0 * * * 6
Oliva et al. (2016) * * * * ** * * 0 8
Tumbarello et al. (2015b) * 0 * * 0 * * * 6
Souli et al. (2017) * 0 * * 0 * * * 6
Trecarichi et al. (2016) * * * * ** * * * 9

FIGURE 2 | Forest plot for pooled mortality rate of CpKP infected patients.
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mortality rate in this study is high, it is less when compared with
the results of Xu et al. (2017), who reported a mortality rate of
42.14% among infections caused by carbapenem-resistant K.
pneumoniae. Because most of the CpKP infected patients had
other comorbidities, the results obtained from the pooled
mortality rate may be overestimated. Also, there may be other
factors which may have contributed to this high mortality. These
are: the increase risk of renal and hepatic toxicity through the use
of certain medications and the increasing use of antibiotics that
belong to the Polymyxin family, may have contributed to
patients’ mortality (Aguayo et al., 2016); increased virulence of
carbapenemase-producing strains and the fact that the use of
antibiotic regimes might, in turn, increase resistance to these
same medications.

The lower mortality rate associated with combination therapy
as compared to monotherapy is in line with previous findings

(Tzouvelekis et al., 2014; Trecarichi et al., 2016). This may be as a
result of the synergistic benefit that comes with the use of
combination therapies during bacterial elimination and also
the ability of combination therapies to provide a broad spectra
of antibacterial activity especially during polymicrobial
infections. The synergistic effects of combination therapies
against CpKP have been confirmed in a lot of in vitro studies
(Poirel et al., 2016; Oliva et al., 2017). In a study by Moher et al.
(2009), the synergistic activity of combination therapies on CpKP
was evaluated. During Severe infections caused by CpKP, it has
been recommended to use combination treatment with more
than one active agent (Tumbarello et al., 2012a; Qureshi et al.,
2012; Tzouvelekis et al., 2012). In a study by Tumbarello et al.
(2012a), it was reported that patients who received monotherapy
had a mortality rate of 54% as compared to patients who received
combination therapy with the best result been obtained from

FIGURE 3 | Forest plot for pooled clinical success among CpKP infected patients after antibiotic regimes.

FIGURE 4 | Forest plot for pooled microbiological success among CpKP infected patients after antibiotic.
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those who received triple combination therapy (Tumbarello et al.,
2012b). Daikos et al. (2014) reported similar findings in a study of
205 patients with Bloodstream infections caused by KPC- or
VIM-producing K. pneumoniae.

There was no significant difference in the mortality rates when
patients received double and triple antibiotic combination
therapies. This result suggests that before a combination
therapy would be used, there must be a broader consultation
and the decision must be guided by clinical projections (e.g.
comorbidity of patient, pattern of antimicrobial susceptibility, site
of infection, and disease severity). It is also important to consider

any possible benefits derived from increasing the number of
medications, along with the likelihood of increased adverse
effects associated with these antibiotics (Tamma et al., 2012).
In this meta-analysis, studies conducted in Europe had lower
mortality as compared with studies conducted in other
continents. This may be attributable to the advance medical
care and the use of different treatment strategies such as the
use of double and triple antibiotic regimes, the treatment of
infections with tigecycline and polymyxins, and also the use of
various adjunctive procedures (e.g., catheter removal, drainage, or
debridement).

FIGURE 5 | Resistant rate of CpKP to commonly used antibiotics in the treatment of CpKP infections. Colistin (n � 178), Gentamycin (n � 236), Tigecycline (n � 96),
Fosfomycin (n � 89), Ertapenem (n � 373), Meropenem (n � 373).

TABLE 3 | Subgroup analysis on mortality outcomes.

Mortality among Studies Number
of

patients

Test of association Test of heterogeneity

OR 95%CI p-value I2 (%) p-value X2

Combination therapy vs. Monotherapy 7 1,475 0.55 0.35–0.87 0.01 67 0.005 18.33
60years and above vs. Below 60years 6 1,688 0.84 0.28–2.57 0.76 92 <0.001 66.33
Triple therapy vs. Double therapy 2 102 0.50 0.21–1.22 0.13 <25 0.84 0.04
Multi-center vs. Single center 7 2404 1.01 0.47–2.16 0.98 86 <0.001 42.78
Data published 2017 and beyond vs. Data published below 2017 8 2406 0.70 0.33–1.47 0.35 88 <0.001 59.65
Studies conducted in Europe vs. Others 7 1899 0.50 0.34–0.74 <0.001 35 0.16 9.23
Prospective study vs. Retrospective study 5 1706 0.77 0.55–1.08 0.13 <25 0.86 1.31
Polymyxin vs Tigecycline 6 1,167 0.89 0.33–2.21 0.67 84 <0.001 47.23
Carbapenem vs. Aminoglycoside 7 1,310 1.37 0.74–2.98 0.02 72 0.78 28.6
Carbapenem vs. Polymyxin 4 860 0.67 0.46–1.66 0.25 <25 0.37 15.69
Carbapenem vs. Tigecycline 4 951 0.98 0.28–2.87 0.78 89 0.42 37.97
Aminoglycoside-containing combination therapy vs. Aminoglycoside-sparing
combination therapy vs

5 913 0.86 0.35–1.13 0.04 <25 0.64 29.98

Polymyxin-containing combination therapy vs. Polymyxin-sparing combination
therapy

3 576 0.99 0.26–3.01 0.73 87 <0.001 9.38

Carbapenem-containing combination therapy vs. Carbapenem-sparing combination
therapy

4 879 1.13 0.78–2.97 0.97 45 0.71 15.92
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Because of the high rate of resistance, poor clinical outcomes,
and the fact that new drugs to effectively treat these pathogens are
several years away, antimicrobial stewardship programmes must

be implemented immediately at both the national (country base)
and regional levels of the world to ensure the best possible patient
outcomes and to preserve antimicrobials for future use.

TABLE 4 | Subgroup analysis on microbiological outcomes.

Microbiological success
among

Studies Number
of

patients

Test of association Test of heterogeneity

OR 95%CI p-value I2 (%) p-value X2

Combination therapy vs. Monotherapy 4 121 3.78 0.96–17.9 <0.001 89 0.89 42.17
60 years and above vs. Below 60 years 2 96 2.89 0.57–7.13 0.45 38 0.06 9.86
Triple therapy vs. Double therapy 2 85 1.29 0.89–2.96 0.24 65 0.09 3.67
Multi-center vs. Single center 5 136 2.67 0.34–1.46 0.48 <25 0.37 21.34
Data published 2017 and beyond vs. Data published below 2017 3 107 2.89 0.12–8.33 0.67 59 <0.001 35.12
Studies conducted in Europe vs. Others 3 102 1.99 0.18–2.84 0.03 68 <0.001 46.85
Prospective study vs. Retrospective study 2 89 2.17 0.79–2.15 0.38 86 0.19 6.87
Polymyxin vs. Tigecycline 3 103 3.45 0.93–9.64 0.84 71 <0.001 28.98
Carbapenem vs. Aminoglycoside 2 84 2.07 0.84–9.41 0.06 82 <0.001 46.73
Carbapenem vs. Polymyxin 1 — — — — — — —

Carbapenem vs. Tigecycline 0 — — — — — — —

Aminoglycoside-containing combination therapy vs. Aminoglycoside-sparing
combination therapy vs.

3 109 2.98 0.98–9.13 0.03 47 0.58 32.09

Polymyxin-containing combination therapy vs. Polymyxin-sparing combination
therapy

2 96 1.54 0.20–2.79 0.46 82 0.78 23.46

Carbapenem-containing combination therapy vs. Carbapenem-sparing combination
therapy

2 84 1.16 0.92–2.99 0.91 56 0.23 36.91

FIGURE 6 | Funnel plot for overall (A) mortality rate (B) clinical success and (C) microbiological response.
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Antimicrobial stewardship programmes, among other things, can
optimize antimicrobial usage, enhance patient outcomes,
minimize antimicrobial resistance and health-care-associated
infections, and can also reduce health-care costs. In the
management of major CpKP infections, clinicians should
always consult a local infectious disease expert, and the
treatment should always be based on antibiotic susceptibility
test and the degree of the illness. In the management, consider
empiric and antibiogram-directed combination therapy for
patients who are critically unwell or have deep-seated
infections, but one should be mindful of the toxicities of these
drugs. Also, there is a need for new, efficient and rapid detection
technologies for rapid identification and detection of resistance
genes such as those of the carbapenemases. This will lead to rapid
identification of carbapenemase producers, allowing adequate
antibiotic stewardship. This will also help prevent the
development of nosocomial outbreaks caused by CpKP. The
rapid detection of carbapenemase producers may also have a
significant impact in preventing their spread in the community,
thereby reducing the use and misuse of antimicrobials.

The strengths of this meta-analysis are that, only one strain of
a particular organism was used during our search and also
because we employed a high sensitive search strategy.
Sensitivity analysis by repeatedly eliminating one test at a time
revealed that the findings of this study were consistent, thus
symbolizing the reliability of the study. The reliability and
generalizability of our results was more established because of
the inclusion of studies from Europe, Asia, and the Americas.
Some limitations of this study are that: subgroup analysis based
on clinical success and gender were not conducted due to
insufficient availability of primary studies data. Also, some
included studies were of only moderate quality. Majority of
studies used retrospective design and therefore may be prone
to selection bias. It was not possible to provide a targeted account
taking into consideration all confounders, which restricts the
capacity of this meta-analysis to reliably establish a causal
relationship.

CONCLUSION

In conclusion, there was high overall mortality and the mortality
observed in CpKP-infected patients receiving combination
therapy is lesser than that of those receiving monotherapy.
Also, CpKP infected patients in Europe are less likely to die

when compared with their counterparts in other continents.
However, because most of the CpKP-infected patients had other
comorbidities, the results obtained from the pooled mortality
rate and the subgroup analysis may have been overestimated
and one should be careful when drawing concrete conclusions
from this. The choice of empirical treatment for patients with
CpKP infections should be based on past treatment regimen and
the antimicrobial resistant profiles of this organism in the
hospital setting. Despite the advantages that combination
therapies have over monotherapies, before a combination
therapy would be used, there must be a broader consultation
and the decision must be guided by clinical projections (e.g.
comorbidity of patient, pattern of antimicrobial susceptibility,
site of infection, and disease severity). New effective therapies
are urgently needed to help fight infections caused by this
organism. The effective use of various therapeutic options
and the strict implementation of infection control measures
(Poulou et al., 2012) are of utmost importance in order to
prevent infections caused by CpKP. Strict national or
international implementation of infection control measures
and treatment guidelines will help improve healthcare, and
equip governments and communities to respond to and
prevent the spread of infectious diseases caused by CpKP.
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